22,129 research outputs found

    A Polynomial Time Algorithm for Lossy Population Recovery

    Full text link
    We give a polynomial time algorithm for the lossy population recovery problem. In this problem, the goal is to approximately learn an unknown distribution on binary strings of length nn from lossy samples: for some parameter μ\mu each coordinate of the sample is preserved with probability μ\mu and otherwise is replaced by a `?'. The running time and number of samples needed for our algorithm is polynomial in nn and 1/ε1/\varepsilon for each fixed μ>0\mu>0. This improves on algorithm of Wigderson and Yehudayoff that runs in quasi-polynomial time for any μ>0\mu > 0 and the polynomial time algorithm of Dvir et al which was shown to work for μ0.30\mu \gtrapprox 0.30 by Batman et al. In fact, our algorithm also works in the more general framework of Batman et al. in which there is no a priori bound on the size of the support of the distribution. The algorithm we analyze is implicit in previous work; our main contribution is to analyze the algorithm by showing (via linear programming duality and connections to complex analysis) that a certain matrix associated with the problem has a robust local inverse even though its condition number is exponentially small. A corollary of our result is the first polynomial time algorithm for learning DNFs in the restriction access model of Dvir et al

    A Polynomial-time Algorithm for Outerplanar Diameter Improvement

    Full text link
    The Outerplanar Diameter Improvement problem asks, given a graph GG and an integer DD, whether it is possible to add edges to GG in a way that the resulting graph is outerplanar and has diameter at most DD. We provide a dynamic programming algorithm that solves this problem in polynomial time. Outerplanar Diameter Improvement demonstrates several structural analogues to the celebrated and challenging Planar Diameter Improvement problem, where the resulting graph should, instead, be planar. The complexity status of this latter problem is open.Comment: 24 page

    An Exact Quantum Polynomial-Time Algorithm for Simon's Problem

    Get PDF
    We investigate the power of quantum computers when they are required to return an answer that is guaranteed to be correct after a time that is upper-bounded by a polynomial in the worst case. We show that a natural generalization of Simon's problem can be solved in this way, whereas previous algorithms required quantum polynomial time in the expected sense only, without upper bounds on the worst-case running time. This is achieved by generalizing both Simon's and Grover's algorithms and combining them in a novel way. It follows that there is a decision problem that can be solved in exact quantum polynomial time, which would require expected exponential time on any classical bounded-error probabilistic computer if the data is supplied as a black box.Comment: 12 pages, LaTeX2e, no figures. To appear in Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems (ISTCS'97

    A Polynomial Time Algorithm for Spatio-Temporal Security Games

    Full text link
    An ever-important issue is protecting infrastructure and other valuable targets from a range of threats from vandalism to theft to piracy to terrorism. The "defender" can rarely afford the needed resources for a 100% protection. Thus, the key question is, how to provide the best protection using the limited available resources. We study a practically important class of security games that is played out in space and time, with targets and "patrols" moving on a real line. A central open question here is whether the Nash equilibrium (i.e., the minimax strategy of the defender) can be computed in polynomial time. We resolve this question in the affirmative. Our algorithm runs in time polynomial in the input size, and only polylogarithmic in the number of possible patrol locations (M). Further, we provide a continuous extension in which patrol locations can take arbitrary real values. Prior work obtained polynomial-time algorithms only under a substantial assumption, e.g., a constant number of rounds. Further, all these algorithms have running times polynomial in M, which can be very large
    corecore