research

A Polynomial Time Algorithm for Lossy Population Recovery

Abstract

We give a polynomial time algorithm for the lossy population recovery problem. In this problem, the goal is to approximately learn an unknown distribution on binary strings of length nn from lossy samples: for some parameter μ\mu each coordinate of the sample is preserved with probability μ\mu and otherwise is replaced by a `?'. The running time and number of samples needed for our algorithm is polynomial in nn and 1/ε1/\varepsilon for each fixed μ>0\mu>0. This improves on algorithm of Wigderson and Yehudayoff that runs in quasi-polynomial time for any μ>0\mu > 0 and the polynomial time algorithm of Dvir et al which was shown to work for μ⪆0.30\mu \gtrapprox 0.30 by Batman et al. In fact, our algorithm also works in the more general framework of Batman et al. in which there is no a priori bound on the size of the support of the distribution. The algorithm we analyze is implicit in previous work; our main contribution is to analyze the algorithm by showing (via linear programming duality and connections to complex analysis) that a certain matrix associated with the problem has a robust local inverse even though its condition number is exponentially small. A corollary of our result is the first polynomial time algorithm for learning DNFs in the restriction access model of Dvir et al

    Similar works

    Full text

    thumbnail-image

    Available Versions