12 research outputs found

    Vulnerability and Protective Factors for PTSD and Depression Symptoms Among Healthcare Workers During COVID-19: A Machine Learning Approach

    Get PDF
    Background: Healthcare workers are at high risk for developing mental health problems during the COVID-19 pandemic. There is an urgent need to identify vulnerability and protective factors related to the severity of psychiatric symptoms among healthcare workers to implement targeted prevention and intervention programs to reduce the mental health burden worldwide during COVID-19. // Objective: The present study aimed to apply a machine learning approach to predict depression and PTSD symptoms based on psychometric questions that assessed: (1) the level of stress due to being isolated from one's family; (2) professional recognition before and during the pandemic; and (3) altruistic acceptance of risk during the COVID-19 pandemic among healthcare workers. // Methods: A total of 437 healthcare workers who experienced some level of isolation at the time of the pandemic participated in the study. Data were collected using a web survey conducted between June 12, 2020, and September 19, 2020. We trained two regression models to predict PTSD and depression symptoms. Pattern regression analyses consisted of a linear epsilon-insensitive support vector machine (ε-SVM). Predicted and actual clinical scores were compared using Pearson's correlation coefficient (r), the coefficient of determination (r2), and the normalized mean squared error (NMSE) to evaluate the model performance. A permutation test was applied to estimate significance levels. // Results: Results were significant using two different cross-validation strategies to significantly decode both PTSD and depression symptoms. For all of the models, the stress due to social isolation and professional recognition were the variables with the greatest contributions to the predictive function. Interestingly, professional recognition had a negative predictive value, indicating an inverse relationship with PTSD and depression symptoms. // Conclusions: Our findings emphasize the protective role of professional recognition and the vulnerability role of the level of stress due to social isolation in the severity of posttraumatic stress and depression symptoms. The insights gleaned from the current study will advance efforts in terms of intervention programs and public health messaging

    Can Emotional and Behavioral Dysregulation in Youth Be Decoded from Functional Neuroimaging?

    Get PDF
    High comorbidity among pediatric disorders characterized by behavioral and emotional dysregulation poses problems for diagnosis and treatment, and suggests that these disorders may be better conceptualized as dimensions of abnormal behaviors. Furthermore, identifying neuroimaging biomarkers related to dimensional measures of behavior may provide targets to guide individualized treatment. We aimed to use functional neuroimaging and pattern regression techniques to determine whether patterns of brain activity could accurately decode individual-level severity on a dimensional scale measuring behavioural and emotional dysregulation at two different time points

    Attitudinal Responses to Mixed Evidence: The Role of Attitude Extremity and Political Ideology in Effecting Change versus Resistance

    Get PDF
    Four studies investigated the effects of attitude extremity and political ideology on the degree and direction of changes in issue attitudes following the presentation of mixed evidence. Based upon previous work, it was predicted that those holding relatively more extreme attitudes would resist changing those views when presented with a mixture of supporting and opposing statements and would potentially adopt more extreme evaluative positions – a phenomenon known as attitude polarization (Lord, Ross, & Lepper, 1979). Evaluative entrenchment or intensification was also expected among more politically conservative participants, based upon prior work describing cognitive rigidity and resistance to change as more characteristic of the political right than left (e.g., Jost, Glaser, Kruglanski, & Sulloway, 2003). An interaction of attitude extremity and political ideology was also hypothesized, such that liberal individuals with moderate attitudes were expected to demonstrate the least propensity to polarize. Participants’ attitudes regarding abortion rights (Study 1), gun control (Study 2), tax increases (Study 3), and environmental preservation (Study 4) were assessed before and after reading statements that both opposed and supported the issue. Political ideology was also assessed, along with several individual difference factors. Across all four studies, attitude extremity significantly predicted evaluative change, although the pattern of that effect varied. Political ideology did not emerge consistently as a predictor of attitude change; however, significant interactive effects of extremity and ideology were found. In addition, several individual difference factors (i.e., gender, need for cognition, issue importance) were found to moderate the effects of the primary predictors on attitude change, and some divergent result patterns were found when comparing data from a college and non-college sample in Study 4. Taken together, these studies provide evidence that attitude extremity and political ideology influence the degree and direction of evaluative change following the presentation of mixed evidence. In addition, they identify other factors at work in effecting change versus resistance, thereby highlighting the multi-faceted and complex nature of persuasion in a political context

    Predicting anxiety from wholebrain activity patterns to emotional faces in young adults: a machine learning approach

    Get PDF
    BACKGROUND: It is becoming increasingly clear that pathophysiological processes underlying psychiatric disorders categories are heterogeneous on many levels, including symptoms, disease course, comorbidity and biological underpinnings. This heterogeneity poses challenges for identifying biological markers associated with dimensions of symptoms and behaviour that could provide targets to guide treatment choice and novel treatment. In response, the research domain criteria (RDoC) (Insel et al., 2010) was developed to advocate a dimensional approach which omits any disease definitions, disorder thresholds, or cut-points for various levels of psychopathology to understanding the pathophysiological processes underlying psychiatry disorders. In the present study we aimed to apply pattern regression analysis to identify brain signatures during dynamic emotional face processing that are predictive of anxiety and depression symptoms in a continuum that ranges from normal to pathological levels, cutting across categorically-defined diagnoses. METHODS: The sample was composed of one-hundred and fifty-four young adults (mean age=21.6 and s.d.=2.0, 103 females) consisting of eighty-two young adults seeking treatment for psychological distress that cut across categorically-defined diagnoses and 72 matched healthy young adults. Participants performed a dynamic face task involving fearful, angry and happy faces (and geometric shapes) while undergoing functional Magnetic Resonance Imaging (fMRI). Pattern regression analyses consisted of Gaussian Process Regression (GPR) implemented in the Pattern Recognition for Neuroimaging toolbox (PRoNTo). Predicted and actual clinical scores were compared using Pearson's correlation coefficient (r) and normalized mean squared error (MSE) to evaluate the models' performance. Permutation test was applied to estimate significance levels. RESULTS: GPR identified patterns of neural activity to dynamic emotional face processing predictive of self-report anxiety in the whole sample, which covered a continuum that ranged from healthy to different levels of distress, including subthreshold to fully-syndromal psychiatric diagnoses. Results were significant using two different cross validation strategies (two-fold: r=0.28 (p-value=0.001), MSE=4.47 (p-value=0.001) and five fold r=0.28 (p-value=0.002), MSE=4.62 (p-value=0.003). The contributions of individual regions to the predictive model were very small, demonstrating that predictions were based on the overall pattern rather than on a small combination of regions. CONCLUSIONS: These findings represent early evidence that neuroimaging techniques may inform clinical assessment of young adults irrespective of diagnoses by allowing accurate and objective quantitative estimation of psychopathology

    Can emotional and behavioral dysregulation in youth be decoded from functional neuroimaging?

    Get PDF
    Introduction High comorbidity among pediatric disorders characterized by behavioral and emotional dysregulation poses problems for diagnosis and treatment, and suggests that these disorders may be better conceptualized as dimensions of abnormal behaviors. Furthermore, identifying neuroimaging biomarkers related to dimensional measures of behavior may provide targets to guide individualized treatment. We aimed to use functional neuroimaging and pattern regression techniques to determine whether patterns of brain activity could accurately decode individual-level severity on a dimensional scale measuring behavioural and emotional dysregulation at two different time points. Methods A sample of fifty-seven youth (mean age: 14.5 years; 32 males) was selected from a multisite study of youth with parent-reported behavioral and emotional dysregulation. Participants performed a block-design reward paradigm during functional Magnetic Resonance Imaging (fMRI). Pattern regression analyses consisted of Relevance Vector Regression (RVR) and two cross-validation strategies implemented in the Pattern Recognition for Neuroimaging toolbox (PRoNTo). Medication was treated as a binary confounding variable. Decoded and actual clinical scores were compared using Pearson's correlation coefficient (r) and mean squared error (MSE) to evaluate the models. Permutation test was applied to estimate significance levels. Results Relevance Vector Regression identified patterns of neural activity associated with symptoms of behavioral and emotional dysregulation at the initial study screen and close to the fMRI scanning session. The correlation and the mean squared error between actual and decoded symptoms were significant at the initial study screen and close to the fMRI scanning session. However, after controlling for potential medication effects, results remained significant only for decoding symptoms at the initial study screen. Neural regions with the highest contribution to the pattern regression model included cerebellum, sensory-motor and fronto-limbic areas. Conclusions The combination of pattern regression models and neuroimaging can help to determine the severity of behavioral and emotional dysregulation in youth at different time points. Copyright: © 2016 Portugal et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Predicting Bipolar Disorder Risk Factors in Distressed Young Adults From Patterns of Brain Activation to Reward: A Machine Learning Approach

    Get PDF
    BACKGROUND: The aim of this study was to apply multivariate pattern recognition to predict the severity of behavioral traits and symptoms associated with risk for bipolar spectrum disorder from patterns of whole-brain activation during reward expectancy to facilitate the identification of individual-level neural biomarkers of bipolar disorder risk. METHODS: We acquired functional neuroimaging data from two independent samples of transdiagnostically recruited adults (18-25 years of age; n = 56, mean age 21.9 ± 2.2 years, 42 women; n = 36, mean age 21.2 ± 2.2 years, 24 women) during reward expectancy task performance. Pattern recognition model performance in each sample was measured using correlation and mean squared error between actual and whole-brain activation-predicted scores on behavioral traits and symptoms. RESULTS: In the first sample, the model significantly predicted severity of a specific hypo/mania-related symptom, heightened energy, measured by the energy manic subdomain of the Mood Spectrum Structured Interviews (r = .42, p = .001; mean squared error = 9.93, p = .001). The region with the highest contribution to the model was the left ventrolateral prefrontal cortex. Results were confirmed in the second sample (r = .33, p = .01; mean squared error = 8.61, p = .01), in which the severity of this symptom was predicted using a bilateral ventrolateral prefrontal cortical mask (r = .33, p = .009, mean squared error = 9.37, p = .04). CONCLUSIONS: The severity of a specific hypo/mania-related symptom was predicted from patterns of whole-brain activation in two independent samples. Given that emerging manic symptoms predispose to bipolar disorders, these findings could provide neural biomarkers to aid early identification of individual-level bipolar disorder risk in young adults

    Perceptual Model-Driven Authoring of Plausible Vibrations from User Expectations for Virtual Environments

    Get PDF
    One of the central goals of design is the creation of experiences that are rated favorably in the intended application context. User expectations play an integral role in tactile product quality and tactile plausibility judgments alike. In the vibrotactile authoring process for virtual environments, vibra-tion is created to match the user’s expectations of the presented situational context. Currently, inefficient trial and error approaches attempt to match expectations implicitly. A more efficient, model-driven procedure based explicitly on tactile user expectations would thus be beneficial for author-ing vibrations. In everyday life, we are frequently exposed to various whole-body vibrations. Depending on their temporal and spectral proper-ties we intuitively associate specific perceptual properties such as “tin-gling”. This suggests a systematic relationship between physical parame-ters and perceptual properties. To communicate with potential users about such elicited or expected tactile properties, a standardized design language is proposed. It contains a set of sensory tactile perceptual attributes, which are sufficient to characterize the perceptual space of vibration encountered in everyday life. This design language enables the assessment of quantita-tive tactile perceptual specifications by laypersons that are elicited in situational contexts such as auditory-visual-tactile vehicle scenes. Howev-er, such specifications can also be assessed by providing only verbal de-scriptions of the content of these scenes. Quasi identical ratings observed for both presentation modes suggest that tactile user expectations can be quantified even before any vibration is presented. Such expected perceptu-al specifications are the prerequisite for a subsequent translation into phys-ical vibration parameters. Plausibility can be understood as a similarity judgment between elicited features and expected features. Thus, plausible vibration can be synthesized by maximizing the similarity of the elicited perceptual properties to the expected perceptual properties. Based on the observed relationships between vibration parameters and sensory tactile perceptual attributes, a 1-nearest-neighbor model and a regression model were built. The plausibility of the vibrations synthesized by these models in the context of virtual auditory-visual-tactile vehicle scenes was validat-ed in a perceptual study. The results demonstrated that the perceptual spec-ifications obtained with the design language are sufficient to synthesize vibrations, which are perceived as equally plausible as recorded vibrations in a given situational context. Overall, the demonstrated design method can be a new, more efficient tool for designers authoring vibrations for virtual environments or creating tactile feedback. The method enables further automation of the design process and thus potential time and cost reductions.:Preface III Abstract V Zusammenfassung VII List of Abbreviations XV 1 Introduction 1 1.1 General Introduction 1 1.1 Objectives of the Thesis 4 1.2 Structure of the Thesis 4 2. Tactile Perception in Real and Virtual Environments 7 2.1 Tactile Perception as a Multilayered Process 7 2.1.1 Physical Layer 8 2.1.2 Mechanoreceptor Layer 9 2.1.3 Sensory Layer 19 2.1.4 Affective Layer 26 2.2 Perception of Virtual Environments 29 2.2.1 The Place Illusion 29 2.2.2 The Plausibility Illusion 31 2.3 Approaches for the Authoring of Vibrations 38 2.3.1 Approaches on the Physical Layer 38 2.3.2 Approaches on the Mechanoreceptor Layer 40 2.3.3 Approaches on the Sensory Layer 40 2.3.4 Approaches on the Affective Layer 43 2.4 Summary 43 3. Research Concept 47 3.1 Research Questions 47 3.1.1 Foundations of the Research Concept 47 3.1.2 Research Concept 49 3.2 Limitations 50 4. Development of the Experimental Setup 53 4.1 Hardware 53 4.1.1 Optical Reproduction System 53 4.1.2 Acoustical Reproduction System 54 4.1.3 Whole-Body Vibration Reproduction System 56 4.2 Software 64 4.2.1 Combination of Reproduction Systems for Unimodal and Multimodal Presentation 64 4.2.2 Conducting Perceptual Studies 65 5. Assessment of a Sensory Tactile Design Language for Characterizing Vibration 67 5.1.1 Design Language Requirements 67 5.1.2 Method to Assess the Design Language 69 5.1.3 Goals of this Chapter 70 5.2 Tactile Stimuli 72 5.2.1 Generalization into Excitation Patterns 72 5.2.2 Definition of Parameter Values of the Excitation Patterns 75 5.2.3 Generation of the Stimuli 85 5.2.4 Summary 86 5.3 Assessment of the most relevant Sensory Tactile Perceptual Attributes 86 5.3.1 Experimental Design 87 5.3.2 Participants 88 5.3.3 Results 88 5.3.4 Aggregation and Prioritization 89 5.3.5 Summary 91 5.4 Identification of the Attributes forming the Design Language 92 5.4.1 Experimental Design 93 5.4.2 Participants 95 5.4.3 Results 95 5.4.4 Selecting the Elements of the Sensory Tactile Design Language 106 5.4.5 Summary 109 5.5 Summary and Discussion 109 5.5.1 Summary 109 5.5.2 Discussion 111 6. Quantification of Expected Properties with the Sensory Tactile Design Language 115 6.1 Multimodal Stimuli 116 6.1.1 Selection of the Scenes 116 6.1.2 Recording of the Scenes 117 6.1.3 Recorded Stimuli 119 6.2 Qualitative Communication in the Presence of Vibration 123 6.2.1 Experimental Design 123 6.2.2 Participants 124 6.2.3 Results 124 6.2.4 Summary 126 6.3 Quantitative Communication in the Presence of Vibration 126 6.3.1 Experimental Design 127 6.3.2 Participants 127 6.3.3 Results 127 6.3.4 Summary 129 6.4 Quantitative Communication in the Absence of Vibration 129 6.4.1 Experimental Design 130 6.4.2 Participants 132 6.4.3 Results 132 6.4.4 Summary 134 6.5 Summary and Discussion 135 7. Synthesis Models for the Translation of Sensory Tactile Properties into Vibration 137 7.1 Formalization of the Tactile Plausibility Illusion for Models 139 7.1.1 Formalization of Plausibility 139 7.1.2 Model Boundaries 143 7.2 Investigation of the Influence of Vibration Level on Attribute Ratings 144 7.2.1 Stimuli 145 7.2.2 Experimental Design 145 7.2.3 Participants 146 7.2.4 Results 146 7.2.5 Summary 148 7.3 Comparison of Modulated Vibration to Successive Impulse-like Vibration 148 7.3.1 Stimuli 149 7.3.2 Experimental Design 151 7.3.3 Participants 151 7.3.4 Results 151 7.3.5 Summary 153 7.4 Synthesis Based on the Discrete Estimates of a k-Nearest-Neighbor Classifier 153 7.4.1 Definition of the K-Nearest-Neighbor Classifier 154 7.4.2 Analysis Model 155 7.4.3 Synthesis Model 156 7.4.4 Interpolation of acceleration level for the vibration attribute profile pairs 158 7.4.5 Implementation of the Synthesis 159 7.4.6 Advantages and Disadvantages 164 7.5 Synthesis Based on the Quasi-Continuous Estimates of Regression Models 166 7.5.1 Overall Model Structure 168 7.5.2 Classification of the Excitation Pattern with a Support Vector Machine 171 7.5.3 General Approach to the Regression Models of each Excitation Pattern 178 7.5.4 Synthesis for the Impulse-like Excitation Pattern 181 7.5.5 Synthesis for the Bandlimited White Gaussian Noise Excitation Pattern 187 7.5.6 Synthesis for the Amplitude Modulated Sinusoidal Excitation Pattern 193 7.5.7 Synthesis for the Sinusoidal Excitation Pattern 199 7.5.8 Implementation of the Synthesis 205 7.5.9 Advantages and Disadvantages of the Approach 208 7.6 Validation of the Synthesis Models 210 7.6.1 Stimuli 212 7.6.2 Experimental Design 212 7.6.3 Participants 214 7.6.4 Results 214 7.6.5 Summary 219 7.7 Summary and Discussion 219 7.7.1 Summary 219 7.7.2 Discussion 222 8. General Discussion and Outlook 227 Acknowledgment 237 References 237Eines der zentralen Ziele des Designs von Produkten oder virtuellen Um-gebungen ist die Schaffung von Erfahrungen, die im beabsichtigten An-wendungskontext die Erwartungen der Benutzer erfüllen. Gegenwärtig versucht man im vibrotaktilen Authoring-Prozess mit ineffizienten Trial-and-Error-Verfahren, die Erwartungen an den dargestellten, virtuellen Situationskontext implizit zu erfüllen. Ein effizienteres, modellgetriebenes Verfahren, das explizit auf den taktilen Benutzererwartungen basiert, wäre daher von Vorteil. Im Alltag sind wir häufig verschiedenen Ganzkörper-schwingungen ausgesetzt. Abhängig von ihren zeitlichen und spektralen Eigenschaften assoziieren wir intuitiv bestimmte Wahrnehmungsmerkmale wie z.B. “kribbeln”. Dies legt eine systematische Beziehung zwischen physikalischen Parametern und Wahrnehmungsmerkmalen nahe. Um mit potentiellen Nutzern über hervorgerufene oder erwartete taktile Eigen-schaften zu kommunizieren, wird eine standardisierte Designsprache vor-geschlagen. Sie enthält eine Menge von sensorisch-taktilen Wahrneh-mungsmerkmalen, die hinreichend den Wahrnehmungsraum der im Alltag auftretenden Vibrationen charakterisieren. Diese Entwurfssprache ermög-licht die quantitative Beurteilung taktiler Wahrnehmungsmerkmale, die in Situationskontexten wie z.B. auditiv-visuell-taktilen Fahrzeugszenen her-vorgerufen werden. Solche Wahrnehmungsspezifikationen können jedoch auch bewertet werden, indem der Inhalt dieser Szenen verbal beschrieben wird. Quasi identische Bewertungen für beide Präsentationsmodi deuten darauf hin, dass die taktilen Benutzererwartungen quantifiziert werden können, noch bevor eine Vibration präsentiert wird. Die erwarteten Wahr-nehmungsspezifikationen sind die Voraussetzung für eine anschließende Übersetzung in physikalische Schwingungsparameter. Plausible Vibratio-nen können synthetisiert werden, indem die erwarteten Wahrnehmungs-merkmale hervorgerufen werden. Auf der Grundlage der beobachteten Beziehungen zwischen Schwingungs¬parametern und sensorisch-taktilen Wahrnehmungsmerkmalen wurden ein 1-Nearest-Neighbor-Modell und ein Regressionsmodell erstellt. Die Plausibilität der von diesen Modellen synthetisierten Schwingungen im Kontext virtueller, auditorisch-visuell-taktiler Fahrzeugszenen wurde in einer Wahrnehmungsstudie validiert. Die Ergebnisse zeigten, dass die mit der Designsprache gewonnenen Wahr-nehmungsspezifikationen ausreichen, um Schwingungen zu synthetisieren, die in einem gegebenen Situationskontext als ebenso plausibel empfunden werden wie aufgezeichnete Schwingungen. Die demonstrierte Entwurfsme-thode stellt ein neues, effizienteres Werkzeug für Designer dar, die Schwingungen für virtuelle Umgebungen erstellen oder taktiles Feedback für Produkte erzeugen.:Preface III Abstract V Zusammenfassung VII List of Abbreviations XV 1 Introduction 1 1.1 General Introduction 1 1.1 Objectives of the Thesis 4 1.2 Structure of the Thesis 4 2. Tactile Perception in Real and Virtual Environments 7 2.1 Tactile Perception as a Multilayered Process 7 2.1.1 Physical Layer 8 2.1.2 Mechanoreceptor Layer 9 2.1.3 Sensory Layer 19 2.1.4 Affective Layer 26 2.2 Perception of Virtual Environments 29 2.2.1 The Place Illusion 29 2.2.2 The Plausibility Illusion 31 2.3 Approaches for the Authoring of Vibrations 38 2.3.1 Approaches on the Physical Layer 38 2.3.2 Approaches on the Mechanoreceptor Layer 40 2.3.3 Approaches on the Sensory Layer 40 2.3.4 Approaches on the Affective Layer 43 2.4 Summary 43 3. Research Concept 47 3.1 Research Questions 47 3.1.1 Foundations of the Research Concept 47 3.1.2 Research Concept 49 3.2 Limitations 50 4. Development of the Experimental Setup 53 4.1 Hardware 53 4.1.1 Optical Reproduction System 53 4.1.2 Acoustical Reproduction System 54 4.1.3 Whole-Body Vibration Reproduction System 56 4.2 Software 64 4.2.1 Combination of Reproduction Systems for Unimodal and Multimodal Presentation 64 4.2.2 Conducting Perceptual Studies 65 5. Assessment of a Sensory Tactile Design Language for Characterizing Vibration 67 5.1.1 Design Language Requirements 67 5.1.2 Method to Assess the Design Language 69 5.1.3 Goals of this Chapter 70 5.2 Tactile Stimuli 72 5.2.1 Generalization into Excitation Patterns 72 5.2.2 Definition of Parameter Values of the Excitation Patterns 75 5.2.3 Generation of the Stimuli 85 5.2.4 Summary 86 5.3 Assessment of the most relevant Sensory Tactile Perceptual Attributes 86 5.3.1 Experimental Design 87 5.3.2 Participants 88 5.3.3 Results 88 5.3.4 Aggregation and Prioritization 89 5.3.5 Summary 91 5.4 Identification of the Attributes forming the Design Language 92 5.4.1 Experimental Design 93 5.4.2 Participants 95 5.4.3 Results 95 5.4.4 Selecting the Elements of the Sensory Tactile Design Language 106 5.4.5 Summary 109 5.5 Summary and Discussion 109 5.5.1 Summary 109 5.5.2 Discussion 111 6. Quantification of Expected Properties with the Sensory Tactile Design Language 115 6.1 Multimodal Stimuli 116 6.1.1 Selection of the Scenes 116 6.1.2 Recording of the Scenes 117 6.1.3 Recorded Stimuli 119 6.2 Qualitative Communication in the Presence of Vibration 123 6.2.1 Experimental Design 123 6.2.2 Participants 124 6.2.3 Results 124 6.2.4 Summary 126 6.3 Quantitative Communication in the Presence of Vibration 126 6.3.1 Experimental Design 127 6.3.2 Participants 127 6.3.3 Results 127 6.3.4 Summary 129 6.4 Quantitative Communication in the Absence of Vibration 129 6.4.1 Experimental Design 130 6.4.2 Participants 132 6.4.3 Results 132 6.4.4 Summary 134 6.5 Summary and Discussion 135 7. Synthesis Models for the Translation of Sensory Tactile Properties into Vibration 137 7.1 Formalization of the Tactile Plausibility Illusion for Models 139 7.1.1 Formalization of Plausibility 139 7.1.2 Model Boundaries 143 7.2 Investigation of the Influence of Vibration Level on Attribute Ratings 144 7.2.1 Stimuli 145 7.2.2 Experimental Design 145 7.2.3 Participants 146 7.2.4 Results 146 7.2.5 Summary 148 7.3 Comparison of Modulated Vibration to Successive Impulse-like Vibration 148 7.3.1 Stimuli 149 7.3.2 Experimental Design 151 7.3.3 Participants 151 7.3.4 Results 151 7.3.5 Summary 153 7.4 Synthesis Based on the Discrete Estimates of a k-Nearest-Neighbor Classifier 153 7.4.1 Definition of the K-Nearest-Neighbor Classifier 154 7.4.2 Analysis Model 155 7.4.3 Synthesis Model 156 7.4.4 Interpolation of acceleration level for the vibration attribute profile pairs 158 7.4.5 Implementation of the Synthesis 159 7.4.6 Advantages and Disadvantages 164 7.5 Synthesis Based on the Quasi-Continuous Estimates of Regression Models 166 7.5.1 Overall Model Structure 168 7.5.2 Classification of the Excitation Pattern with a Support Vector Machine 171 7.5.3 General Approach to the Regression Models of each Excitation Pattern 178 7.5.4 Synthesis for the Impulse-like Excitation Pattern 181 7.5.5 Synthesis for the Bandlimited White Gaussian Noise Excitation Pattern 187 7.5.6 Synthesis for the Amplitude Modulated Sinusoidal Excitation Pattern 193 7.5.7 Synthesis for the Sinusoidal Excitation Pattern 199 7.5.8 Implementation of the Synthesis 205 7.5.9 Advantages and Disadvantages of the Approach 208 7.6 Validation of the Synthesis Models 210 7.6.1 Stimuli 212 7.6.2 Experimental Design 212 7.6.3 Participants 214 7.6.4 Results 214 7.6.5 Summary 219 7.7 Summary and Discussion 219 7.7.1 Summary 219 7.7.2 Discussion 222 8. General Discussion and Outlook 227 Acknowledgment 237 References 23

    Spatial associations between infestations of mountain pine beetle and landscape features in the Peace River Region of British Columbia.

    Get PDF
    An immense outbreak of the mountain pine beetle, Dendroctonus ponderosae Hopkins, currently covers a cumulative area of 14.5 million hectares of mature pine forests across the provinces of British Columbia and Alberta, Canada. In 2004, the first outbreaking populations of mountain pine beetle were observed in northeastern British Columbia, an area not considered part of the insect's native range. My thesis examines how landscape features and their orientation influence establishment patterns of the insect. Mountain pine beetle spread between 2004 and 2006 in patterns similar to a propagating wave, likely due to long-distance dispersal into the region. Large glacially-eroded valleys, canyons, deeply incised streams, local and midslope ridges or small hills in valleys and plains, and open slopes were often positively associated with infestations, providing evidence that the interaction of meso-scale convective currents and topography can mediate patterns of establishment. The orientation of landscape features also influenced establishment, as southwest-facing areas and linear features aligned in northeast-southwest directions were associated with increased densities of infestations in 2006. Management activities were typically associated with a decline in the density of mountain pine beetle infestations in the following year, indicating that such activities were effective in preventing short-distance dispersal of the insect. I found no evidence that anthropogenic activities such as transport and storage of infested material increased establishment of mountain pine beetle across the research area. These results may be used to prioritize preemptive treatments in mountainous regions in the absence of long-distance inputs of mountain pine beetle into expanding ranges. --P.ii.The original print copy of this thesis may be available here: http://wizard.unbc.ca/record=b164670

    Children\u27s loss of autonomy over smoking: the Global Youth Tobacco Survey

    No full text
    BACKGROUND: Empirical data suggest that children with infrequent tobacco use have difficulty quitting smoking. METHODS: Data were obtained from the nationally representative Global Youth Tobacco Survey of middle-school students in Cyprus and Greece. Regression analyses examined associations between smoking frequency (smoking days per month or cigarettes smoked per day) and loss of autonomy (difficulty refraining from smoking). RESULTS: The prevalence of lost autonomy was 40% among subjects who smoked 1 or 2 days/month and 41% among subjects who averaged less than one cigarette/day and increased in a dose-response pattern. Regression models derived from the Cyprus data were replicated by the Greek data. CONCLUSIONS: Two national surveys confirm previous reports of difficulty with smoking cessation with infrequent smoking. Since loss of autonomy is universally recognised as a core feature of addiction, our data indicate that young adolescents experience symptoms of nicotine addiction with infrequent tobacco use

    Wealth: its use, level, inheritance and change: in relation to human capital

    No full text
    This paper investigates a number of conjectures about the relative importance of the two components of social class, wealth and human capital, through the life course. It sets out grounds for the expectation that human capital will be of more importance to social position during the earlier part of adult life, while wealth should be increasingly important during the later. The empirical part of the discussion develops a predominantly indirect estimation of wealth (by multiplying up from observed income from investments and pension funds from the British Household Panel Study), also using BHPS direct measures of housing wealth. The distribution of these two measures over the life-course (estimated cross-sectionally) conforms to the expected life-course pattern. Regression models are used to show the importance of human capital growth for the accumulation of capital through the life-course.
    corecore