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Abstract. A macroelement is presented for the nonlinear dynamic analysis of masonry struc-
tures under seismic actions. The macroelement, developed in the framework of the equivalent 
frame model, has a force-based formulation and accounts for flexural and shear failure mech-
anisms, by means of two flexural hinges at the ends and a shear link, respectively. The flexural 
hinges are formulated according to the Bouc-Wen model to describe the progressive develop-
ment of cracks and the hysteresis loops under load reversals. The shear link, in addition to the 
aforementioned effects, accounts for the strength/stiffness decay and is formulated adopting the 
Bouc-Wen-Baber-Noori model. Numerical comparisons with experimental tests on masonry 
piers are presented, showing the suitability of the presented macroelement. 
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1 INTRODUCTION 

The in-plane response of masonry buildings under seismic actions is usually studied through 
pushover analysis, assuming that the response is dominated by a single mode. However, in the 
case of irregular plan/elevation, as well as of flexible floors, which are customary in historical 
constructions, no single mode can be identified as dominating the response and pushover anal-
ysis proves to be largely inaccurate. In addition, pushover analysis neglects the vertical compo-
nent of ground motion. 

To overcome these limitations, it is mandatory to resort to nonlinear dynamic analysis. The 
model for nonlinear dynamic analysis should account for a number of phenomena occurring in 
masonry: the progressive development of cracks, the energy dissipation in hysteresis loops and 
the decay of strength/stiffness under repeated cycles. In addition, masonry piers can fail either 
in bending or shear, with different hysteretic and decay characteristics. 

Among the various approaches proposed, macroelement formulations [1,2,3] allow to satis-
factorily describe the main global aspects of masonry structural response in a simplified fashion, 
representing a good compromise between accuracy and computational burden.  

This study presents a macroelement for the nonlinear dynamic analysis of masonry buildings, 
according to the equivalent frame model [1,2]. This, formulated in a force-based framework, 
consists of a central linear elastic element, two flexural hinges at the ends and a shear link 
arranged in series, accounting for the hysteresis under cyclic loads. The flexural hinges and the 
shear link are modelled according to the Bouc-Wen (hereinafter referred to as BW) [4,5] and 
the Bouc-Wen-Baber-Noori (hereinafter referred to as BWBN) [6] models, respectively. These 
are characterized by: a) a smooth transition between the elastic and the inelastic ranges, ac-
counting for the progressive development of cracks; b) a small set of parameters able to repro-
duce hysteresis loops with different shapes. In particular, the bending hinges, showing low 
dissipation and negligible decay, are modelled by means of the BW model, whereas the shear 
link, with high dissipation and decay, by means of the BWBN model. 

The macroelement and the solution algorithm for the element state determination have been 
implemented in the FEAP code [7], and numerical simulations of experimental tests on simple 
piers under axial force and shear are presented. 

2 CYCLIC CONSTITUTIVE LAWS FOR THE FLEXURAL AND SHEAR HINGES 

Bouc-Wen model has been used to describe hysteretic behaviour [8] in many mechanical 
and structural fields, including beam members [9,10], concrete walls [11], seismic isolation 
devices [12], wood joints [13], magneto-rheological fluid dampers [14,15], to cite some. 

Its high versatility and the ability of reproducing a wide range of different hysteresis shapes, 
with a limited set of parameters, have prompted its introduction in the equivalent frame element 
formulation to simulate the behaviour of masonry panels. 

According to this model, the restoring force is expressed as a linear combination of the elas-
tic force, Pel, and the history-dependent hysteretic term, Ph: 

 

	 𝑃 = 𝑃$% + 𝑃' = 𝑎𝐾𝑢 𝑡 	𝑣- + 1 − 𝑎 𝐾𝑧 𝑡 	𝑣-	 (1) 
 

where 𝐾 is the tangent, initial stiffness, 𝑎 is the ratio between pre- and post yielding stiffness, 
vy is the apparent yield displacement and u has the meaning of ductility [16]. The evolution of 
the hysteretic variable 𝑧(𝑡) is ruled by the following differential equation: 

  

	 𝑧 𝑡 = 	 𝐴 − 𝛽	𝑠𝑖𝑔𝑛 𝑧 𝑡 	𝑢(𝑡) + 𝛾 	 𝑧(𝑡) : 	𝑢(𝑡)	 (2)	
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Equation (2) contains four non-dimensional parameters, 𝐴, 𝛽, 𝛾, 𝑛, which govern the shape 
and the size of the hysteretic loop, n affecting the abruptness of transition between pre- and 
post-yield response. The roles of these parameters and their influence on the cycle shape have 
been widely studied [16,17]. 

Based on Equation (1), the BW model can be represented by two springs, an elastic one and 
a hysteretic one, arranged in parallel, as reported in Figure 1.  

 

 
 

Figure 1: Two springs BW model representation. 
 

Despite being extremely versatile, the BW hysteretic response does not take into account the 
effects of strength and stiffness degradation. This makes it suitable for the simulation of the 
masonry wall flexural response, which is typically characterized by a reduced amount of dissi-
pation and small degradation effects. Conversely, BW model cannot reproduce the masonry 
shear mechanisms, which include relevant degradation effects. 

Hence, to simulate the shear behaviour of masonry panels the BWBN model is introduced. 
This is an extension of the previous BW model, but is able to account for the effects of strength 
and stiffness degradation, by means of a set of energy-dependent parameters. 

The differential equation, which rules the evolution of the hysteretic variable 𝑧 𝑡  according 
to the BWBN model, is: 

 

 𝑧(𝑡) = < = >	? = @ABC: D E F E GH 	 D E I 	F(E)
J =

 (3) 
 

where: 
 

𝜂 𝜀 = 𝜂M + 𝛿J	𝜀(𝑡)	

 𝜈 𝜀 = 𝜈M + 𝛿?	𝜀(𝑡)	 (4)	
𝐴 𝜀 = 𝐴M − 𝛿<	𝜀(𝑡) 

 

with: 
 

 𝜂M = 𝜈M = 𝐴M = 1 (5) 
 

The energy related to the hysteretic spring is given by the following expression: 
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 𝜀 𝑡 = 1 − 𝑎 𝐾𝑣-P 𝑧(𝑡)F(E)
F(M) 𝑑𝑢 = 1 − 𝑎 𝐾𝑣-P 𝑧 𝑡E

M 𝑢(𝑡)𝑑𝑡 (6) 
 

The introduced BW and BWBN formulations are used to model the constitutive response of 
the flexural and shear hinges, respectively. Thus, the displacement and force components in 
Equation (1), vy u(t) and P(t) are substituted by the kinematic and static variables governing the 
response of the mentioned hinges. 

In the following, when referred to the flexural hinges, Equations (1) and (2) are applied to 
evaluate the couples M1 and M2 as function of the corresponding rotations 𝑞ST  and 𝑞PT , at 
hinges located at node i and j, respectively. Similarly, Equations (1) and (3) are used to compute 
the response of the shear hinge, that is the shear force T as function of the shear deformation s.  

3 FORCE-BASED BEAM FORMULATION 
The adopted beam formulation stands on the force-based approach, more efficient and accu-

rate than the classical displacement-based models [18]. The beam is composed by the series 
arrangement of four sub-elements, a 2-node central elastic Timoshenko beam, two nonlinear 
flexural hinges located at the end nodes of the central element and a nonlinear shear link [1,2]. 
According to the equilibrated formulation, a basic reference system is introduced removing the 
rigid body motions from the six-component vector containing the beam nodal displacements. 
Thus, the resulting nodal kinematic parameters are collected in the vector q = [q1 q2 q3]T, q1 and 
q2 being the rotations at nodes i and j, respectively, and q3 the axial displacement. The work-
conjugated force vector Q = [Q1 Q2 Q3]T collects the nodal force components, that is the two 
nodal couples Q1 and Q2 applied at nodes i and j, respectively, and the axial force Q3. Figure 2 
shows the displacement (bottom) and force (top) nodal components in the (a) global and (b) 
basic reference system, respectively.  

 

 
 

Figure 2: Beam finite element. Nodal forces (top) and displacement (bottom) in the (a) global and (b) basic 
reference system. 

 
The following relation between the increments of the displacement and force vectors, 𝐪 and 

𝐐, holds: 
 

 𝐪	=	F	𝐐 (7) 
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where the tangent flexibility matrix is derived by composing the elastic flexibility matrix of the 
central element and the tangent flexibility coefficients of the flexural and shear hinges. As a 
consequence of the series arrangement, it results: 
 

 F =

X
YZ[

+ S
X\<∗

+ 𝐹ST +
_̀
Xa

− X
bZ[

+ S
X\<∗

+ _̀
Xa

0

− X
bZ[

+ S
X\<∗

+ _̀
Xa

X
YZ[

+ S
X\<∗

+ 𝐹PT +
_̀
Xa

0

0 0 X
Z<

 (8) 

 

with L being the element length, EA, EI and GA* the axial, flexural and shear stiffness of the 
elastic beam element, F1b, F2b and Fs the tangent flexibility coefficients of the flexural and shear 
hinges, respectively. To introduce the beam formulation in the global solution procedure based 
on the displacement method, matrix F is inverted to compute the element stiffness matrix K 
and the element nodal force vector Q has to be evaluated. 

3.1 Solution algorithm  
A step-by-step method for the time integration of the global equilibrium equations and a 

standard iterative Newton-Raphson algorithm are adopted. The beam element formulation is 
implemented in the FE analysis program FEAP [7], used to perform the numerical analyses. 
The global assembling procedure requires, at the element level, the computation of the element 
stiffness matrix and the structural reaction force vector. The adopted force-based approach in-
volves an element state determination procedure more complex than the classical displacement-
based formulation [18]. The main steps of this procedure are contained in Table 1. 

 
Element state determination 

∆𝐪e 

∆𝐐e = (𝐅e>S)>S∆𝐪e			 

∆𝑞STe = 𝐹STe>S∆𝑄S				e ; 	∆𝑞PTe = 𝐹PTe>S∆𝑄P							e  

∆𝑠e = 𝐹Ae>S(∆𝑄Se + ∆𝑄Pe)/𝐿 

𝑀S
e,𝑀P

e, 𝑇e 					; 					𝐹STe , 𝐹PTe , 𝐹Ae 

𝐅e  

𝑟STe = 𝐹STe (𝑄Se>S + ∆𝑄Se − 𝑀S
e) 

𝑟PTe = 𝐹PTe (𝑄Pe>S + ∆𝑄Pe − 𝑀P
e) 

𝑟Ae =
𝐹Ae

𝐿
𝑄Se + 𝑄Pe

𝐿 +
∆𝑄Se + ∆𝑄Pe

𝐿 − 𝑇e  

𝐫e = 𝑟STe + 𝑟A			e 		𝑟PTe + 𝑟A			e 		0
o
 

𝐐e = 𝐐e>S + ∆𝐐e − (𝐅e)>S𝐫e		 
 

Table 1: Element state determination. 
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After evaluating the increment of the element forces ΔQk, at the current Newton-Raphson 
iteration k, on the basis of the increment of the element displacements Δqk and the element 
flexibility matrix at the previous iteration Fk-1, the current increment of the hinge rotations, 
∆𝑞STe  and ∆𝑞PTe  and shear deformation ∆𝑠e  are evaluated. Then, the flexural hinge rotations and 
the shear hinge deformation are updated and the constitutive responses are computed, giving 
the current hinge flexibilities, 𝐹STe , 𝐹PTe  and 𝐹Ae,	 as well as the moments and shear, 𝑀S

e,𝑀P
e, 𝑇e .  

Hence, the current flexibility matrix of the overall element, Fk, is updated and, finally, by its 
inversion, the new element stiffness Kk is computed. To evaluate the element reaction forces 
Qk, the kinematic residuals at the hinges, 𝑟STe , 𝑟PT		e and 𝑟Ae, are first determined, on the basis of 
the difference between the equilibrated forces and the values obtained by the constitutive laws. 
Such hinge residuals are transformed into the element kinematic residual, rk, by summing the 
contributions of the flexural and shear hinges at each node. By pre-multiplying rk by the inverse 
of the element flexibility Fk, a residual on the element reaction forces is calculated, used to 
compute the updated Qk. Both the updated stiffness matrix Kk= (Fk)-1 and the nodal force vector 
Qk are passed to the global code FEAP for the assembling and solution procedures. The element 
kinematic residual, rk, tends to vanish as the Newton-Raphson global iterations go on.  

4 ELEMENT VALIDATION  

Two masonry panels tested at the Joint Research Centre of Ispra under cyclic lateral dis-
placement of increasing amplitude, applied quasi-statically to the top side are analysed [19]. 
These are characterized by a different H/b ratio: a slender one (b = 1 m, H = 2 m) and a squat 
one (b = 1 m, H = 1.35 m). The thickness t is equal to 0.25 m for both panels. They are subjected 
to a constant vertical distributed load, whose resultant is 150 kN.  

 

 
 

Figure 3: Ispra panels. Geometry and boundary conditions. 
 
During the test, the top and bottom end sections were kept parallel. 
The mechanical parameters have been deduced in [20] from experimental tests on compo-

nents and small assemblages. The elastic parameters also adopted in the present study are E=1.7 
106 kN/m2 and G= 0.3 106 kN/m2. The parameters adopted for the BW and BWBN models are 
reported in Tables 2 and 3. 

First, the validation of the element is done by simulating the nonlinear behaviour of the 
panels, when subjected to an incremental static loading. A single FE is used to model the panel. 
The beam element is assumed as clamped at the base, with additional restraint at the top node 
affecting the rotation; therefore, the element is in double bending condition. 
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β γ n a K[kN/mm] vy [mm] 
0.2 0.8 1 0.005 36.94 1.8 

 

Table 2: Parameters of the BW model for slender panel. 
 

β γ n a K[kN/mm] vy [mm] δη δν δΑ 
0.5 0.5 1 0.000 89.57 1.2 0.002 0.0008 0 
 

Table 3: Parameters of the BWBN model for squat panel. 
 

Figure 5 shows the pushover response curves for the (a) slender and (b) squat panel, respec-
tively, in terms of base shear versus top displacement, obtained by using the proposed macro-
element formulation (square symbols), compared with the experimental envelope curves 
(triangle symbols) and with the results presented in [2] (circle symbols), where a rigid-perfectly 
plastic behaviour has been assumed for the hinges. 

 

 
 

Figure 5: Pushover response curves for slender a) and squat b) panel. 
 

A very good agreement between the experimental envelope curves and those obtained with 
the proposed macroelement is noted.  

Then, the nonlinear cyclic behaviour of the panels has been investigated and another valida-
tion has been done comparing the experimental cyclic response curves with the results of the 
proposed model simulation. The mechanical parameters are those contained in Tables 2 and 3; 
in this case, the energy-dependent coefficients are relevant to reproduce the strength and stiff-
ness degradation. Both the experimental response and the proposed model predictions are 
shown in Figure 6 (a) and (b) for the slender and the squat panel respectively, where a satisfac-
tory match between the experimental and the numerical results emerges.  
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Figure 6: Experimental response of Ispra panels and proposed model predictions for a) slender and b) squat 
panel 

5 CONCLUDING REMARKS 

• A force-based macrolement has been presented, where the nonlinear masonry behaviour has 
been modelled by introducing two flexural hinges at the end nodes and a shear link.  

• The adoption of the BW and BWBN models for the constitutive response of the hinges is a 
novelty introduced by this study. This has allowed to reproduce the hysteresis and the stiff-
ness-strength decay, typically characterizing the main nonlinear mechanisms of masonry 
walls. 

• A beam FE and a proper solution algorithm have been developed and introduced in the FEAP 
code, used to perform the numerical applications. 

• The presented macroelement formulation has been validated by analysing two experimen-
tally tested simple piers, where the typical flexural and shear mechanisms emerge. The com-
parison between the numerical and experimental results show that the element is accurate in 
reproducing the experimental hysteresis loops and the strength/stiffness decay of masonry. 
At the same time, its computation burden is much lower than that of micro- or multiscale 
models, making it suitable to analyse medium to large constructions. 
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