5 research outputs found

    Can Emotional and Behavioral Dysregulation in Youth Be Decoded from Functional Neuroimaging?

    Get PDF
    High comorbidity among pediatric disorders characterized by behavioral and emotional dysregulation poses problems for diagnosis and treatment, and suggests that these disorders may be better conceptualized as dimensions of abnormal behaviors. Furthermore, identifying neuroimaging biomarkers related to dimensional measures of behavior may provide targets to guide individualized treatment. We aimed to use functional neuroimaging and pattern regression techniques to determine whether patterns of brain activity could accurately decode individual-level severity on a dimensional scale measuring behavioural and emotional dysregulation at two different time points

    Distinguishing prodromal from first-episode psychosis using neuroanatomical single-subject pattern recognition

    Get PDF
    BACKGROUND: The at-risk mental state for psychosis (ARMS) and the first episode of psychosis have been associated with structural brain abnormalities that could aid in the individualized early recognition of psychosis. However, it is unknown whether the development of these brain alterations predates the clinical deterioration of at-risk individuals, or alternatively, whether it parallels the transition to psychosis at the single-subject level. METHODS: We evaluated the performance of an magnetic resonance imaging (MRI)-based classification system in classifying disease stages from at-risk individuals with subsequent transition to psychosis (ARMS-T) and patients with first-episode psychosis (FE). Pairwise and multigroup biomarkers were constructed using the structural MRI data of 22 healthy controls (HC), 16 ARMS-T and 23 FE subjects. The performance of these biomarkers was measured in unseen test cases using repeated nested cross-validation. RESULTS: The classification accuracies in the HC vs FE, HC vs ARMS-T, and ARMS-T vs FE analyses were 86.7%, 80.7%, and 80.0%, respectively. The neuroanatomical decision functions underlying these discriminative results particularly involved the frontotemporal, cingulate, cerebellar, and subcortical brain structures. CONCLUSIONS: Our findings suggest that structural brain alterations accumulate at the onset of psychosis and occur even before transition to psychosis allowing for the single-subject differentiation of the prodromal and first-episode stages of the disease. Pattern regression techniques facilitate an accurate prediction of these structural brain dynamics at the early stage of psychosis, potentially allowing for the early recognition of individuals at risk of developing psychosis

    Can emotional and behavioral dysregulation in youth be decoded from functional neuroimaging?

    Get PDF
    Introduction High comorbidity among pediatric disorders characterized by behavioral and emotional dysregulation poses problems for diagnosis and treatment, and suggests that these disorders may be better conceptualized as dimensions of abnormal behaviors. Furthermore, identifying neuroimaging biomarkers related to dimensional measures of behavior may provide targets to guide individualized treatment. We aimed to use functional neuroimaging and pattern regression techniques to determine whether patterns of brain activity could accurately decode individual-level severity on a dimensional scale measuring behavioural and emotional dysregulation at two different time points. Methods A sample of fifty-seven youth (mean age: 14.5 years; 32 males) was selected from a multisite study of youth with parent-reported behavioral and emotional dysregulation. Participants performed a block-design reward paradigm during functional Magnetic Resonance Imaging (fMRI). Pattern regression analyses consisted of Relevance Vector Regression (RVR) and two cross-validation strategies implemented in the Pattern Recognition for Neuroimaging toolbox (PRoNTo). Medication was treated as a binary confounding variable. Decoded and actual clinical scores were compared using Pearson's correlation coefficient (r) and mean squared error (MSE) to evaluate the models. Permutation test was applied to estimate significance levels. Results Relevance Vector Regression identified patterns of neural activity associated with symptoms of behavioral and emotional dysregulation at the initial study screen and close to the fMRI scanning session. The correlation and the mean squared error between actual and decoded symptoms were significant at the initial study screen and close to the fMRI scanning session. However, after controlling for potential medication effects, results remained significant only for decoding symptoms at the initial study screen. Neural regions with the highest contribution to the pattern regression model included cerebellum, sensory-motor and fronto-limbic areas. Conclusions The combination of pattern regression models and neuroimaging can help to determine the severity of behavioral and emotional dysregulation in youth at different time points. Copyright: © 2016 Portugal et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Training a Vocal Tract Synthesiser to imitate speech using Distal Supervised Learning

    Get PDF
    Imitation is a powerful mechanism by which both animals and people can learn useful behavior, by copying the actions of others. We adopt this approach as a means to control an articulatory speech synthesizer. The goal of our project is to build a system that can learn to mimic speech using its own vocal tract. We approach this task by training an inverse mapping between the synthesizer’s control parameters and their auditory consequences. In this paper we compare the direct estimation of this inverse model with the distal supervised learning scheme proposed by Jordan & Rumelhart (1992). Both of these approaches involve a babbling phase, which is used to learn the auditory consequences of the articulatory controls. We show that both schemes perform well on speech generated by the synthesizer itself, when no normalization is needed, but that distal learning provided slightly better performance with speech generated by a real human subject

    Use of neuroanatomical pattern regression to predict the structural brain dynamics of vulnerability and transition to psychosis. Biological Psychiatry

    No full text
    Background: The at-risk mental state for psychosis (ARMS) has been associated with abnormal structural brain dynamics underlying disease transition or non-transition. To date, it is unknown whether these dynamic brain changes can be predicted at the single-subject level prior to disease transition using MRI-based machine-learning techniques. Methods: First, deformation-based morphometry and partial-least-squares (PLS) was used to investigate patterns of volumetric changes over time in 25 ARMS individuals versus 28 healthy controls (HC) (1) irrespective of the clinical outcome and (2) according to illness transition or non-transition. Then, the baseline MRI data were employed to predict the expression of these volumetric changes at the individual level using support-vector regression (SVR). Results: PLS revealed a pattern of pronounced morphometric changes in ARMS versus HC that affected predominantly the right prefrontal, as well as the perisylvian, parietal and periventricular structures (p b 0.011), and that was more pronounced in the converters versus the non-converters (p b 0.010). The SVR analysis facilitated a reliable prediction of these longitudinal brain changes in individual out-of training cases (HC vs ARMS: r = 0.83, p b 0.001; HC vs converters vs non-converters: r = 0.83, p b 0.001) by relying on baseline patterns that involved ventricular enlargements, as well as prefrontal, perisylvian, limbic, parietal and subcortical volume reductions. Conclusions: Abnormal brain changes over time may underlie an elevated vulnerability for psychosis and may be most pronounced in subsequent converters to psychosis. Pattern regression techniques may facilitate an accurate prediction of these structural brain dynamics, potentially allowing for an early recognition of individuals at risk of developing psychosisassociated neuroanatomical changes over time
    corecore