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Abstract 
Imitation is a powerful mechanism by which both animals and 
people can learn useful behavior, by copying the actions of 
others.  We adopt this approach as a means to control an 
articulatory speech synthesizer.  The goal of our project is to 
build a system that can learn to mimic speech using its own 
vocal tract.  We approach this task by training an inverse 
mapping between the synthesizer’s control parameters and 
their auditory consequences.  In this paper we compare the 
direct estimation of this inverse model with the distal 
supervised learning scheme proposed by Jordan & Rumelhart 
(1992).  Both of these approaches involve a babbling phase, 
which is used to learn the auditory consequences of the 
articulatory controls.  We show that both schemes perform 
well on speech generated by the synthesizer itself, when no 
normalization is needed, but that distal learning provided 
slightly better performance with speech generated by a real 
human subject.   

1. Introduction 
In order for a person to be able to imitate speech (or any other 
sound) using their vocal tract, it is necessary for them to relate 
an auditory representation of the sound to the motor control 
signals needed to move their vocal apparatus appropriately.  
The imitated acoustic output should aim to be the best possible 
match to the target speech, even though an exact match will 
generally not be possible due to differences between the 
generating and imitation systems.  The imitation process thus 
requires not only information relating to how to control the 
vocal tract, but also the ability to judge the similarity between 
sounds, even when there are significant differences between 
them. 
 
1.1. Inverse Models 
 
At the heart of our approach is an inverse model that maps 
between an acoustic representation of speech and the motor 
control signals needed to imitate the input.  In the first 
instance we consider the task of imitating a system that has an 
identical vocal tract.  This avoids issues of speaker 
normalization, and these will be discussed later.  In this case it 
is theoretically possible to make a very close match to the 
original speech, since both of the speech generators are 
identical. 
 
1.2. Articulator Inversion 
 
 

Relating the acoustic consequences of a vocal tract synthesizer 
back to its corresponding control signals can be achieved 
using an inverse model.  The field of articulator inversion is 
by no means new, and many researches have contributed to 
this field [2].  However, many have been concerned with the 
use of real articulator measurements or representations in 
terms of formants frequencies, as well as other theoretical 
issues [3,4,5].  Our interest lies in building a system that will 
repeat a given acoustic utterance using a vocal tract 
synthesizer, and to do so without the use of any intermediate 
real articulator measurements.  
 

 

Figure 1: Schematic diagram of speech imitation system. 

2. Directly Learning the Inverse Model  

2.1. Basic System  

Figure 1 shows a block diagram of our speech imitation 
system.  This shows an articulator based speech synthesizer 
that is driven by motor control signals, resulting in speech 
output.  The control input to the synthesizer can be produced 
either internally within the system using a motor trajectory 
generator or from the output from an inverse model, the input 
to which consists of the auditory analysis of a speech 
utterance to be imitated.  Initially this inverse transformation 
is unknown and its estimation is the main task of the work 
described here. 

2.2. Using Babble to Perform System Identification 

If we run the synthesizer using a random babble generator and 
then feed its speech output back into the acoustic analysis, we 
have the basic structure we need to estimate the inverse model 
(see figure 2).  In order to define the input/output mapping of 
the synthesizer, representative input output samples pairs are 
clearly required. This necessitates driving the synthesizer in a 
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fashion that will sample its input in a way that is statistically 
consistent with its intended use in generating real speech 
utterances.  Since such control signals are not available a 
priori (if they were we, would have solved our control 
problem) we using a scheme based on a  Hidden Markov 
Model Generator (HMM) to generate a first approximation of 
speech like movements of the articulators.  We use this HMM 
to randomly sample phonetically significant regions of 
synthesiser space and then interpolate the output between 
these regions so as to generate a slowly varying time signal 
vector that corresponds well to the kind of movements the 
articulators would make when generating real speech.  In a 
previous paper we discuss these issues in more detail [6]. 
 

 

Figure 2: Direct training of the Inverse Model. 

2.3. Direct Inverse Estimation 

After generating data relating the synthesizer controls to their 
acoustic consequences by babbling, we can then use this 
dataset to directly train an inverse model using a classical 
supervised regression technique [7]. 

3. Learning the Inverse model using Distal 
Supervised Learning 

3.1. The convexity Problem 

As pointer out by in [1], direct estimation of the inverse model 
can run in to problems.  The first of these arises because many 
vocal tract configurations can lead to similar or identical 
acoustic consequences.  Because pattern regression techniques 
will tend to average the target over all of these configurations 
(in this case the vocal tract configurations) it is possible that 
the resulting estimate may not be a solution to the inverse 
mapping.  This will occur if the target set is not convex, in 
which case the average over target space in not a member of 
the target set. 

3.2. Goal Directed Optimization 

Also as pointed out in [1], another limitation of direct 
estimation of the inverse model is that it is not goal directed.  
In our case this means that the output error is formulated in 
articulator space rather than in acoustic space.  Since we are 
ultimately concerned with acoustic matching (we are 
interested in how the imitation sounds to us), the latter is 
clearly more desirable.  Thus, the distal learning approach of 
Jordan and Rumelhart may provide a useful means to evaluate 

the matching error in a more psycho-acoustically relevant 
fashion.  Indeed if we could represent the acoustic signal a 
way that optimally related to its psycho-acoustic relevance, 
even the same simple Euclidian similarity metric would be 
likely to give better agreement to a human measure of acoustic 
similarity than otherwise.  
 

 

Figure 3: Distal Supervised Training. 

Both the convexity problem and lack of goal directed learning 
can be overcome using the distal supervised learning 
approach.  The basic idea behind this approach involves first 
training a forward model and an inverse model.  The two are 
then combine into a single network and the parameters of the 
forward model are fixed.  The joint network is then trained to 
map from the acoustic data, via an intermediate articulatory 
representation, and then back to the acoustic data.  This is 
illustrated in figure 3.  The forward network is used to convert 
the estimation of articulator space due to the inverse model 
into acoustic space.  In this way an acoustic error for the 
inverse model can be defined and subsequently propagated 
backward through the forward model and use to modify the 
inverse model. 

 

Figure 4: Using the Inverse Model for Imitation. 

4. Methods 
In out work here we used a 9-parameter articulator synthesiser 
based on the work of Maeda [8].  To limit computational 
requirements we adopted a speech sampling rate of 8kHz.    
The babble generator was run to sample five pure vowels and 
the consonant targets /b/ and /g/, as well as a state for silence, 
to generate 300 seconds of articulator trajectory data.  The 
acoustic analysis is based on the JSRU channel vocoder [9] 
together with a simple autocorrelation estimate for 
fundamental frequency and voicing, and generates a 21 
element data vector every 10ms.   



 
We employed a multi-layer perceptron (MLP) to implement 
the forward and inverse models and a Matlab implementation 
was used [10].  They were trained using back-propagation [11] 
with conjugate gradient descent.  The input to the inverse 
model consisted of 10 centred adjacent vocoder frames 
spanning 100ms in time, and the MLP had 40 hidden units and 
9 linear outputs.  The forward model used only a single input 
and output frame, 40 hidden units and linear outputs.  The 
time delay between the control parameters and acoustic 
analysis was estimated by running single input frame forward 
and inverse models on the data and selecting the delay that 
minimized the error.  Training the inverse, forward and 
combined models involved 1000 passes over the data set.  
During re-synthesis of the articulatory data using the inverse 
models, the output trajectories were smoothed with a 15 point 
median filter (spanning 150ms) to remove glitches from the 
output trajectories. 

5. Results 

5.1. Speech Resynthesis 

After training, both the direct and distally trained inverse 
models were evaluated by re-synthesising input speech.  This 
was achieved by passing an externally generated speech signal 
(that is, speech from another identical synthesizer and a 
human subject) through the acoustic analysis, then through the 
inverse model and finally to the synthesizer, as shown in 
figure 4.  Evaluations were carried by listening tests and also 
by observation of the corresponding wideband spectrograms.  
A more detailed examination of the operation of our imitation 
system performing a re-synthesis its own speech is provided in 
[12].  This paper examines in detail the behaviour of the 
articulator control signals generated by an inverse model.  
 

 

Figure 5:  Wideband spectrograms for input utterance 
/baba/ babble from synthesiser (A), and re-synthesised 
outputs generated by the direct (B) and distal retrained 
(C) imitation system. 

5.2. On its own Speech 

On its own speech, performance was very good, with the re-
synthesis speech being almost indistinguishable from the 
original. This similarity was also verified using 
spectrographic analysis, as shown in figure 5.  It can be seen 
that the first 2 formants correspond well with the original and 
even the higher formants 3 and 4 match quite well. 

 

 

Figure 6:  Wideband spectrograms for input utterance 
/boo gie ba ba ba ba/ from a male speaker (A), and re-
synthesised outputs generated by the direct (B) and distal 
retrained (C) imitation system. 

5.3. On Speech from a Male Subject 

Re-synthesising speech from a real human subject was also 
investigated.  This is a much more difficult problem because 
the real vocal tract that generated the real speech will 
generally have different characteristics from that used by the 
imitation system.  This therefore raises the issues of speaker 
normalization and the generalization capabilities of the 
system.  Performance in this case was noticeably worse that 
the original, although simple utterances could still be 
understood. Figure 6 and 7 shown spectrographic analysis of 
such utterances.  The first format corresponds well in both 
imitated cases and the second not quite so well.  Distal 
training did slightly improve the sound of the re-synthesis 
although this improvement is difficult to judge on the basis of 
the spectrograms.  The reader is therefore urged to listen to 
the speech samples made by the synthesis (see supplementary 
information section). 
 

 

Figure 7:  Wideband spectrograms for sung input 
utterance “I’m half crazy, all for the love of you”, taken 
from the song Daisy, for a male speaker (A), and re-
synthesised outputs generated by the direct (B) and distal 
retrained (C) imitation system. 



6. Conclusions and Future Work 

6.1. Conclusions 

In this paper we trained an inverse model to perform imitation 
of target speech utterances using an articulatory synthesizer.  
We compared two approaches to the training, both a direct 
approach and a distal supervised estimation of the inverse 
model.  The system achieved a good imitation of its own 
speech in both cases.  However with real speech from a male 
speaker, performance was worse in both cases, although there 
was a slightly improvement using the distal supervised 
learning scheme.  This suggests that the main limitations in 
the performance of the direct trained re-synthesis system were 
not due to the convexity problem or the lack of goal directed 
learning.  Rather, it appears likely that the dominant limitation 
arose because of normalization issues between the human 
speaker and the system. 

6.2. Modeling Articulator Dynamics 

The current implementation of the inverse model makes no 
attempt to model the dynamics of the articulators.  It simply 
performs a static transformation with no regard to their 
current state.  This was partly the reason that median filtering 
was needed to smooth out glitches in the predicted articulator 
trajectories.  Such a filtering operation is, however, by no 
means without its deficiencies and it introduces undesirable 
distortions into the trajectories.  It is to be expected that the 
use of prior knowledge regarding the state of the articulators 
would improve the estimate of their position. Such issues are 
elegantly addressed by Kalman filtering techniques, which 
have been successfully applied to many tasks that requiring 
object tracking on the basis of noisy measurements (for 
example [13]).  

6.3. Speaker Normalization 

Presently we have not made any explicit attempt to account 
for differences between speech from the synthesizer and 
human speakers.  In the first instance would be interesting to 
use a more psycho-acoustically motivated representation of 
the input speech to see if this improved the generalization 
capabilities of the inverse model. Another approach would be 
to try to learn a transformation that mapped input acoustic data 
onto a more canonical representation before reaching the 
inverse model. 

6.4. Phonetic Representation of Speech 

A step further would involve using an auditory analysis that 
explicitly represents the phonetic characteristics of the input 
speech.  Such a scheme would have an advantage over a more 
general representation because it would be constrained to 
generate phonetically relevant movements of the articulators. 
 

7. Supplementary Information 
A supplement to this paper containing the .wav format audio 
samples described in the text can be found on the website 
http://www.ianhoward.de/specom_2005.htm. 
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