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ABSTRACT 

An immense outbreak of the mountain pine beetle, Dendroctonus ponderosae 

Hopkins, currently covers a cumulative area of 14.5 million hectares of mature pine forests 

across the provinces of British Columbia and Alberta, Canada. In 2004, the first outbreaking 

populations of mountain pine beetle were observed in northeastern British Columbia, an area 

not considered part of the insect's native range. My thesis examines how landscape features 

and their orientation influence establishment patterns of the insect. Mountain pine beetle 

spread between 2004 and 2006 in patterns similar to a propagating wave, likely due to long­

distance dispersal into the region. Large glacially-eroded valleys, canyons, deeply incised 

streams, local and midslope ridges or small hills in valleys and plains, and open slopes were 

often positively associated with infestations, providing evidence that the interaction of meso-

scale convective currents and topography can mediate patterns of establishment. The 

orientation of landscape features also influenced establishment, as southwest-facing areas 

and linear features aligned in northeast-southwest directions were associated with increased 

densities of infestations in 2006. Management activities were typically associated with a 

decline in the density of mountain pine beetle infestations in the following year, indicating 

that such activities were effective in preventing short-distance dispersal of the insect. I found 

no evidence that anthropogenic activities such as transport and storage of infested material 

increased establishment of mountain pine beetle across the research area. These results may 

be used to prioritize preemptive treatments in mountainous regions in the absence of long­

distance inputs of mountain pine beetle into expanding ranges. 
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1: INTRODUCTION 

Range expansion of native species creates important challenges to the management of 

organisms and ecosystems. For example, the establishment of parks and protected areas is 

based on the assumption of temporal continuity of those regions as havens for rare or 

sensitive ecosystems and habitats of sensitive species and communities (Lemieux and Scott 

2005). However, human alteration of climate has and will influence the distributions of 

animal and plant species. For example, the silver-spotted skipper butterfly (Hesperia comma 

L. [Lepidoptera: Hesperiidae]), an insect native to southern England, is increasingly 

expanding into new habitat types due to climate change (Thomas et al. 2001). Particularly 

interesting is the release of species from the northern confines of their distributions, such as 

the case of the sachem skipper (Atalopedes campestris Boisduval [Lepidoptera: 

Hesperiidae]) in northern California expanding into new habitats previously considered 

inhospitable (Crozier and Dwyer 2006). 

The recent range expansion of the mountain pine beetle (Dendroctonus ponderosae 

Hopkins [Coleoptera: Scolytidae]) into regions thought to be beyond its historical 

distribution (Carroll et al. 2004; Robertson et al. 2009) is a striking example of the potential 

impact of anthropogenic changes on ecosystem dynamics (Raffa et al. 2008). Although old 

mountain pine beetle strip attacks have been observed in northeastern British Columbia (i.e., 

the Peace River region; Allan Carroll pers. comm.1), the region was thought to have a climate 

too cold for the successful univoltine reproduction of mountain pine beetle. As a result, 

small populations dispersing into the region prior to a change in climatic regime of the region 

would not have established successfully due to high levels of mortality during the winter. 

However, in 2004, the first incipient-epidemic infestations of mountain pine beetle were 

'Allan Carroll Associate Professor, University of British Columbia (allan.caiTollfajubc.ca") 
2B. Staffan Lindgren, Professor, University of Northern British Columbia (lindgren(q)unbc.ca) 
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found in the Peace River region (B. Staffan Lindgren, pers. comm.2). Since then, mountain 

pine beetle has spread throughout the region, with large outbreaks coalescing across the 

landscape. The forests of the Peace River region contain lodgepole pine {Pinus contorta var. 

latifolia), a primary host species of D. ponderosae, and jack pine (P. banksiand), a "novel 

host" in which the mountain pine beetle has been demonstrated in laboratory experiments to 

successfully reproduce (Safranyik and Linton 1983; Cerezke 1995). Of critical concern is the 

potential ability of mountain pine beetle to use jack pine as a conduit for movement further 

east (Nealis and Peter 2008). 

The life cycle of mountain pine beetle is completed largely in a host tree of the genus 

Pinus, such as P. monticola and P. ponderosae (Amman 1982). Upon landing on a suitable 

host, a female will bore through the bark into the phloem and begin constructing a gallery by 

tunneling upward (Reid 1962). Attacks generally occur at mid-bole, although this can vary 

with attack density. The male will enter the gallery and mate with the female, who then lays 

eggs in niches along the gallery (Wood 1963). The eggs develop through four larval instars 

from the fall through the winter and into spring, although development is arrested during the 

coldest periods of the winter. Mountain pine beetle populations can experience large 

mortality in the early winter, late fall, or early spring due to unseasonal cold temperatures 

(e.g., -25 to 30°C in October or April) or prolonged cold winter temperatures of-40 °C or 

colder (Wygant 1940). However, the insect is more cold-tolerant during winter due to 

progressive removal of water from their tissues, resulting in high levels of glycerol, between 

late fall and the middle of winter (Safranyik and Linton 1998; Bentz and Mullins 1999). In 

the spring, development continues through the final instars until mountain pine beetle 

pupates and develops into an adult. In June, July or August (depending on the latitude, 
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elevation, and general climate in the region) new adults will emerge from the gallery by 

boring through the bark (Safranyik and Carroll 2006). 

Upon emergence, mountain pine beetles take flight and seek out a new host tree to 

attack. A combination of visual and olfactory cues is used during host-seeking by mountain 

pine beetle. Typically, the insect is attracted to pheromones produced by conspecifics and 

host volatiles indicating host vigour (Hughes 1973). Attack en masse, with high numbers of 

conspecifics in concert with vectored blue-stain fungi, may be effective in overwhelming tree 

defenses. Attack densities of 62 attacks/m2 typically characterize maximum per capita 

reproduction, with higher mortality due to tree defenses and interspecific competition above 

and below these densities, respectively (Raffa and Berryman 1983). 

A majority of mountain pine beetles dispersing from a natal host travel short 

distances, staying within the stand (Safranyik et al. 1992). While moving short distances, 

under the canopy, they can actively fly against the wind at velocities to a maximum of 7.5 

km/h if an attractive pheromone stimulus is located upwind (Gray et al. 1972). However, in 

the absence of attractants upwind, the insect will often fly downwind. The insect is also 

phototactic just after emergence, allowing for an upward trajectory (Reid 1962). Above the 

canopy, it may become incorporated into strong wind currents, where its dispersal be can 

determined largely by wind velocity and direction (Lewis 1966; Lewis and Stephenson 1966; 

Lewis 1970; Ashmole et al. 1983; Jackson et al. 2008). This "passive" insect dispersal will 

most likely result in dispersal patterns that differ from those of "active" dispersal due to the 

dominance of host seeking behavior in the latter. During "active" dispersal, biological 

mechanisms such as pheromone response, host selection, and micro-site conditions influence 

patterns of dispersal. Conversely, patterns of establishment resulting from "passive" 
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dispersal will be influenced by the interaction between weather processes, landscape patterns 

and particles (i.e., mountain pine beetles) (Robertson et al. 2009), including down-drafts in 

zones of convergence, changes in wind direction, and/or deposition or impaction of particles 

(Lewis 1966; Lewis and Stephenson 1966; Lewis 1970; Lewis and Dibley 1970; Spalding 

1979; Pedgley 1982; Pasek 1988; Jasperson et al. 1990; Jackson et al. 2008). Examining the 

role of topography in the spread and establishment of wind-transported insects can provide 

information about the impact of mountainous terrain on long-distance dispersal (Fig. 1.1). 

The founding populations of mountain pine beetle in the Peace River region are 

thought to be from regions southwest to the northern Rocky Mountains (Bartell 2008). 

Beginning in the mid-1990s, a large outbreak of D. ponderosae established and continued to 

spread at epidemic levels until the present time in the central and southern interior of British 

Columbia (Aukema et al. 2006). With a cumulative area of 14.5 million ha of forest affected 

(British Columbia Ministry of Forests and Range 2009), the insect has exerted landscape-

level impacts on P. contorta, a tree that comprises -47% of the harvestable timber supply in 

British Columbia (Westfall and Ebata 2008). Prior to the present outbreak, mountain pine 

beetle in the central interior of British Columbia predominantly existed at endemic levels, 

usually taking older, less vigorous trees, and occasionally flaring up into larger outbreaks 

such as those in the 1970s and early 1980s (Safranyik and Carroll 2006; Campbell et al. 

2007; Aukema et al. 2008). However, fire suppression by humans post-World Wars I and II 

permitted an increase in the proportion of large tracts of even-aged stands of suitable hosts on 

the landscape (Carroll et al. 2004). Warmer summers and winters have also allowed 

mountain pine to successfully reproduce at higher rates with larger populations facilitating 

successful mass-attack on vigorous, large diameter trees (Carroll et al. 2004). Numerous 
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factors influencing population dynamics could have contributed to the increased long­

distance dispersal as well. For example, large populations of insects attacking trees will 

eventually produce pheromones that repel additional insects (Hunt and Borden 1990), 

potentially causing increased levels of dispersal through indirect competition for available 

resources. Depletion of available hosts adjacent to a natal tree will also facilitate increased 

time aloft for mountain pine beetle searching for a host, possibly providing increased 

opportunity for the insect to become incorporated into meso-scale convective currents. 

These pheromones, coupled with meso-scale atmospheric transport, may have caused 

mountain pine beetle to increasingly disperse long-distances over the Rocky Mountains. 

Patterns of infestation resulting from long-distance dispersal of mountain pine beetle 

have not been studied in the Peace River region of British Columbia. Due to the speed at 

which mountain pine beetle spread into this region, it has been speculated that mountain pine 

beetle was dispersed into this region primarily by meso-scale atmospheric currents rather 

than "active" local dispersal. This thesis examines the spatial patterns of the invasion event 

in the Peace River region to gain inference on the primary mechanism(s) of establishment 

and the influence of various landscape patterns on occurrences of infestations. The findings 

of this research will contribute an understanding of meso-scale atmospheric dispersal of 

insects within mountainous terrain, the potential distances that mountain pine beetles can 

travel, and may aid forest managers in making decisions for control and prevention tactics as 

the beetle potentially continues to spread in the region. In Chapter 2, the patterns of spread 

in the Peace River region of British Columbia are examined to gain inference on primary 

mechanisms of spread for mountain pine beetles into the Peace River region. These 

mechanisms include atmospheric transport, localized stand-level transport, and human-
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assisted transport along roadways. Annual inventory data for the first three years of 

infestation are compared to various dispersal patterns using spatial point process modeling. 

Using similar techniques, Chapter 3 examines the influence of topography and orientation of 

landforms on occurrence of mountain pine beetle infestations using a landscape feature 

classification index and annual inventory data for 2004 to 2006. Chapter 4 provides a 

synthesis of findings and recommendations to assist with mitigation of mountain pine beetle 

spread. 

To facilitate publication of the following work in peer-reviewed journals, this thesis is 

written in manuscript format. As a result, there may be redundancy between chapters to 

allow each chapter be a stand-alone manuscript. These chapters were produced in 

cooperation with a number of authors hence sections will be presented in plural voice. I 

anticipate submitting Chapter 2 to Biological Invasions with Allan Carroll and Brian Aukema 

as coauthors. I anticipate submitting Chapter 3 to the Journal of Animal Ecology with Allan 

Carroll, Staffan Lindgren, and Brian Aukema as coauthors. 
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1.1: Figure Captions 

Figure 1.1 A schematic diagram of elucidating processes that could influence the long­

distance dispersal of mountain pine beetle upon emergence, while dispersing long-

distances and during settlement. Wind and topographic interactions are simplified for 

mountainous terrain to explore wind patterns that could impact deposition of 

mountain pine beetle while aloft. 

7 



Fig. 1.1 

Predominant Wind Direction 

Factors Influencing 
Dispersal 
Wind Speed 

Wind Direction 
Turbulence 

c>r Factors Influencing 
Establishment 

Landform 
Susceptible Hosts 

Climate 



1.2: Literature Cited 

Amman, G. D. 1982. Characteristics of mountain pine beetles reared in four pine hosts. 
Environmental Entomology 11(3): 590-593. 

Ashmole, N. P., J. M. Nelson, M. R. Shaw and A. Garside. 1983. Insects and spiders on 
snowfields in the Cairngorms, Scotland. Journal of Natural History 17(4): 599-613. 

Aukema, B. H., A. L. Carroll, Y. Zheng, J. Zhu, K. F. Raffa, R. D. Moore, K. Stahl and S. W. 
Taylor. 2008. Movement of outbreak populations of mountain pine beetle: influences 
of spatiotemporal patterns and climate. Ecography 31(3): 348-358. 

Aukema, B. H., A. L. Carroll, J. Zhu, K. F. Raffa, T. A. Sickley and S. W. Taylor. 2006. 
Landscape level analysis of mountain pine beetle in British Columbia, Canada: 
spatiotemporal development and spatial synchrony within the present outbreak. 
Ecography 29(3): 427-441. 

Bartell, N. V. 2008. A microsatellite analysis of the western Canadian mountain pine beetle 
{Dendroctonus ponderosae) epidemic: phylogeography and long-distance dispersal 
patterns. Natural Resources and Environmental Studies. Prince George, British 
Columbia, University of Northern British Columbia. Masters of Science thesis. 

Bentz, B. J. and D. E. Mullins. 1999. Ecology of mountain pine beetle (Coleoptera: 
Scolytidae) cold hardening in the intermountain west. Environmental Entomology 28: 
577-587. 

British Columbia Ministry of Forests and Range. 2009. Ministry of Forests and Range: beetle 
facts. Accessed on July 27th, 2009 from 
<http://www.for.gov.bc.ca/hfp/mountain_pine_beetle/facts.htm>. 

Campbell, E. M., R. I. Alfaro and B. Hawkes. 2007. Spatial distribution of mountain pine 
beetle outbreaks in relation to climate and stand characteristics: a dendroecological 
analysis. Journal of Integrative Plant Biology 49(2): 168-178. 

Carroll, A. L., S. W. Taylor, J. Regniere and L. Safranyik. 2004. Effects of climate change on 
range expansion by the mountain pine beetle in British Columbia. Pages 223-232 in 
T. L. Shore, J. E. Brooks and J. E. Stone. Challenges and solutions: Proceedings of 
the Mountain Pine Beetle Symposium. Kelowna, British Columbia, Canada October 
30-31, 2003. Natural Resources Canada, Canadian Forest Service, Pacific Forestry 
Centre. Victoria, British Columbia, Canada. Information Report BC-X-399. 

Cerezke, H. F. 1995. Egg gallery, brood production, and adult characteristics of mountain 
pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae), in three 
pine hosts. Canadian Entomologist 127(6): 955-965. 

9 

http://www.for.gov.bc.ca/hfp/mountain_pine_beetle/facts.htm


Crozier, L. and G. Dwyer. 2006. Combining population-dynamic and ecophysiological 
models to predict climate-induced insect range shifts. The American Naturalist 
167(6): 853-866. 

Gray, B., R. F. Billings, R. I. Gara and R. L. Johnsey. 1972. On the emergence and initial 
flight behaviour of the mountain pine beetle, Dendroctonus ponderosae, in eastern 
Washington. Journal of Applied Entomology 21: 250-259. 

Hughes, P. R. 1973. Dendroctonus: Production of pheromones and related compounds in 
response to host monoterpenes. Journal of Applied Entomology 73: 294-312. 

Hunt, D. W. A. and J. H. Borden. 1990. Conversion of verbenols to verbenone by yeasts 
isolated from Dendroctonus ponderosae (Coleoptera: Scolytidae). Journal of 
Chemical Ecology 16(4): 1385-1397. 

Jackson, P. L., D. Straussfogel, B. S. Lindgren, S. Mitchell and B. Murphy. 2008. Radar 
observation and aerial capture of mountain pine beetle, Dendroctonus ponderosae 
Hopk. (Coleoptera: Scolytidae) in flight above the forest canopy. Canadian Journal 
of Forest Research 38(8): 2313-2327. 

Jasperson, W. H., G. D. Nastrom and D. C. Fritts. 1990. Further study of terrain effects on 
the meso-scale spectrum of atmospheric motions. American Meteorological Society 
47(8): 979-987. 

Lemieux, C. J. and D. J. Scott. 2005. Climate change, biodiversity conservation and 
protected area planning in Canada. The Canadian Geographer 49: 384-397. 

Lewis, T. 1966. An analysis of components of wind affecting accumulation of flying insects 
near artificial windbreaks. Annals of Applied Biology 58(3): 365-370. 

Lewis, T. 1970. Patterns of distribution of insects near a windbreak of tall trees. Annals of 
Applied Biology 65(2): 213-220. 

Lewis, T. and G. Dibley. 1970. Air movement near windbreaks and a hypothesis on the 
mechanism of the accumulation of airborne insects. Annals of Applied Biology 66: 
477-484. 

Lewis, T. and J. W. Stephenson. 1966. The permeability of artificial windbreaks and the 
distribution of flying insects in the leeward sheltered zone. Annals of Applied Biology 
58(3): 355-363. 

Nealis, V. and B. Peter. 2008. Risk assessment of the threat of mountain pine beetle to 
Canada's boreal and eastern pine forests. Natural Resources Canada, Canadian Forest 
Service, Pacific Forestry Centre. Victoria, British Columbia, Canada, Information 
Report BC-X-417. 

Pasek, J. 1988. Influence of wind and windbreaks on local dispersal of insects. Agriculture, 
Ecosystems & Environment 22-23: 539-554. 

10 



Pedgley, D. 1982. Windborne Pests and Diseases: Meteorology of Airborne Organisms. Ellis 
Horwood Ltd., Chichester, United Kingdom. 

Raffa, K. F., B. H. Aukema, B. J. Bentz, A. L. Carroll, J. A. Hicke, M. G. Turner and W. H. 
Romme. 2008. Cross-scale drivers of natural disturbances prone to anthropogenic 
amplification: the dynamics of bark beetle eruptions. Bioscience 58(6): 501-517. 

Raffa, K. F. and A. A. Berryman. 1983. The role of host plant resistance in the colonization 
behavior and ecology of bark beetles (Coleoptera: Scolytidae). Ecological 
Monographs 53(1): 27-49. 

Reid, R. W. 1962. Biology of the mountain pine beetle, Dendroctonus monticolae Hopkins, 
in the East Kootenay region of British Columbia. I. Life cycle, brood development, 
and flight periods. Canadian Entomologist 94: 531-538. 

Robertson, C , T. Nelson, D. Jelinski, M. A. Wulder and B. Boots. 2009. Spatial-temporal 
analysis of species range expansion: the case of the mountain pine beetle, 
Dendroctonusponderosae. Journal of Biogeography 36(8): 1446-1458. 

Safranyik, L. and A. L. Carroll. 2006. The biology and epidemiology of the mountain pine 
beetle in lodegpole pine forests. Pages 3-66 in L. Safranyik and B. Wilson. The 
Mountain Pine Beetle: A Synthesis of Biology, Management, and Impacts on 
Lodgepole Pine. Natural Resources Canada, Canadian Forest Service, Pacific 
Forestry Centre, Victoria, British Columbia. 

Safranyik, L. and D. A. Linton. 1983. Brood production by three spp. of Dendroctonus 
(Coleoptera: Scolytidae) in bolts from host and nonhost trees. Journal of the 
Entomological Society of British Columbia 80: 10-13. 

Safranyik, L. and D. A. Linton. 1998. Mortality of mountain pine beetle larvae, 
Dendroctonus ponderosae (Coleoptera: Scolytidae) in logs of lodgepole pine (Pinus 
contorta var. latifolia) at constant low temperatures. Journal of the Entomological 
Society of British Columbia 95: 81-87. 

Safranyik, L., D. A. Linton, R. Silversides and L. H. McMullen. 1992. Dispersal of released 
mountain pine beetles under the canopy of a mature lodgepole pine stand. Journal of 
Applied Entomology 113: 441-450. 

Spalding, J. B. 1979. The aeolian ecology of White Mountain Peak, California: windblown 
insect fauna. Arctic and Alpine Research 11(1): 83-94. 

Thomas, C. D., E. J. Bodsworth, R. J. Wilson, A. D. Simmons, Z. G. Davies, M. Musche and 
L. Conradt. 2001. Ecological and evolutionary processes at expanding range margins. 
Nature 411(4837): 577-581. 

Westfall, J. and T. Ebata. 2008. 2007 Summary of Forest Health Conditions in British 
Columbia. Pest Management Reports. British Columbia Ministry of Forests and 
Range, Forest Practices Branch, Victoria, British Columbia, Canada. 72 pp. 

11 



Wood, S. L. 1963. A revision of the bark beetle genus Dendroctonus Erichson (Coleoptera: 
Scolytidae). Great Basin Naturalist 23(1-117). 

Wygant, N. D. 1940. Effects of low temperatures on the Black Hills beetle (Dendroctonus 
ponderosae Hopk.). Syracuse, NY, New York State College of Forestry. Doctoral 
thesis. 

12 



2: FIRST STEPS OF A RANGE-EXPANSION EVENT FACILITATED BY 

CLIMATE CHANGE: BREACH OF THE ROCKY MOUNTAIN 

GEOCLIMATIC BARRIER BY MOUNTAIN PINE BEETLE IN CENTRAL 

BRITISH COLUMBIA 

2.1: Abstract 

In 2004, mortality of pine trees due to colonization by mountain pine beetle was 

observed northeast of the Northern Rocky Mountains in British Columbia. The insect was 

thought to have originally arrived in 2002. This was the first recorded incident of this insect 

in the Peace River region. The mountain pine beetle is native to central and southern British 

Columbia. Its speed and rate of spread into and within the Peace River region suggests that 

long-distance, above-canopy dispersal was the predominant dispersal mechanism rather than 

stand-level flight. We explore potential dominant mechanism(s) of dispersal using spatial 

point process modeling. Specifically, we examine observed patterns of infestation relative to 

covariates reflecting various hypotheses including meso-scale atmospheric dispersal above 

the insect boundary layer (an altitude below which insects would determine their own speed 

and direction of movement), anthropogenic transport of infested material, and the spread of 

insect populations into adjacent stands via corridors of suitable habitat. We select the most 

parsimonious models for each of the initial three years of invasion using information criteria 

statistics. We found that landscape patterns of trees killed by mountain pine beetle 

predominantly suggested a wave front of insects deposited parallel to the Rocky Mountains 

following meso-scale atmospheric dispersal above the "insect boundary layer". The area of 

highest intensity of infestations advanced up to 25 km to the northeast in a single year. 
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2.2: Introduction 

Examining the spatiotemporal patterns of invasive organisms can provide insight into 

organisms' rates and typical patterns of spread, which in turn can suggest mechanisms 

driving their establishment and persistence (Peterson and Vieglais 2001). Climate plays a 

central role in many invasion events, such as by impacting host distribution (Iverson and 

Prasad 1998), creating directional gradients in critical temperature thresholds that can restrict 

reproduction, or introducing organisms on strong weather fronts or through major 

disturbances such as hurricanes (Tackenberg 2003). Humans can play a major role in 

introductions of organisms as well, albeit inadvertently (Brockerhoff et al. 2006; Skarpaas 

and 0kland 2009). Investigation of resulting patterns of spread allows researchers to 

determine which processes contribute to establishment of an organism in a region and can 

provide helpful clues for mitigation in the event of an organism's persistence. 

The mountain pine beetle {Dendroctonus ponderosae Hopkins) is an insect native to 

western North America that intermittently undergoes dramatic population fluctuations 

(Safranyik et al. 1974; Amman and Cole 1983; Aukema et al. 2008). A phloeophagus insect 

with a short-lived adult phase relative to other insects, mountain pine beetles survive outside 

of host trees for only a few days. Numerous species of conifers in the Pinus genus are 

susceptible to colonization by mountain pine beetle, including, but not limited to, lodgepole 

pine {Pinus contorta Dougl. var. latifolia Engelm.), and ponderosa pine (P. ponderosa 

Dougl.). Adult female beetles bore through the bark into the phloem, anywhere on the bole 

between the root-collar and crown, depending on the size of the tree. The tree responds with 

copious amounts of resin that is both toxic to the beetle and physically impedes access to the 

cambium tissues. However, at epidemic population phases, additional conspecifics may be 
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attracted to the host by host volatiles as well as aggregation pheromones released by 

pioneering mountain pine beetles (Renwick and Vite 1970; Libbey et al. 1985). Moreover, 

mountain pine beetles vector fungi that serve to impede host defenses (Safranyik et al. 1975). 

If access is successfully gained, females mate with males under the bark and lay eggs in 

small niches along ovipositional galleries. Once hatched, mountain pine beetles progress 

through four larval instars from the early fall into the winter. With onset of winter, 

development slows, usually by the third or fourth instar (Reid 1962). In the spring, after 

amassing enough heat units, the larvae pupate prior to developing into adults in early 

summer. In July or early August, new adults take flight en masse after a period of dry and 

warm weather (Reid 1962; Bright 1976). 

Exposure to cold winter temperatures (Reid 1963; Reid and Gates 1970) and limited 

mosaics of suitable hosts in space and time (Shore and Safranyik 1992) generally limits 

mountain pine beetle to endemic levels. However, in the late 1990s, a large outbreak erupted 

in the central interior of British Columbia, Canada (Aukema et al. 2006), currently 

encompassing a total area of 14.5 million hectares of pine forests in that province (British 

Columbia Ministry of Forests and Range 2009). The outbreak has been exacerbated by 

anthropogenic activities such as fire suppression as well as increasingly warm summer and 

winter temperatures reflective of a changing climate (Safranyik and Carroll 2006; Kurz et al. 

2008; Raffa et al. 2008). 

Outbreaking populations of the insect breached the historic geoclimatic barrier of the 

northern Rocky Mountains in approximately 2002 as entomologists discovered that the 

mountain pine beetle had become established in the Peace River region of British Columbia, 

an area not considered part of the insect's historical distribution (Robertson et al. 2009). This 
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invasion event immediately commanded critical attention due to the proximity of a 

potentially suitable new host, jack pine (Pinus banksiana Lamb.) in northeastern Alberta 

(Safranyik and Linton 1983; Cerezke 1995) which could provide a potential conduit for 

mountain pine beetle to spread toward eastern North America (Wood 2006; Nealis and Peter 

2008). In many ways, the mountain pine beetle demonstrates ideal properties of an invasive 

scolytid (Holway and Suarez 1999) due to its relatively high fecundity in northern areas 

(Cudmore 2009), its ability to attract mates necessary for host procurement via aggregation 

pheromone signals (Conn 1981) and its ability to take advantage of seemingly 'novel' hosts 

(Safranyik and Linton 1983; Cerezke 1995; Huber et al. 2009). 

Studying the positioning of tree-killing infestations of forest insects on the landscape 

can elucidate the insects' dominant dispersal mechanism(s). For example, the spread of 

organisms via short-distance or within-stand movements (e.g., Jactel 1991) may result in 

diffuse patterns (cf. Hengeveld 1988), while long-distance movements can result in wave­

like dispersal patterns dependent on the coordination of dispersing individuals (Suarez et al. 

2001). Larch budmoth, Zeiraphera diniana Gn., may exhibit wave-propagation patterns, 

where large numbers of mated females are blown long-distances (Baltensweiler and Fischlin 

1979; Bjornstad et al. 2002; Johnson et al. 2006). Diffuse configurations, occasionally 

characterizing mountain pine beetle infestations, are indicative of short-distance dispersal as 

insects radiate from natal hosts into adjacent stands (Gamarra and He 2008). Although 

mountain pine beetles primarily disperse within a stand (Safranyik et al. 1992) and are 

generally not considered strong dispersers at landscape scales (Furniss and Carolin 1977; 

Raffa and Berryman 1979; Peltonen et al. 2002), at outbreak levels, the insect may be 

transported great distances via meso-scale atmospheric currents (i.e., aeolian dispersal; see 
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Chapter 3; Furniss and Furniss 1972; Safranyik et al. 1992; Jackson et al. 2008). Such long­

distance transport can result in a variety of patterns of establishment including leptokurtic 

(i.e., stratified) patterns (Tobin and Blackburn 2008; Robertson et al. 2009) and/or wave-like 

patterns of distribution across the landscape (Bjornstad et al. 2002). 

Despite the importance of wind currents and insect flight to dispersal at either small 

or large scales, human activities may also facilitate the spread of invasives, often 

unintentionally (Brockerhoff et al. 2006). Notable examples from forest insect systems 

include the spread of emerald ash borer, Agrilus planipennis Fairmaire, in the Great Lakes 

region via the transport of infested firewood (BenDor et al. 2006), the spread of Asian long-

horned beetle (Anoplophora glabripennis Motschulsky) via wood pallets from international 

trade (Haack 2006), and the spread of gypsy moth (Lymantria dispar L.) via the transport of 

egg masses on automobiles and nursery stock (Johnson et al. 2006). Within the forest 

industry of the United Kingdom in the 1970s, harvesting and transport of infested logs 

facilitated the spread of a related Dendroctonus species, D. micans (Kugelann) (Gilbert et al. 

2003). In the mountain pine beetle system, there are frequent points of contact between 

humans and infested host materials throughout the newly invaded areas of British Columbia 

and Alberta. For example, control and treatment tactics used throughout the region include 

on-site falling and burning as well as harvesting of insect-colonized trees. Although 

harvesting companies are careful with infested host material and prioritize its processing at 

mill locations, storage of infested host material during periods of insect emergence and flight 

could potentially result in increased occurrence of infestations in areas surrounding storage 

and processing sites. Moreover, unregulated transportation of infested logs for firewood 
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during periods of emergence could allow mountain pine beetle to spread along transportation 

corridors. 

The initial movement of mountain pine beetle into the Peace River region was 

monitored closely between 2004 and 2006. As a result of this vigilance, the initial years of 

invasion are well documented. Using annual inventory maps of insect locations, the present 

study aims to examine patterns of establishment within the Peace River region for evidence 

suggestive of invasion mechanisms. We focus on two broad hypotheses. First, we examine 

evidence of transport within the "insect boundary layer". Although the use of the term 

"boundary layer" is typically restricted to the field of fluid dynamics and represents a viscous 

layer between two mediums, the term "insect boundary layer" is defined as the altitude below 

which an insect will determine its own spread and direction of movement (Taylor 1974). 

Above this layer, the insect's movement will be influenced largely by wind speed and 

direction. Mechanisms of dispersal occurring primarily within the insect boundary layer 

include flights through suitable habitats located primarily along low-elevation corridors such 

as river valleys (Robertson et al. 2009), and human-assisted dispersal due to transport of 

infested material along roads and storage of infested material at milling sites. Second, we 

examine evidence for transport above the insect boundary layer, which we characterize as the 

spread of mountain pine beetles at altitudes in which they are blown passively, otherwise 

known as aeolian dispersal (Szymkowiak et al. 2007; Jackson et al. 2008; Zhang et al. 2008). 

In examining evidence for above-boundary layer transport, we compare establishment 

patterns to landscape feature-independent patterns, such as a large gradient, suggesting 

progressive movement of mountain pine beetle populations from sources parallel to the 

western edge of the Rocky Mountains in BC, or a linear zone containing a high intensity of 
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infestations, suggesting long-distance aeolian dispersal and "rainout" as the primary 

mechanisms of invasion respectively. 

2.3: Material and Methods 

2.3.1: Study Area and Spatial Datasets 

The northern and southern extent of the research area, delineated between 54° and 

56.5°, spanned from the Great Continental Divide within the North Rockies Mountains to the 

British Columbia-Alberta border, covering a total area of approximately 3 million ha (Fig. 

2.1). Forestry companies operate over a majority of this Peace River region, as the provincial 

government of British Columbia is the predominant landowner and leases tree harvesting 

rights to forest management companies. During the initial spread of mountain pine beetle 

into the region, forestry companies coordinated with federal and provincial governments to 

respond swiftly to the building outbreak. We obtained annual inventories of discrete, tree-

killing populations of mountain pine beetle (referred to hereafter as infestations), initially 

collected to facilitate management planning, from these forest licensees. The infestations 

inventoried in a single year were considered to have been attacked in the previous year as 

they had dead trees with chlorotic or red foliage and were at least 0.01 ha in size. 

Locations of "red-attack" trees had been inventoried from helicopter using GPS with 

further ground reconnaissance work in some areas. Because epidemic populations of the 

insect must kill their hosts to reproduce, fading foliage can be used to identify trees attacked 

one year ago (Safranyik et al. 1974) and serve as a useful proxy for insect abundance 

(Wulder et al. 2006; Aukema et al. 2008; Nelson and Boots 2008). Surveys were conducted 

in 2004, 2005, and 2006 from approximately May to September. Centre point locations for 

each infestation were recorded in Universal Transverse Mercator (UTM) coordinates. 
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Additional data collected for each infestation included its size, the approximate number of 

trees affected, ecological land classification scheme, land tenure, and any control strategy 

implemented. 

In order to consider the potential influence of anthropogenic factors or the effect of 

rivers on spread of mountain pine beetle, three datasets representing mill locations, primary 

and secondary roads, and rivers were secured from Natural Resources Canada and Global 

Forest Watch (2009). From these vector (i.e., point and line) datasets, the Euclidian 

distances for all locations in the research area to features of interest (i.e., infestations in the 

previous year, mills, roads, and/or rivers) were calculated. This resulted in four raster 

datasets with a 73 x 73 metre pixel size (i.e., just over one-half hectare in size). 

2.3.2: Statistical Analysis 

Spatial point process regression models were fit to each annual inventory dataset with 

covariates reflective of different hypothesized mechanisms of dispersal. This class of models 

evaluates the intensity of event occurrences, A, (infestations per m2), relative to spatial 

location (i.e. x and/or y positions) as well as other covariates (Baddeley and Turner 2008). 

Specifically, we tested whether there was evidence for anthropogenic activities contributing 

to spread via distances to roads and mills, evidence for natural low-elevation corridors via 

associations with rivers, and evidence for aeolian dispersal via diffusion processes (linear 

distance gradient from the Rocky Mountains and distances from point-source infestations in 

the previous year), and/or wave propagation (polynomial distance terms) (see Appendix A 

for R code). In our system, due to the uniform directional spread of infestations in a 

northwest direction (see Results), there was a high degree of correlation between x and j> 

data. Evaluating the effects of highly collinear variables in regression models can create 
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computational challenges (Graham 2003). Hence, x andy location data for models testing 

evidence consistent with gradient or wave-propagation aeolian dispersal were collapsed into 

a single variable measuring distance from a line of reference (d) just outside of the research 

area. The line of reference, with a 138° bearing, was positioned parallel to the Rocky 

Mountains and perpendicular to the dominant direction of spread for 2004 infestations; 

reflecting the initial invasion event from the interior of British Columbia (48°; see Chapter 

3). A raster dataset was then produced with each pixel representing the distance from the 

reference line. Models were compared using Akaike's information criterion (AIC), with the 

lowest AIC values identifying the models of best fit (Akaike 1973). All data were handled in 

Arc View v.9.2. Analyses were completed using R v.2.8.1 and the spatstat package v. 1.14-9 

(Ihaka and Gentleman 1996; R Development Core Team 2009). 

2.4: Results 

The occurrence of infestations of mountain pine beetle within the research area 

increased annually between 2004 and 2006. In 2004 and 2005, 10,536 and 12,275 

infestations were mapped respectively. These numbers tripled in 2006 to 35,084 recorded 

infestations (Fig. 2.2). The average nearest neighbor distance between infestations was 

greatest in 2006 (0.24 km) while in 2005 it was 0.23 km. Infestations in 2004 had the closest 

average nearest neighbors at 0.18 km. Mean area of patches of red trees killed by mountain 

pine beetle was quite small in 2004, approximately one third of a hectare on average. The 

mean size increased to approximately 1 ha by 2006. Sizes of patches of dead trees became 

more variable due to expanding areas that were colonized, as the largest areas measured in 

2006 were 2,440 ha, versus 6 and 133 ha in 2004 and 2005 respectively. By 2006, the total 

area of trees killed by mountain pine beetle had expanded to 35,084 ha (Fig. 2.2). 

21 



The topography in the region ranges from the sharp relief of the Rocky Mountains at 

the western edge, undulate topography of the Foothills in the centre, and plateaus deeply 

incised by various rivers in the east (Fig. 2.1). Most rivers in the Peace region flow into the 

Arctic Ocean, as the area is east of the Great Divide but south of the Northern Continental 

Divide. These rivers include the Kiskatinaw, Moberly, Murray, Narraway, Peace, Pine, 

Pouce Coupe, Sukunka, and Wapiti Rivers as well as a large creek in the southern portion of 

the area called Red Deer Creek. Primary industries in the region include oil and gas 

extraction, mining and forestry such harvesting of soft wood conifers for lumber. There are 

two mills in the Peace River region that process lodgepole pine, both in Chetwynd, British 

Columbia. 

The spread pattern of mountain pine beetles into the region closely resembled that of 

a propagating wave in all three years (Table 2.1). Areas closest and furthest from the 

initiation source had less infestation than those in the middle of the research area (Fig. 2.2). 

These "wave-propogation" models had the lowest AIC values, fitting the data better than 

models reflecting alternate modes or mechanisms of dispersal, including anthropogenic 

movement of infested material and simple within-boundary layer dispersal between adjacent 

stands. Anthropogenic movement of infested materials did not appear to impact the spread 

of mountain pine beetle. 

By solving the best-fitting spatial regression equations (Table 2.1) for their 

maximums, we calculated the locations of greatest infestation densities in the study area 

(Table 2.2). Mountain pine beetle exhibited highest density of infestation 46 km from the 

edge of the research area in 2004 and 2005. This 'belt' progressed approximately 25 km to 

22 



the east in 2006, as the maximum density of infestations occurred further from the western 

edge of the research area at 71 km (Table 2.2; Fig. 2.3). 

2.5: Discussion 

Our findings of a northeast-southwest belt of a high density of infestations of 

mountain pine beetle within a habitat where they had not previously been detected is 

consistent with spread by aeolian dispersal above the insect boundary layer from sources 

west of the Rocky Mountains. Such long-distance transport is not unknown in the mountain 

pine beetle system (Jackson et al. 2008), occurring in more southern and eastern portions of 

its range (e.g., in Washington, Furniss and Furniss 1972; and from Alberta to the Cypress 

Hills of Saskatchewan, Cerezke 1981). The present occurrence is the first successful 

invasion of new habitat across the historic geoclimatic barrier of the Rocky Mountains in 

northern Canada (Kurz et al. 2008; Robertson et al. 2009). Our study offers one of the first 

insights of the spatial extent of aeolian dispersal events by studying establishment at a 

landscape scale in the absence of populations with landscape signatures of dead trees 

confounded by localized endemic-incipient eruptions. The wave front pattern is consistent 

with deposition from weather fronts (Drake and Farrow 1988). 

Aeolian dispersal is not the norm for mountain pine beetle, as their pheromone-

mediated host-seeking behaviour predisposes them to diffuse dispersal (Hengeveld 1988) 

within the insect boundary layer. Upon emergence, mountain pine beetle, although 

phototactic, will generally move within the stand a maximum of 250m from natal host 

towards attractive stimuli such as adjacent pine (Safranyik et al. 1992). This movement may 

occur against wind speeds to a maximum of approximately 11 km/h if the stimulus is upwind 

of its natal host (Schmid et al. 1992). However, mountain pine beetle, like some Ips species, 
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generally require a short period of flight before engaging in host seeking behaviour (Gray et 

al. 1972; Jactel 1991; Duelli et al. 1997). Once attracted by host volatiles, the insect uses a 

combination of visual and gustatory cues for final host selection (Pureswaran and Borden 

2003). Once mountain pine beetles have commenced attack on the new host, at the optimum 

attack density, the insects release verbenone produced by microbial symbionts in the gut 

(Hunt and Borden 1990). Verbenone, in combination with other semiochemicals, repel other 

mountain pine beetles. The repelled beetles tend to attack suitable hosts in the surrounding 

area, producing a "spillover" attack. At late outbreak stages, a depletion of suitable hosts 

over a large area may predispose insects to move further from natal hosts, increasing above-

canopy flight (Salle and Raffa 2007). Above the forest canopy, insects may have become 

entrained in advective currents above the insect boundary layer, facilitating long-distance 

transport occasionally observed among other scolytids such as D. autographus Ratz. (Nilssen 

1984) and/, typographus L. (Byers 2000). 

Although landscape-scale wave-front patterns are not typically noted in mountain 

pine beetle outbreaks (Aukema et al. 2006; Gamarra and He 2008), it is a typical pattern 

characterizing other bark beetles in the genus Dendroctonus, such as the southern pine beetle 

{Dendroctonus frontalis Zimm.), as well as defoliators such as larch budmoth {Zeiraphera 

diniana Gn.). Approximately 95% of southern pine beetles disperse within 2.3 km of their 

natal host (Cronin et al. 2000), causing edges of wave-fronts to be separated by a maximum 

of 8 km (Schowalter et al. 1981) as insects progressively move into adjacent stands (Turchin 

and Thoeny 1993). Southern pine beetle is initially attracted to host volatiles, including a-

pinene (Payne 1980). Attacking females release frontalin, attracting conspecifics. Once an 

optimal attack density is reached, additional attacking individuals are repulsed by endo-
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brevicomin and verbenone. Southern pine beetles dispersing from their natal hosts are highly 

repulsed by already infested trees and attracted to suitable hosts on infestation edges (Payne 

1980). As a result, at the edges of infestations of the previous year, new infestations will 

establish, causing a wave-like pattern between years (Coulson et al. 1999). The stereotypic 

dispersal and attack sequence results in delineated wave-fronts that provide avenues for 

successful control in some areas of the southern United States. 

Infestations of larch budmoth also progress in wave-like patterns that propagate in 

time and space (Bjornstad et al. 2002; Johnson et al. 2004). However, the cause of these 

patterns is unclear, with explanations ranging from habitat permeability (Johnson et al. 2004) 

to aeolian dispersal to trophic interactions between the moth and its parasitoids (Bjornstad et 

al. 2002). Making inference from landscape-level signatures can be challenging because 

similar signatures can be caused by different processes. The association of landscape 

features with insect establishment is the focus of Chapt. 3, while predators and parasitoids do 

not generally play a major role in incipient-epidemic population dynamics of mountain pine 

beetle (Cole 1981). 

Following 2004, the highest intensity of infestations in the wave front moved a 

further 25 km to the northeast from 2005 to 2006, even though the leading edge moved 

approximately 80 km (Fig. 2.2). These distances are similar to dispersal exhibited by other 

guilds of forest insects with strong dispersal capabilities, such as defoliators like larch 

budmoth that can move upwards of 200 km per year (Bjornstad et al. 2002). The slow 

progression of the zone of highest intensity of infestations from 2004 to 2005 suggests that 

there were fewer weather events facilitating long-distance transport of mountain pine beetle 

into the region after the initial invasion. Alternatively, the eastward progression of the zone 
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of highest intensity could reflect harvesting activities changing the densities of patches of 

dead trees between years, although this is unlikely as harvesting was focused on the leading, 

eastern edge. Eastward progression of the zone of highest intensity may have also reflected 

short-distance dispersal after the initial invasion events, or higher reproductive capacity in 

novel host trees not previously exposed to historic beetle pressure (Cudmore 2009). 

Our study found no evidence that the spread of mountain pine beetle into the Peace 

River region was primarily influenced by anthropogenic activities such as storage of 

potentially infested logs within the region. Roads, along which infested logs harvested for 

firewood could have been transported, and mill locations, at which infested logs were stored, 

did not cause an increased occurrence of mountain pine beetle in the surrounding area. 

Although invasives can be readily transported along road corridors (Christen and Matlack 

2009) and scolytids such as Tomicus piniperda (L.) have been noted to spread from infested 

material in mill yards surrounding forests (Poland et al. 2000), our findings are not 

unexpected. Schaupp et al. (1993) found that emergence of mountain pine beetles from 

infested logs in transport is generally quite small during periods of peak emergence (0.03 

insects/m2 July and August). This is considerably lower than the optimal attack density of 

mountain pine beetle on standing living trees, 62 insects per m2 (Raffa and Berryman 1983). 

In addition, the use of various storage methods, such as increasing sun exposure by avoiding 

piling during storage and covering logs in plastic to increase the air temperatures to a level 

that causes high mortality in broods infesting the logs, can minimize emergence from stored 

logs (Negron et al. 2001) (although we do not know if such methods were utilized). It 

appears as though mitigation strategies used by forestry companies in this situation, namely 
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prioritization of processing of infested logs, at the mill locations effectively minimized the 

spread of the insect through emergence from host materials. 

In conclusion, examination of establishment patterns across years supports the 

hypothesis that mountain pine beetles moved into the region via long-distance transportation 

by meso-scale atmospheric transport (Robertson et al. 2009). Documenting range expansion 

and long-distance dispersal events are particularly important for allowing the estimation of 

rate of spread and species' modes of dispersal (Brouwers and Newton 2009). Examining 

expansion at the northern margins of ranges, as in this case, also provides an accounting of 

impacts due to climate change. With mountain pine beetle first moving over a geoclimatic 

barrier and then successfully establishing outbreaking populations in a novel habitat, the 

patterns of continued spread can provide valuable information for predicting the potential 

extent of further range expansion. 
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2.7: Figure Captions 

Figure 2.1 Map of the Peace River region of British Columbia including mill locations, 

primary rivers, and highways. 

Figure 2.2 Location of infestations of mountain pine beetle in the Peace River region of 

British Columbia, Canada in 2004, 2005, and 2006. Dashed line represents the line of 

initiation which is parallel to the Rocky Mountains and perpendicular to the direction 

of spread in 2004, the initial year of detection. 

Figure 2.3 Location of highest intensity of infestations of mountain pine beetle in 2004 and 

2005 (line A) and 2006 (line B) within the research area. 
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Fig. 2.2 
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Table 2.1 AIC values for the spatial point process models reflecting various hypotheses of 
insect dispersal for 2004, 2005, and 2006 in the Peace River region of British Columbia. 
Each model uses the spatially explicit intensities of beetle-killed trees for the respective year 
as a function of an intercept term and a similarly spatially-explicit covariate(s), as listed (see 
Methods). Models with lowest AIC values are judged to fit the best. 

Hypothesis Covariate(s) 2004 2005 2006 

Dispersal primarily occurs Roads (anthropogenic activities) 333,332 383,898 1,027,245 

within insect boundary Mill locations (anthropogenic activities) 333,532 385,471 1,024,913 

layer (human-assisted River systems (natural corridors) 332,196 384,841 1,027,961 

transport/natural corridors/ Roads and mill locations 328,444 381,863 1,024,729 

adjacent stands). Roads and rivers 331,337 383,182 1,027,197 

Rivers and mill locations 331,703 384,835 1,024,851 

Rivers, roads and mill locations 325,575 380,761 1,024,621 

Beetle locations(t.i) (dispersal from previous year's establishment) -a 370,646 1,023,605 

Dispersal primarily occurs Distance (linear gradient from source) 324,186 373,781 1,024,656 

above insect boundary Distance + distance2 (wave propagation) 315,602 364,567 1,009,046 

layer (aeolian dispersal) 

Combination (above and Distance + beetle locations^.,) - 369,445 1,023,607 

within insect boundary Distance + distance2 + beetle locations(t.i) - 367,848 1,021,350 

layer) 

aNo inventory exists for 2003 
Distance from line of initiation (parallel to the Rocky Mountains), see Methods 

Models of best fit are indicated in bold. 
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Table 2.2 The parameter estimates for spatial point process models judged to best fit 
infestation locations for 2004, 2005, and 2006 in the Peace River region of British Columbia 
(see Table 2.1). Distance from initiation line is represented by W while the response 
variable for the models is log (A), number of infestations of mountain pine beetle per m2. 
The location of 
estimated from 

Year 

2004 
2005 
2006 

greatest density of infestations, i.e. distance from the initiation line, was 
the point of inflection for each polynomial regression equation. 

Intercept 

-20 
-19 
-17 

Model Parameters 
d 

2.82E-04 
2.56E-04 
1.03E-04 

d2 i 

-3.05E-09 
-2.79E-09 
-7.23E-10 

Distance to maximum 
infestation intensity (from initiation 

line; see Methods) (km) 

46.3 
45.8 
71.1 
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3: THE ASSOCIATION BETWEEN ESTABLISHMENT AND SPREAD OF 

INFESTATIONS OF MOUNTAIN PINE BEETLE AND LANDSCAPE 

FEATURES IN THE PEACE RIVER REGION OF BRITISH COLUMBIA 

3.1: Abstract 

The spread of mountain pine beetle since 2002 across the Rocky Mountains into 

northeastern British Columbia, an area not previously exposed to epidemic beetle pressure, 

has been facilitated largely by above-canopy dispersal of the insect by meso-scale 

atmospheric currents. Terrain-induced thermals likely influence population dispersal and 

establishment as insects may behave like inert particles at these scales. Spatial point process 

modelling was used to examine the impact of landscape-scale variables, including landscape 

features and their orientations, habitat suitability, and elevation, on occurrence of mountain 

pine beetle infestations in 2004, 2005, and 2006. The efficacy of treatment and control 

efforts in those years is also examined. The terrain within the research area was categorized 

according to a landscape feature classification scheme identifying landscape features that 

could potentially influence meso-scale convective currents and dispersal patterns of mountain 

pine beetle. Although plains, open slopes and U-shaped valleys occupied the largest areas in 

the landscape, mountain pine beetle infestations primarily established in U-shaped valleys. 

Other landscape features that had a positive association with infestations of mountain pine 

beetle differed between years. These features included canyons and deeply incised streams in 

2004, local ridges and hills in valleys in 2005, midslope ridges and small hills in plains in 

2004 and 2006, and open slopes in 2006. The orientation of landscape features was found to 

only influence the occurrence of mountain pine beetle infestations in 2006, with 

southwestern slopes of midslope ridges or small hills in plains, southwest facing open slopes, 
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and U-shaped valleys that run in a northeast-southwest cardinal direction positively 

influencing intensity. These findings may be used to prioritize treatment areas prior to 

infestation by mountain pine beetle based on the landscape features within a target area. 
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3.2: Introduction 

Landscape pattern and structure play important roles governing the spread and impact 

of insect herbivores in forest ecosystems, both directly by influencing the dispersal 

capabilities of insect populations and indirectly by influencing the health and distribution of 

host trees (Bjornstad et al. 2002; Ims and Coulson 2004). For example, Adelges tsugae 

Annand (Homoptera: Adelgidae) (hemlock woolly adelgid) feeds on native hemlock species 

in the eastern United States and disperses via wind (Orwig et al. 2002), severely impacting 

stands on xeric ridges and slopes. Similarly, frontal zones of outbreaks of Operophtera 

brumata L. (Lepidoptera: Geometridae) (winter moth), tend to vary in size according to 

topographic characteristics such as distance from the coast, altitude, and slope (Hagen et al. 

2007). Specific landform characteristics can also greatly influence patterns of infestation, 

usually due to alteration of host vigour and levels of resistance. For example, infestations of 

Dendroctonus frontalis Zimmermann (Coleoptera: Scolytidae) (southern pine beetle) have 

been found to be closely associated with landforms including upland plateaus while showing 

lower-than-expected infestations on side slopes and steep side slopes (Hicks 1980). In 

western North America, recent range expansion events across presumed geoclimatic barriers 

by outbreaking populations of D. ponderosae Hopkins (mountain pine beetle) provide a new 

opportunity to study the effects of landforms and feature orientation in an invasion process. 

The mountain pine beetle is a cryptic herbivore that spends all but a few days of its 

life cycle under the bark of mature pine trees. Typically, the insect exists for long periods at 

endemic levels, but may intermittently undergo drastic population eruptions (Safranyik et al. 

1974; Amman and Cole 1983; Zhang and Alfaro 2003; Gamarra and He 2008). At epidemic 

population phases (Raffa and Berryman 1983), the insect must kill its host in order to 
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reproduce, exerting positive feedback in a system with landscape-scale consequences (Raffa 

et al. 2008). Outbreaks typically decline when the host supply is exhausted or large-scale, 

lethal climatological events result in mortality of a large proportion of the population (Stahl 

et al. 2006; Safranyik and Carroll 2006). 

Currently, there is a massive outbreak of mountain pine beetle covering 

approximately 14.5 million ha of mature forests ofPinus contorta var. latifolia (Engelmann) 

Critchfield (lodgepole pine) in the provinces of British Columbia and Alberta in western 

Canada (British Columbia Ministry of Forests and Range 2009), exerting carbon-budget 

impacts in the order of megatonnes (Kurz et al. 2008). The occurrence of an outbreak is not 

unusual per se given the presence of a favourable climate for the insect and a high proportion 

of stands with suitable hosts available on the landscape (Thomson and Shrimpton 1984; 

Safranyik and Carroll 2006; Campbell et al. 2007; Aukema et al. 2008; Nelson and Boots 

2008). However, the magnitude, extent, and severity have been unprecedented as the 

outbreak has been exacerbated in large part by anthropogenic impacts such as altered forest 

management regimes (i.e., fire suppression) and a changing climate (Carroll et al. 2004; 

Taylor et al. 2006; Raffa et al. 2008). The outbreak originated in the central interior of the 

province of British Columbia, Canada in the late 1990s (Aukema et al. 2006). However, the 

first inventory of incipient-epidemic infestations in northeastern British Columbia on the 

eastern slopes of the Rocky Mountains occurred in 2004, from an invasion presumed to have 

occurred in 2002 (Allan Carroll, pers. comm.1). Mountain pine beetle was previously 

thought not to be endemic to this area, as the Rocky Mountains in the central part of the 

province have historically been considered a geoclimatic barrier (Safranyik and Linton 

1982). However, over the next few years, outbreaking populations of mountain pine beetle 

'Allan Carroll, Associate Professor, University of British Columbia fallan.carroll(a),ubc.ca) 
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quickly spread from the eastern slopes of the Rocky Mountains in British Columbia into 

western Alberta. Currently, there is great concern that establishment in hybrid P. contorta x 

P. banksiana Lamb, (jack x lodgepole pine), and subsequently P. banksiana further to the 

east, may provide a conduit through the boreal forests of Canada to areas and hosts not 

previously exposed, such as P. resinosa Aiton (red pine) or P. strobus L. (eastern white pine) 

in eastern Canada and United States (Safranyik and Linton 1982; Cerezke 1995; Nealis and 

Peter 2008). 

Host-seeking behaviour of mountain pine beetle is characterized primarily by short-

distance dispersal in which adult progeny orient toward aggregation pheromones produced 

by conspecifics, attacking neighbouring hosts en masse (Safranyik et al. 1989). Dispersal 

flight is typically restricted to host-seeking behaviour within the stand (Safranyik et al. 

1992), although newly emerged beetles do require a period of flight before becoming 

receptive to host volatiles (Shepherd 1966). Newly emerged beetles are attracted to dark 

objects on a light background (Shepherd 1966), and as a result may orient themselves 

towards spot sources and the canopy resulting in downwind and upward dispersal of 

individuals. This may allow beetles to move above the canopy and become incorporated into 

convective currents during warm, fair-weather periods (Chapman 1962; Safranyik et al. 

1989). Once entrapped by meso-scale atmospheric currents the movement of insects is 

similar to the drift of inert particles (Taylor 1974), although insects may maintain a degree of 

flight control (Lewis and Dibley 1970). It is likely that population pressure, exacerbated by 

high levels of competition and lack of suitable hosts in the central interior of British 

Columbia, contributed to increased above-canopy movement, incorporation into advective 

currents, and subsequent long-distance dispersal of mountain pine beetle over the Rocky 
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Mountains (Jackson et al. 2005; Jackson et al. 2008; Robertson et al. 2009). Similar long­

distance transport events of bark beetles have been noted previously. For example, 

infestations of mountain pine beetle in the Cypress Hills on the southern border of Alberta 

and Sasketchewan occurred approximately 200 km from outbreaking source populations in 

western Alberta in 1980 (Cerezke 1981; Safranyik and Linton 1982) and in the early 1970's 

Furniss and Furniss (1972) catalogued scolytids deposited on mountain glaciers in Oregon 

and Washington. 

In situations where long-distance dispersal dominates, alterations of wind velocity, 

turbulence, and direction determine the transport, deposition, and, where there is susceptible 

host and suitable climate, the establishment of insect populations. The descent of mountain 

pine beetle from convective currents occurs via gravitational settling, active flight, rainout, 

and/or impaction (i.e. the contact of biota with objects). In particular, landscape features 

provide impactive surfaces for interception of insects (Defant 1951; Bullard et al. 2000), as 

demonstrated by arthropods in arctic ecosystems as well as gypsy moth in mountain-valley 

systems (Mason and McManus 1981; Ashmole et al. 1983; Antor 1994). The greater the 

mass of an airborne object, the more likely it will impact the ground or surface rather than be 

swept around the obstacle into lee-ward eddies (Westbrook and Isard 1999). Wind speed 

may decrease when the direction of motion is perpendicular to emergent landscape features, 

causing increased settlement in areas with reduced wind speeds (Ruel et al. 2001). 

Alternatively, wind speed may increase, depending on fetch, within open areas, which may 

increase the transportation of insects longer distances within valleys, as the insects become 

entrained within air currents in these regions. 
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Despite the importance of topography on settlement patterns of insects exhibiting 

aeolian dispersal, the influence of topography on the deposition patterns of mountain pine 

beetle in these recent range expansion events has not been studied. The Peace River region 

exhibits a diversity of topographical features. At the western edge of the region, the terrain is 

dominated by the Northern Rocky Mountains with strongly linear terrain features formed by 

erosion of folded and faulted sedimentary rocks (Harcombe 1978). These linear features 

include large U-shaped valleys, eroded by glaciers, separated by distinct ridges (British 

Columbia Ministry of Environment 1994). The Hart Range, the primary mountain range in 

the region containing the Solitude and Murray Ranges, dissects the region at a central belt of 

lower elevation in the Rocky Mountains. This range encompasses two low-lying passes, 

including the Pine Pass (874m), the lowest of six highway passes through the northern Rocky 

Mountains, and the Monkman Pass (1092m). The eastern portion of the research area is 

composed of flat-lying or gently dipping sedimentary rocks producing plateau topography 

(Harcombe 1978). Due to the relatively consistent directions of meso-scale winds in the 

region, it is likely that the interaction between landscape features and convective currents 

predictably influences deposition and the establishment patterns of D. ponderosae relative to 

feature orientation. 

The primary objectives of the present study were fourfold: (1) to examine the 

association of landscape features on the establishment and persistence of insect populations 

of sufficient size to kill mature trees in a newly-invaded area, (2) to determine whether the 

specific orientations of those features provided additional inference on locations of insect 

establishment, (3) to examine the relative contributions of other landscape characteristics, 

including elevation and susceptible habitat, on the establishment patterns of mountain pine 
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beetle during the initial stages of invasion, and finally, (4) to assess the efficacy of treatment 

and control efforts on spread of infestations within the region to better understand the impact 

of long-distance dispersal on control efforts. Investigation of factors driving establishment of 

mountain pine beetle infestations within this region allows retrospective examination of the 

invasion event(s) and may provide critical information to formulate strategies to mitigate 

further invasion and range expansion events of this eruptive forest herbivore. 

3.3: Materials and Methods 

3.3.1: Preparation of Insect Datasets 

A study area was delineated that encompassed the invasion process of outbreaking 

populations of mountain pine beetle over the northeastern slopes of the Rocky Mountains 

from 2004 to 2006. This area encompassed the Peace River region from the Rocky 

Mountains to the border of the province of Alberta, an area approximately 3 million hectares 

in size (Fig. 3.1). 

Detailed annual survey maps of discrete outbreaking populations of mountain pine 

beetle were obtained from forest licensees. The provincial government is the predominant 

landowner in the province of British Columbia, particularly within the Peace River region, 

which in turn leases tree-harvesting rights to forest management companies. As such, we are 

confident in the spatial coverage of the data. The surveys were conducted by identifying and 

recording locations of "red-attack" trees from helicopter using GPS, in concert with further 

ground reconnaissance work in some areas. Because mountain pine beetles in epidemic 

population phases must kill their host in order to reproduce, and foliage fades from green to 

red within one year after colonization (Safranyik et al. 1974), mapping "red-attack" is a 

reliable proxy for estimates of insect abundance (Aukema et al. 2006; Wulder et al. 2006). 
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The surveys had been conducted in 2004, 2005, and 2006 from approximately May to 

September. Centre point locations for each infestation were recorded in Universal 

Transverse Mercator (UTM) coordinates. Additional data collected for each infestation 

included its size, the approximate number of trees affected, ecological land classification 

scheme, land tenure, and any control strategy implemented (Table 3.1). 

Detailed error checking revealed that only 113 of 58,008 data points were of 

questionable quality (duplicates in year 2004; 1% of the data for that year). Duplicate sites 

were defined where the distance between sites were recorded as 0 metres. In such instances, 

the point with the largest infested area (ha) was retained for that location while the other 

point was deleted. Where attribute data were the same, the overlying point was deleted. 

A separate dataset of infestation treatment data, including single tree treatments and 

harvesting of infested blocks, for 2005 and 2006 was procured from licensees. Polygonal 

and point treatment data were combined into a single point dataset using methods similar to 

those used for infestation data, such that all points had an affected area associated with them. 

Polygons were converted to points based on the centroid of the polygon. A pixel surface of 

distance from treatment location within the research area was produced using the Spatial 

Analysis distance tool in Arcview 9.2 (ESRI). Each pixel measured 73x73 metres, or 

approximately 0.53 ha in size. 

3.3.2: Preparation of Landscape Feature Datasets 

A stand susceptibility index (SSI) dataset, produced by the Canadian Forest Service, 

was used as a surrogate for habitat considered suitable for outbreaking populations of 

mountain pine beetle in our analyses. The index is typically calculated using four variables, 

including the relative abundance of pine, the ages of dominant and codominant pine, stand 
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density, and location (Shore and Safranyik 1992; Shore et al. 2000). We used an updated SSI 

dataset that substituted a climatic factor for the location factor in calculation of the index, 

which provided an assessment of habitat suitable for insect colonization and reproduction 

(Safranyik et al. 1975; Carroll et al. 2004). This climatic factor predicts the influence of 

realized climatic regimes on the susceptibility of forest stands by integrating daily weather 

data from meteorological stations in British Columbia with historic temperature regimes into 

a mechanistic model of mountain pine beetle population dynamics (Shore and Safranyik 

1992; Carroll et al. 2004). Resulting stand susceptibility indices range between 0 and 100, 

and are categorized into five stand susceptibility classes with class 0 being the lowest 

susceptibility to infestation by mountain pine beetle and class 5 being the highest 

respectively. The highest stand susceptibility classes identify areas where there are suitable 

hosts (i.e., ages > 60 yr, species composition, diameter, etc.) and the climate is typically 

amenable to the establishment and reproduction of mountain pine beetle populations 

(Safranyik et al. 1975; Carroll et al. 2004). 

The research area was classified into ten classes of landscape features that potentially 

influence wind and circulation patterns within the region (Table 3.2). 

Each 73x73m pixel within the research area was classified into a feature type based on its 

relative elevation using a Topographic Position Index (TPI) tool v. 1.3a (Weiss 2001; Jenness 

2006) as an extension within Arcview v.3.2 (ESRI). In brief, pixels are considered relative to 

the mean of a predefined neighbourhood of a user-specified size and shape (Fig. 3.2 A). The 

combination of TPI at small and large scales allows for predefined landscape features to be 

delineated in a digital elevation model (Fig. 3.2 B). The digital elevation model used for the 

TPI classification process was composed of 1:250,000 maptiles identical to raster sizes in our 
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other datasets (i.e. 73x73m). The recommended circular neighbourhood was used during 

classification (Jenness 2006). Three combinations of small and large neighbourhood sizes 

were examined, including 1000 and 2000 metres, 1000 and 3000 metres, and 1000 and 6000 

metres, respectively. Resulting TPI rasters were visually inspected and compared to the 

source digital elevation model. The first two TPI rasters resulted in a classification with a 

pixel resolution too coarse to accurately reflect the topography of the research area. The 

third classification scheme satisfactorily represented terrain within the region, as judged by 

visual inspection, and was selected for use in statistical analyses. 

Using this map of landscape features classified across the study area, the orientation 

of certain landscape features was calculated to allow further investigation of the effects of 

feature orientation on the occurrence of mountain pine beetle infestations. 

The orientation of landscape features was determined according to the type of feature (Table 

3.2). Azimuth is defined as the cardinal direction in which a linear feature lies. For example, 

within the research area, canyons or deeply incised streambeds and U-shaped valleys may be 

characterized by their azimuths (Fig. 3.3 A). Similarly, aspect is defined as the direction in 

which non-linear features, such as open slopes or midslope ridges, face (Fig. 3.3 B). The 

linear azimuth for linear landscape features with predominantly linear orientations such as 

canyons or deeply incised streams, U-shaped valleys, and mountain tops or high ridges was 

determined by "breaking" features at changes in direction greater than 45 degrees. The 

orientation of the broken feature was then determined using an azimuth measurement tool (v. 

1.6) in Arcview v.3.2 (Jenness 2005). The azimuths were then converted from compass 

bearing measurements (i.e., angular readings) to one of the following four categories: north-

south, northeast-southwest, west-east, or southeast-northwest orientation. For non-linear 
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features, including open slopes, local ridges or hills in valleys, or midslope ridges or small 

hills in plains, aspects of the features were extracted by querying features based on one of 

eight directions (i.e., northwest, west, southwest, etc.). All datasets were then converted to 

binomial rasters (73 x 73m pixel size) where locations of a particular landscape feature with a 

specific orientation were noted by ones (i.e., presence) while the rest of the landscape was 

recorded as zeros (i.e., absence). 

3.3.3: Statistical Analyses 

As an initial step in data exploration, we tested whether the distribution of susceptible 

habitat, as well as the types of landscape features, affected the occurrence and distribution of 

infestations of mountain pine beetle using contingency tests for the 2004, 2005, and 2006 

datasets. For each year, the spatial extent under analysis was restricted to the extent of area 

infested in that year plus a 25 kilometre buffer. As a result, the areas considered within each 

analysis increased in size from 2004 to 2006 as mountain pine beetle spread across the region 

(see Results). For contingency tests, observed values were calculated by summing the area 

infested per stand susceptibility class or landscape feature while expected values were 

calculated by multiplying proportion of total area occupied by a susceptibility class or 

landform type by the total area infested by mountain pine beetle in the research area (see 

Appendix B and Appendix C for R code). Boot-strapping procedures with 1000 repetitions 

were then used to develop a test statistic distribution, as simple £ tests fail to contend with 

spatial autcorrelation within the dataset. This process involved randomizing the spatial 

points within the area of analysis, with the sample size equal to that of the dataset under 

consideration. The susceptibility class or feature for the location of each point was then 

sampled. The area of infestation for each point was also randomly permutated and the 
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contingency test statistic was then calculated for each randomization. The calculated test 

statistic for the initial test was then ranked relative to the generated test statistic distribution 

to determine if it was significant using a= 0.05 (see Appendix D for R code). 

Spatial point process regression models were used to examine the potential influences 

of landscape features, their orientation, habitat suitability, elevation, distance from source 

infestations, and, for 2005 and 2006, the distances from locations of treatment in the previous 

year on the density of outbreaking populations of mountain pine beetle in the study area for 

each year (see Appendix E). Candidate landscape feature covariates for inclusion in these 

models were restricted to those with an area infested greater than expected (from exploratory 

data analysis above). Rather than considering all habitat suitability classes, only those with 

the highest susceptibility (i.e. class 5) were included. For our spatial regressions, a spatial 

point process (i.e., a spatially-explicit dataset of x and >> locations of infestations of mountain 

pine beetle) was examined as a function of other spatially-explicit covariates (such as 

presence/absence of management activity, landscape features, orientation, etc.), yielding 

regression coefficient estimates and standard errors for all covariates. Substituting covariate 

values into the resulting spatial point process regression equation yields an estimated density 

X, a spatially-explicit density of infestations per unit area (i.e., pixel of 73><73m in size, just 

over one half a hectare resolution). In this class of models, the likelihood is well-defined, 

allowing examination of the significance of individual regression coefficients via likelihood 

ratio tests among nested models using %2 test statistic distributions (Baddeley and Turner 

2008). Moreover, each model yields AIC values useful for model selection, with lower 

values judged to be the best (Akaike 1973). 
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Spatial point process regression models share similar challenges in evaluating the 

effects of multiple variables as classic linear regression models in that the marginal effects of 

highly correlated variables may be difficult to estimate (e.g. inflated standard errors) 

(Graham 2003). In our system, due to the settlement patterns of mountain pine beetle in a 

general northwest-southeast pattern across the entire research area, there was an extremely 

high degree of correlation between x and y variables when examining the effects of distance 

from source populations on final establishment densities (see Results). To contend with this 

challenge, we reduced spatial location to one dimension by defining a new variable, the 

distance from a line of reference along the Rocky Mountains, perpendicular to the direction 

of spread. The direction of spread was determined by examining slope of a linear regression 

of northing versus easting values (i.e. y versus x) for the first year infestation. The direction 

of spread in 2004 was estimated to be northeast or along a 48° bearing. Therefore, the line of 

reference had a 138° bearing. Hence, insect locations were measured as a distance from this 

line along the western edge of the research area (presumed source of the insects) and their 

established locations in the Peace River region of British Columbia. 

Our spatial regressions yielded a multiple regression equation for each year (i.e., 

2004, 2005, and 2006) providing inference on the influences of a variety of variables (e.g., 

landscape features, elevation, distance from line of initiation, etc.) on the locations of 

mountain pine beetle populations. We then returned to the initial inventory datasets and, for 

each year, fit simple linear regressions using one of the eight (for aspect) or four (for 

azimuth) landscape feature orientations for each type of landscape feature that was 

significant in the previous models. The best-fitting feature orientation was selected for each 

feature type in each year by examining AIC values, and then substituted into the previous 
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spatial regression models in place of the overall feature class (see Results). This allowed a 

comparison between models with landscape features, and those with features restricted to a 

specific best-fitting direction. The model with the lowest AIC value was judged to fit the 

best. 

To determine if elevations of infestations within the study area each year were similar 

to the average elevation of infestations within the central interior (i.e. 1000 m; Safranyik and 

Carroll 2006), we used one thousand (1,000) single sample Mests of randomly thinned 

subsets of the annual datasets (n = 50). Resampled subsets were used to contend with spatial 

autocorrelation in the original dataset. All data was handled in Arcview v.9.2, Arclnfo 

Workstation, and Arcview v.3.2 while the spatstat package v. 1.14-9 within R v.2.8.1 was 

used for statistical analyses (Ihaka and Gentleman 1996; R Development Core Team 2009). 

3.4: Results 

3.4.1: Spatial Extent and Landscape of Invaded Area 

The number of incipient-epidemic infestations increased annually within the Peace 

River region of British Columbia between 2004 and 2006. There were 10,536 infestations 

mapped in 2004 and 12,275 in 2005. These numbers approximately tripled to 35,084 

infestations in 2006 (Fig. 3.4). In 2004, the mean area of patches of red trees killed by 

mountain pine beetle was quite small; approximately one third of a hectare. However, the 

mean sizes of individual infestations increased to approximately 1 ha in 2006 (Table 3.3). 

Sizes of patches of dead trees became more variable due to expanding areas that were 

colonized, as the largest areas measured in 2006 were 2,440 ha, versus 6 and 133 ha in 2004 

and 2005 respectively. By 2006, the total area of trees killed by mountain pine beetle had 

expanded to 35,084 ha (Fig. 3.4). 
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Patches of mortality were found in lodgepole pine forests between elevations of 

approximately 500-1700 m. After the initial invasion event, most successful attacks were at 

1,000 m in elevation each year (Table 3.3). In 2005 and 2006, patches of dead trees were 

found at significantly higher elevations than those previously noted in outbreaks in the 

insect's conventional range. Infestations stretched from the western slopes of the Rocky 

Mountains in 2004 to the town of Tumbler Ridge, British Columbia (Fig. 3.5). By 2006, this 

extent had expanded two-fold in a northeasterly direction to encompass almost the entire 

Peace River region. 

Dominant landscape features in the invaded region included plains, open slopes, and 

U-shaped valleys (Fig. 3.6). A numerical summary of their areas and elevations are provided 

in Table 3.4. Together, plains and open slopes comprised more than 50% of the landscape in 

the Peace River region. Other landscape features such as canyons and deeply incised 

streams, upper slopes and mesas, and midslope ridges or small hills in plains each comprised 

no more than 6% of the area proportionally, but absolute area was always more than 100,00 

ha in size. The smallest landscape features in size were local ridges or hills in valley 

bottoms, comprising 1,122 ha across the region (0.04% of the total area). Plains exhibited 

the lowest mean elevation (877 m) while mountaintops/high ridges were found to have the 

highest (1,619 m; Table 3.4). 

A map of habitat susceptibility classes is provided in Fig. 3.7, with a numerical 

summary of their relative abundances across the landscape in Table 3.5. Most of the Peace 

River region across northeastern BC was considered highly unsuitable for outbreaking 

populations of mountain pine beetle, as two thirds of the landscape was classified as 

suitability class 0. The most susceptible habitat, i.e. class 5, occupied only 3% of the 
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landscape (74,894 ha; Table 3.5). This habitat is stratified across nine different landscape 

features (Table 3.6). Of these, plains, open slopes, and U-shaped valleys comprised the 

largest proportion of highly susceptible habitat (49, 27, and 14% respectively). Upland 

drainages or headwaters, local ridges or hills in valleys, and upper slopes or mesas 

collectively comprised less than 1% of habitat classified as highly susceptible to outbreaking 

populations of mountain pine beetle (Table 3.6). 

3.4.2: Which Landscape Features are Associated with Mountain Pine Beetle 

Infestations? 

Infestations of mountain pine beetle were not distributed uniformly across all types of 

landscape features, as demonstrated by goodness-of-fit tests (Appendix F). Exploratory 

analyses identified that certain landscape feature had more (or less) infestation than would be 

expected if infestations were distributed uniformly across the landscape. In 2004, canyons or 

deeply incised streams, local ridges or hills in valleys, midslope ridges or small hills in plains 

and U-shaped valleys had more area infested than expected. This pattern persisted into 2005, 

as midslope ridges or small hills in plains, and U-shaped valleys had greater areas infested 

than expected, along with canyons or deeply incised streams. In 2006, canyons or deeply 

incised streams, local ridges or hills in valleys, midslope ridges or small hills among plains, 

open slopes and U-shaped valleys exhibited a greater total area infested by mountain pine 

beetle than expected. Although open slopes and plains occupied a large proportion of the 

landscape, they had proportionally less area infested than would be expected from uniform 

settlement in 2004-2005. Landscape features including mountain tops or high ridges, 

midslope ridges or small hills in plains, upland drainages or headwaters, and upper slopes or 
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mesas each contained fewer infestations than would be expected by a uniform distribution 

across the landscape in all three years (Appendix F). 

Given the differences in relative distribution of infestations of mountain pine beetle 

across landscape features, we fit spatial point process regression models to determine which 

landscape features might provide the best inference on locations of detected infestations 

(Table 3.7). These models, which measure intensity, A, as a spatially-explicit number of 

infestation per unit area (m2), also included as covariates elevation, distance from source 

location, presence or absence of the most highly suitable habitat (i.e. class 5; see Fig. 3.7), 

and, in the latter two years, distance from the nearest sites where insect control tactics, such 

as fall and burn or single-tree removal, had been implemented the previous year. Landscape 

features associated with increased intensities of infestation included canyons or deeply 

incised streams in 2004, local ridges or hills in valleys in 2005, midslope ridges or small hills 

in plains in 2004 and 2006, open slopes in 2006, and U-shaped valleys in all three years 

(Table 3.7). In all three years, the presence of highly susceptible habitat was also positively 

correlated with infestation intensity. In 2004, canyons or deeply incised streams were 

associated with lower densities of mountain pine beetle 

After accounting for the effects of landscape features, we found, not surprisingly, that 

the intensity of infestations decreased with distance from a line of initiation along the Rocky 

Mountains (see Methods). Furthermore, there were fewer patches of beetle killed trees at 

higher elevations after taking the effects of landscape features and distance from the Rocky 

Mountains into account. Beetle control tactics appeared to be efficacious. The density of 

infestations decreased with increasing distance from treatment sites in the previous year for 

both 2005 and 2006 (Table 3.7). 

58 



3.4.3: Does Feature Orientation Influence Invasion Success? 

To determine which azimuths and aspects of landscape features had the greatest 

influence on intensity of patches of trees killed by mountain pine beetle infestations, spatial 

point process models were fit to annual inventory data with each of eight cardinal 

orientations per landscape feature as single covariates (Table 3.8). In the initial year of 

infestation, of the U-shaped valleys, those with a northeast-southwest azimuth best fit the 

pattern of infestation. Models of best fit for that year also included west-facing local ridges 

or hills in valleys, or midslope ridges or small hills in plains with southwestern aspects. 

Canyons or deeply incised streams with a north south azimuth and U-shaped valleys with a 

northeast southwest azimuth best fit patterns of infestation in years following initial 

establishment, 2005 and 2006. For 2005, a model incorporating southern aspects of local 

ridges or hills in valleys best fit patterns of infestation, while midslope ridges or small hills in 

plains with southwestern aspects and open slopes with southwestern aspects explained the 

most variation in insect establishment on the landscape in 2006. 

Once the most-significant azimuth or aspect of each landscape feature was identified 

(Table 3.8), we substituted these best terms into the models of Table 3.7; i.e., replacing each 

significant global landscape feature with a more targeted subset of that feature class, to see if 

the orientation of the landscape feature provided better inference on the establishment 

patterns of mountain pine beetle throughout the Peace River region than simply the locations 

of features themselves. In 2004 and 2005, incorporating the best orientation of the landscape 

feature did not improve models that previously incorporated all orientations, as indicated by 

higher AIC values (2004: 311,275 vs. 311,338; 2005: 355,544 vs. 355,774; Table 3.7 and 

Table 3.9). However, persistence of tree killing populations of D. ponderosae in the Peace 
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River region in 2006 was readily influenced by orientation of landscape features as indicated 

by a lower AIC value (1,011,283 vs. 1,011,290) when feature orientations replaced landscape 

features as covariates (Table 3.9). Interestingly, a southwest orientation was common for all 

three landscape features included in the 2006 model (Table 3.9). For 2006, southwestern 

slopes of midslope ridges or small hills in plains, southwest facing open slopes, and U-

shaped valleys that run in a northeast-southwest cardinal direction positively influenced 

intensity. As previously established by initial models lacking feature orientation, elevation 

and distance from the western edge of research area were inversely correlated to intensity of 

D. ponderosae infestations while distance from highly susceptible habitat was positively 

correlated. The intensity of infestations decreased with increasing distance from treatment in 

the previous year. 

3.5: Discussion 

Our results demonstrate not only that specific landscape features are associated with 

establishment of an invading organism, but orientation of those landscape features is 

associated with the organisms potential persistence and spread. Initially, as mountain pine 

beetle crossed the Rocky Mountains into new areas of the province of British Columbia in 

western Canada, the majority of pockets of invaders were found in valleys in the central 

Peace region - which could have been acting as conduits for further dispersal - in the first two 

years of detection. This is consistent with the hypothesis that initial invasion of this territory 

occurred via aeolian dispersal (Chapter 2; Safranyik and Carroll 2006; Robertson et al. 

2009). By 2006, increased densities of infestations of mountain pine beetle were associated 

with mid-slope ridges, small hills, and open slopes that were primarily facing in a southwest 

direction. 
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There are at least three reasons for the emergence of the importance of southwest 

feature orientation in the persistence of these invading herbivores. First, hosts may be more 

susceptible on drier, sun-exposed south-west facing slopes (Powers et al. 1999). Exudation 

of oleoresin, important in tree defense, is lowered when conifers are water-stressed (Waring 

and Pitman 1985). Second, insects established on southwest-facing sites may enjoy higher 

reproductive rates due to higher ambient temperatures, than insects on shaded slopes 

(Mattson and Haack 1987). Development of mountain pine beetle is strongly temperature-

dependent, with progression between life stages critically dependent on accruing a sufficient 

number of heat units (Reid 1962; Amman 1973; Safranyik 1978; Bentz et al. 1991; Shore et 

al. 2000; Safranyik and Carroll 2006; Powell and Bentz 2009). Moreover, insect populations 

on landscape features oriented to receive less sun exposure would be more affected by cold 

temperatures during the winter. The cold tolerance of the over-wintering larval stage of 

mountain pine beetle increases incrementally over the winter as temperatures get 

progressively colder (Bentz and Mullins 1999). However, lethal temperatures, below -40°C, 

can cause widespread brood mortality if they occur in October or mid-March, or for extended 

periods during the winter (Wygant 1940). Increased mortality and asynchronicity of 

development and emergence within populations associated with feature orientations 

receiving less sun would exhibit decreased local dispersal and likely lower infestation levels 

on those landscape features in successive years. 

A third explanation for increased associations of mountain pine beetle with 

southwestern slopes, not mutually exclusive to the first two, is that additional episodes of 

aeolian dispersal may have deposited higher numbers in the Peace River region on 

southwestern slopes, as wind is strongly unidirectional and blows from the west and 
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southwest (Fig. 3.8). Mountain pine beetle tend to accumulate on windward sides of barriers, 

as large insects (i.e. those with bodies greater than a 4 or 5 mm2 surface area, like mountain 

pine beetle) are less likely to be carried over top of a barrier to enter circulating leeward 

eddies because of their great inertia (Lewis and Dibley 1970). Hills that are relatively close 

to each other will also increase the amount of deposition on the windward slope of 

consecutive hills (Goossens 1996). The topography in the western portion of the Peace River 

region is characterized by consecutive ridges and valleys, causing ridgelines downwind to 

sustain more insect deposition on windward, southwestern slopes. 

Thermal development thresholds linked to differing brood successes on southern 

versus northern aspects may be similarly associated with declining population densities at 

higher elevations, where temperatures are cooler (Amman 1973; Tishmack et al. 2005; 

Brunelle et al. 2008). High elevation sites within British Columbia and the Peace River 

region generally have lower mean winter and summer temperatures and a shorter growing 

season than low elevation sites. At higher elevations, populations may be particularly 

vulnerable to colder temperatures during August and September, forcing them into bivoltine 

developmental stages (Amman 1973). For example, Amman (1973) examined the life 

history of mountain pine beetle in lodgepole pine between 1923 and 2750 metres elevation in 

northwestern Wyoming. Between 1923 and 2130 metres the insects were univoltine, while at 

2450 metres, part of the population was bivoltine. At elevations between 2573 and 2750 

metres, two years were required to complete one entire life cycle. Asynchronous or mixed 

voltinism at high elevations also affects emergence synchronicity critical to the mountain 

pine beetles' ability to mass attack and successfully colonize hosts adjacent to their natal 

hosts (Amman 1969). 
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Our research area was between approximately 54 and 56° N. Despite the well-known 

negative correlation between insect success and elevation, we note that the mean elevation of 

outbreaking populations was significantly higher than 1000 metres in 2005 and 2006. In the 

insect's historic range within British Columbia, the majority of mountain pine beetle 

outbreaks have occurred historically at mean elevations of 1000 metres at 55° N, the same 

latitude as our study area (Taylor et al. 2006). The occurrence of more infestations at 

elevations higher than those typically exhibited in the insect's native range suggests three 

possibilities. First, it could signify that the climate in this newly invaded territory is suitable 

for establishment and brood production. Insects are particularly limited by temperatures that 

influence survival and reproduction at the northern edges of their habitat (Crozier 2004). 

Although dispersal is exceptionally lethal to bark beetles (Schmid 1969; Raffa 2001), 

warming of winter temperatures at the northeastern edge of mountain pine beetle's range 

may have facilitated increased survival of pioneer dispersers, allowing the insect to thrive in 

this new habitat (Carroll et al. 2004). Similar phenomena have been noted in other systems, 

such as A talopedes campestris Boisduval (skipper butterfly) (Crozier 2004) and 

Thaumetopoeapityocampa Schiff. (pine processionary moth) (Battisti et al. 2005). Second, 

increased persistence at higher elevations could signify that host resistance is low in these 

areas, since, to our knowledge, populations of lodgepole pine in these areas have not been 

previously exposed to outbreaking populations of bark beetles. Of special concern is the 

threat of expansion into jack pine, which could provide this eruptive herbivore a conduit to 

the east coast of North America (Cerezke 1995). A third explanation, also not mutually 

exclusive to the first two, is simply that the persistence of outbreaking populations at higher 

elevation sites may reflect prior management activities at easy-to-access areas at lower 
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elevation. However, such activities was accounted for by its own covariate in the models, so 

any such signal is in addition to those already noted (Table 3.9). 

In our study, as in others (e.g., Preisler and Mitchell 1993; Bentz and Munson 2000; 

Fettig et al. 2006; Nelson et al. 2006; Fettig et al. 2007; Trzcinski and Reid 2008) 

anthropogenic interventions against tree-killing eruptive herbivores decreased occurrences of 

infestations in the year following treatment. Management activities included single tree 

treatments using fall and burn, and harvesting of stands infested with mountain pine beetle. 

These control tactics decrease the potential for short-distance dispersal to adjacent stands 

(Trzcinski and Reid 2008). Treatments may have been efficacious in this region due to 

relatively low rates of increase among populations as a whole, either due to temperature or 

high levels of competition. Attacked hosts within the research area were noted to have 

greater than optimal levels of attack (i.e., 62 attacks/m2; Raffa and Berryman 1983; Allan 

Carroll pers. comm.1) resulting in lower per capita reproductive rates due to intraspecific 

competition (Safranyik and Carroll 2006). The persistence of a statistical signal for 

management activities for 2005 and 2006 also indicates that there were fewer, if any, long 

distance inputs of additional beetles into the study region, as the statistical signal for 

management activities associated with short-distance dispersal would likely have been 

obscured. Aeolian dispersal and rapid range expansion associated with insect outbreaks may 

be sporadic, but important events. 

In summary, our results indicate that, following the initial invasion event, the 

continuing spread of the mountain pine beetle may potentially be facilitated by large, low-

elevation valleys orientated along the dominant wind direction, acting as conduits of suitable 

habitat for the insect (e.g. Robertson et al. 2009). The orientation of landscape features also 
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affects the establishment of mountain pine beetle, either by influencing the susceptibility of 

hosts or by allowing populations on warmer and drier sites to have greater reproductive rates 

facilitating spread into adjacent stands. These results may be of particular value in 

formulating management strategies as the insect progress eastward through the boreal for of 

Canada, or in other areas where the insect is at epidemic population phases, such as regions 

of the southern Rocky Mountains of Colorado. 

A result of this study of particular concern is the successful establishment of 

infestations at higher elevations than within their native range in the central interior of British 

Columbia. The elevation shift of mountain pine beetle indicates that the host within the 

region may be highly susceptible to attacks, or that the climate of such areas may be 

conducive to the establishment of infestations at those elevations (Carroll et al. 2004). 

Finally, while control measures such as single-tree fall and burn and harvesting of infested 

blocks are effective in minimizing dispersal between adjacent stands, it is not likely to be 

effective in preventing continuing spread where inputs of insects dispersing long-distances 

are present. In these situations, alternate control tactics will need to be used to effectively 

deal with long-distance inputs. In particular, predicting the potential spread of new 

infestations based on landscape features and their orientation, in concert with new landscape-

scale spread modeling approaches (e.g., Gamarra and He 2008; Zheng et al. 2009) may 

provide newer coarse-scale tools for directing control activities. 
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3.7: Figure Captions 

Figure 3.1 Location of research area in the northeastern British Columbia. The research area 

includes a portion of the Northern Rocky Mountains, including the Hart Ranges, and 

the Rocky Mountain Foothills, an area of undulate topography that eventually 

becomes a plateau at the eastern edge of the research area. The inset map shows the 

location of the research area relative to the rest of British Columbia. 

Figure 3.2 A) Determination of slope position using Topographic Position Index (adapted 

from Weiss 2001). B) Determination of general landform using Topographic Position 

Index (adapted from Jenness 2006). 

Figure 3.3 Examples of (A) landscape features of linear canyons or deeply incised 

streambeds which are generally linear in nature and whose cardinal direction (i.e., 

feature orientation) is measured using azimuth. (B) Landscape features, such as 

midslope ridges or small hills in plains which are generally circular or complex in 

shape and whose orientation is measured compartmentally using azimuth. 

Figure 3.4 Area and number of infestations of mountain pine beetle in the Peace River region 

of British Columbia in 2004, 2005, and 2006 as determined by aerial surveys of 

patches of red trees. 

Figure 3.5 Location of infestations of mountain pine beetle in the Peace River region of 

British Columbia in 2004, 2005, and 2006. Dashed line in the three figures represents 

the line of initiation which is parallel to the Rocky Mountains and perpendicular to 

the direction of spread in 2004. 

Figure 3.6 Map of landscape features within the Peace River region of British Columbia. 

67 



Figure 3.7 Distribution of habitat susceptibility classes in the Peace River region of British 

Columbia. 

Figure 3.8 A general wind rose of the Peace River region of British Columbia (produced by 

Matthew Lynn of Garrad Hassan Canada Inc. with data from the Canadian Wind 

Energy Atlas) 
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Fig. 3.3 
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Fig. 3.4 
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Fig. 3.5 
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Fig. 3.7 
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Table 3.1 Data fields of annual datasets inventorying patches of dead trees killed by 
mountain pine beetle within the Peace River region of British Columbia, 2004-2006. 

Field Name Description 
Mapnum British Columbia Geographic System Mapsheet Number 
Numtrees Number of trees attacked 
Spot_area Area of attack in hectares 
Comments If there was green, red or grey attack in the site 
Source Source of original data 
BECndu BEC zone, subzone, and variant 
Easting UTM easting 
Northing UTM northing 
Park Is the site within a park? 1 = yes, 0 = no 
Ground Was a ground survey completed? 1 = yes, 0 = no 
BMU Beetle Management Unit 
Surveyed Number of trees surveyed for mountain pine beetle attack within the site 
Burned Number of infested trees removed using fell and burn control treatment 
GRratio Ratio of red attacked trees to unattacked green trees 
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Table 3.2 Classes of landscape features in the Peace River region of British Columbia. 
Landscape Features Determination of Orientation 
Canyons or deeply incised streams Azimuth 
Midslope drainages or shallow valleys Aspect 
Upland drainages or headwaters Not applicable 
U-shaped valleys Azimuth 
Plains Not applicable 
Open slopes Azimuth 
Upper slopes or mesas Not applicable 
Local ridges or hills in valleys Aspect 
Midslope ridges or small hills in plains Aspect 
Mountain tops or high ridges Not applicable 
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Table 3.3 Summary statistics for infestation sizes and their characteristics of their elevations 
from annual inventories of mountain pine beetle infestations for 2004, 2005, and 2006 in the 
Peace River region of British Columbia. Results for /-tests examining the difference between 
average elevation for central British Columbia (1000m; Safranyik and Carroll 2006) 
conducted by 50 randomly sampled points in each annual dataset within the research area are 
reported as the percentage of 100 reiterations that were significant. 

Infestation Sizes (hal Elevation Summary Stats (m) Different than historical average 
Min Mean SD. Max Min Mean SD. Max t49 Significant T-tests (% of 100) 

2004 0.001 036 034 6 621 1,002 162 1,652 92 100 

2005 0.23 0.33 1.43 133 566 1,045 171 1,705 233.9 100 

2006 0.001 1.07 17.33 2,440 462 1,049 175 1,686 34.3 100 

Mean 0.001 0?78 13.51 860 462 1,040 173 1,705 - -
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Table 3.4 Average size and elevation of landscape features in Peace River region of British 
Columbia (see Fig. 3.6 for map). 
Landform 

Plains 
Open slopes 
U-shaped valleys 
Mountain tops/High ridges 
Upper slopes/Mesas 
Midslope drainages/Shallow valleys 
Canyons/Deeply incised streams 
Midslope ridges/Small hills in plains 
Upland drainages/Headwaters 
Local ridges/Hills in valleys 
Total 

Area (ha) 

1,161,849 
836,946 
237,761 
168,347 
159,454 
158,742 
122,853 

; 116,685 
13,852 
1,122 

2,977,611 

Percentage 
of Landscape 

39.02 
28.11 
7.98 
5.65 
5.36 
5.33 
4.13 
3.92 
0.47 
0.04 
100 

Mean 
877 

1,091 
964 

1,619 
1,468 
1,238 
1,007 
1,219 
1,608 
1,119 
1,059 

Elevation (m) 
SD 
192 
282 
255 
277 
257 
309 
256 
280 
212 
202 
325 

Min. 
396 
395 
382 
764 
726 
396 
384 
477 
860 
662 
382 

Max. 
1,988 
2,142 
1,806 
2,808 
2,491 
2,138 
1,817 
2,121 
2,332 
1,759 
2,808 

Range 
1,592 
1,747 
1,424 
2,044 
1,765 
1,742 
1,433 
1,644 
1,472 
1,097 
2,426 
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Table 3.5 Numerical summary of "habitat susceptibility classes" across the Peace River 
region of British Columbia. See Methods for details of classification scheme. 
Habitat Susceptibility Percent Area (ha) 

Class3 of Landscape 
0 66 1,958,090 
1 15 437,895 
2 5 163,763 
3 5 163,292 
4 6 179,675 
5 3 74,894 

a Class 0 is considered least susceptible to outbreaks of D. ponderosae 
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Table 3.6 Percentages of landscape features and total landscape with habitat considered 
highly susceptible to outbreaking populations of mountain pine beetle in the Peace River 
region of British Columbia (habitat susceptibility class 5). 
Landscape Feature Relative 

Distribution (%) 
Percent of 

Landform Type 
Percent of 
Landscape 

Area (ha) 

Plains 

Open slopes 

U-shaped valleys 

48.7488 

27.3921 

14.3966 

Midslope ridges, small hills in plains 3.4471 

Canyons, deeply incised streams 2.7594 

Midslope drainages, shallow valleys 1.9672 

Upper slopes, mesas 0.6283 

Mountain tops, high ridges 0.6061 

Local ridges, hills in valleys 0.0537 

Upland drainages, headwaters 0.0007 

Total 100.0000 

3.142 

2.451 

4.535 

2.213 

1.682 

0.928 

0.295 

0.270 

3.582 

0.004 

19.000 

1.22616 

0.68898 

0.36211 

0.08670 

0.06941 

0.04948 

0.01580 

0.01525 

0.00135 

0.00002 

3.00000 

36,510.1 

20,515.2 

10,782.3 

2,581.7 

2,066.6 

1,473.3 

470.6 

454.0 

40.2 

0.5 

74,895.0 
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Table 3.7 Spatial point process regression estimating the intensity of discrete beetle 
infestations as a function of landscape features, topography, distance from a source line, 
habitat susceptibility, and distance from control tactics in the previous year, 2004-2006, in 
the Peace River region of British Columbia. Log(/l) is the response variable for each model, 
where X is the density of sites successfully attacked by mountain pine beetle populations per 
square meter. For example, in 2004, the estimated density of beetle patches at sites 5,000 
kilometres from the source location in a canyon at 1,500 metres elevation and in highly 
susceptible habitat would be exp(-™2+5ooo*-5.dW-o.o296+i5oo><-3.85E-o3+l.55) o r 3 4E_Q6 

infestations per square meter (i.e., 0.034 infestations per hectare or one patch of tree-killing 
beetles every 30ha). 

Model Parameters 
Intercept 
Distance from source location 
Canyons, deeply incised streams 
Midslope ridges, small hills in plains 
U-shaped valleys 
Elevation 
Highly susceptible habitat 

Intercept 
Distance from source location 
Canyons, deeply incised streams 
Local ridges, hills in valleys 
U-shaped valleys 
Elevation 
Highly susceptible habitat 
Distance from 2004 control tactics 

Intercept 
Distance from source location 
Midslope ridges, small hills in plains 
Open slopes 
U-shaped valleys 
Elevation 
Highly Susceptible Habitat 
Distance from 2005 control tactics 

Estimate 
-7.82E+00 
-5.03E-05 
-2.96E-01 
5.91E-01 
2.24E-01 

-3.85E-03 
1.55E+00 

-8.76E+00 
-3.96E-05 
1.38E-01 
8.22E-01 
3.87E-01 

-2.39E-03 
8.87E-01 

-9.91E-05 

-1.16E+01 
-5.44E-06 
4.49E-01 
2.82E-01 
2.04E-01 

-1.18E-03 
9.77E-01 

-5.31E-05 

Standard Error 
7.92E-02 
4.95E-07 
3.68E-02 
4.11E-02 
2.69E-02 
5.36E-05 
2.86E-02 

7.44E-02 
5.85E-07 
3.23E-02 
2.01E-01 
2.42E-02 
4.58E-05 
2.96E-02 
1.46E-06 

4.22E-02 
2.67E-07 
2.42E-02 
1.23E-02 
1.83E-02 
2.49E-05 
1.90E-02 
7.79E-07 

Z 
-98.7 

-101.6 
-8.1 
14.4 
8.3 

-71.8 
54.1 

-117.7 
-67.7 

4.3 
4.1 

16 
-52.1 
30 

-67.9 

-275.4 
-20.4 
18.6 
22.9 
11.2 

-47.2 
51.3 

-68.2 

P-value 
O.0001 
<0.0001 
O.0001 
<0.0001 
O.0001 
O.0001 
O.0001 

<0.0001 
<0.0001 
O.0001 
O.0001 
O.0001 
<0.0001 
O.0001 
O.0001 

O.0001 
O.0001 
O.0001 
O.0001 
O.0001 
<0.0001 
O.0001 
O.0001 

AIC values for final models: 2004, 311,275.3; 2005, 355,543.6; 2006, 1,011,290 
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Table 3.8 Spatial point process regression models that identify which orientations of 
landscape features best fit the distribution of D. ponderosae infestations in three initial years 
of incipient-epidemic outbreaks (2004-2006) in the Peace River region of British Columbia. 

2004 2005 2006 
Landscape Feature Azimuth/Aspect" 

Canyons, deeply incised streams Flat 
North south 

P-value 

0.0034 
<0.0001 

Northeast southwest <0.0001 
West east <0.0001 

Northwest southeast O.0001 
U-shaped valleys Flat 

North south 
Northeast southwest 

West east 
Northwest southeast 

Local ridges, hills in valleys East 
North 

Northeast 
Northwest 

South 
Southeast 
Southwest 

West 
Midslope ridges, small hills in plains East 

North 
Northeast 
Northwest 

South 
Southeast 
Southwest 

West 
Open slopes East 

North 
Northeast 
Northwest 

South 
Southeast 
Southwest 

West 

O.0001 
O.0001 

0 
O.0001 

0 
0.0087 
0.0097 
1.00 
0.00033 
0.0047 
1.00 
0.41 

<0.0001 
0.0066 
0.064 
0.19 
1.00 

<0.0001 
<0.0001 
O.0001 
<0.0001 

-
-
-
-
-
-
-
-

A1C 

334,079.70 
333,771.80 
333,967.30 
333,977.30 
333,792.20 
334,058.10 
333,450.30 
331,373.80 
333,617.20 
331,696.60 
334,081.40 
334,081.60 
334,088.30 
334,075.40 
334,080.30 
334,088.20 
334,087.60 
334,069.40 
334,081.00 
334,084.90 
334,086.60 
334,088.20 
334,025.60 
334,049.60 
333,973.30 
334,058.00 

-
-
-
-
-
-
-
-

P-value 

O.0001 
O.0001 
O.0001 
<0.0001 
O.0001 
O.0001 
<0.0001 
O.0001 
O.0001 
O.0001 

0.012 
0.0013 
1.00 
0.00012 

O.0001 
1.00 
0.47 
0.036 

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

AIC 

385,438.70 
385,036.8 
385,251.40 
385,377.20 
385,111.40 
385,427.90 
384,065.30 
382,746.6 
384,223.50 
382,934.20 
385,473.20 
385,469.30 
385,479.50 
385,464.70 
385,458.2 
385,479.30 
385,479.00 
385,475.20 

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

P-value 

-
-
-
-
-

0.0050 
O.0001 
<0.0001 
<0.0001 
O.0001 

-
-
-
-
-
-
-
-

0.059 
0.38 
1.00 

<0.0001 
O.0001 
<0.0001 
O.0001 
<0.0001 
O.0001 

0.00024 
0.0011 
0.011 

<0.0001 
<0.0001 
O.0001 
O.0001 

AIC 

-
-
-
-
-

1,028,061 
1,027,880 
1,026,668 
1,027,645 
1,027,950 

-
-
-
-
-
-
-
-

1,028,065 
1,028,068 
1,028,068 
1,028,043 
1,027,990 
1,028,034 
1,027,893 
1,028,039 
1,028,040 
1,028,055 
1,028,058 
1,028,062 
1,027,683 
1,027,967 
1,027,523 
1,027,833 

P-value reflects test for homogeneity of the point pattern (significance indicates heterogeneous intensity of 
infestations across the region). Best model (i.e., lowest AIC value) for a given landscape feature in a given is 
indicated by italics. 
a Canyons/deeply incised streambeds and U-shaped valleys area reported as azimuths, while remainder of 
landscape feature directions reflect the aspect (see Table 3.2). 
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Table 3.9 Spatial point process regression models estimating intensity ofD. ponderosae 
infestations replacing landscape feature with direction of landscape feature as a covariate. 
Data is for the years 2004-2006 in the Peace River region of British Columbia. Other 
variables are the same as in Table 3.7. 
Year 
2004 

2005 

2006 

Model Parameters 
Intercept 
Distance from source location 
Local ridges - West 
Midslope ridges - Southwest 
Valleys - Northeast-southwest 
Elevation 
Highly susceptible habitat 

Intercept 
Distance from source location 
Canyons/Deeply incised streams: North south 
Local ridges/Hills in valleys: South 
U-shaped Valleys: Northeast southwest 
Elevation 
Highly susceptible habitat 
Distance from 2004 treatment 

Intercept 
Distance from source location 

Estimate 
-7.97E+00 
-4.99E-05 
1.06E+00 
1.11E+00 
5.02E-01 

-3.72E-03 
1.58E+00 

-8.17E+00 
-4.24E-05 
1.35E-01 
9.94E-01 
1.68E-01 

-2.70E-03 
9.09E-01 

-1.01E-04 

-1.15E+01 
-6.04E-06 

Midslope ridges/Small hills in plains: Southwest7.58E-01 
Open slopes: Southwest 
U-shaped Valleys: Northeast southwest 
Elevation 
Highly Susceptible Habitat 
Distance from 2005 treatment 

5.21E-01 
2.91E-01 

-1.19E-03 
9.67E-01 

-5.40E-05 

Standard Error 
5.80E-02 
4.23E-07 
4.47E-01 
8.66E-02 
2.92E-02 
4.44E-05 
2.84E-02 

5.79E-02 
5.31E-07 
4.97E-02 
3.78E-01 
2.84E-02 
3.97E-05 
2.96E-02 
1.46E-06 

3.67E-02 
2.48E-07 
5.28E-02 
2.33E-02 
2.31E-02 
2.31E-05 
1.90E-02 
7.80E-07 

Z 
-137.4 
-117.9 

2.4 
12.8 
17.2 

-84.0 
55.6 

-141.1 
-79.8 

2.7 
2.6 
5.9 

-67.9 
30.7 

-69 

-312.2 
-24.4 
14.4 
22.4 
12.6 

-51.6 
50.9 

-69.3 

P-value 
<0.0001 
O.0001 

0.0087 
8.20E-38 
1.33E-66 

O.0001 
O.0001 

O.0001 
O.0001 

6.53E-03 
8.60E-03 
3.31E-09 

<0.0001 
2.55E-207 

O.0001 

O.0001 
4.47E-131 
8.81E-47 
5.10E-111 
3.47E-36 

O.0001 
O.0001 
O.0001 

AIC values for final models: 2004, 311,337.8; 2005, 355,773.9; 2006, 1,011,283 
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4: CONCLUSIONS AND AREAS FOR FURTHER RESEARCH 

4.1: Conclusions 

4.1.1. Influence of A tmospheric Processes on Aeolian Dispersal 

The colonization process of trees by bark beetles is often viewed as an active, 

behaviourally-driven process in which the insects take flight and orient towards suitable 

hosts, often attracted by a stimulus such as a host kairomone (Borden 1989). However, the 

ability of an insect to guide itself toward a stimulus requires the ability to counter forces that 

oppose it such as wind. This may occur within a stand, but insect dispersal within advective 

currents may be more passive (Jackson et al. 2008). Meso-scale (-100 km) convective 

processes within the planetary boundary layer, the zone in which the earth's surface affects 

the atmosphere (-1-2 km above the earth's surface) (Drake and Farrow 1988; Westbrook and 

Isard 1999), may have largely influenced the dispersal of mountain pine beetle into the Peace 

River region. These processes or weather events that may have affected mountain pine 

beetle dispersal could have included low-level jets (LLJ), a layer of maximum wind speed in 

the planetary boundary layer often at a few hundred meters altitude, and convergent zones, 

locations at which two frontal systems cause the descent of wind in a single area (Drake and 

Farrow 1988). LLJ tend to occur in areas of deflected large-scale airflows by mountain 

ranges, such as the Northern Rocky Mountains. Insects transported by wind are often 

uniformly distributed horizontally, lacking convergent circulation cells, but may be vertically 

concentrated in a single layer such as a LLJ. Alternatively, convergent zones can cause 

horizontal and vertical concentration of insects at high densities within the air column. 

Where convergent zones are stationary or form consistently, insects will be deposited (Drake 

and Farrow 1988). 
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Rain can also cause the deposition of insects due to "wash out", which is defined as 

the removal of particles or insects from the air column due to their collision with water 

droplets. However, washout would likely have decreased the amount of successful attack by 

the insects after deposition. Rain events are often associated with decreases in temperature 

due to cloud cover, and gusty conditions. Mountain pine beetle will generally not emerge 

and fly in these conditions, waiting instead for prolonged periods of warm weather (Gray et 

al. 1972; Tishmack et al. 2005). Mechanisms of insect convergence in the air column are 

critical factors determining the success of insects establishing in a new host after dispersing 

long-distances and could result in populations persisting in an epidemic state in locations 

where convergence occurs. 

The long-distance transport of mountain pine beetle in the Peace River region is most 

likely a result of convergent frontal zones (Drake and Farrow 1988). The relatively 

stationary location of infestation waves between 2004 and 2005 indicates that some kind of 

atmospheric event occurred at that location to allow for the descent of mountain pine beetle 

into the area. Alternatively, this pattern could also be indicative of the suitability and 

distribution of hosts in the region although such a band (Chapter 2) is more reflective of a 

weather front than landscape features per se (Chapter 3). 

4.1.2. Lack of Evidence for Anthropogenic Transport 

I did not find evidence that anthropogenic spread of mountain pine beetle played a 

major role in the establishment and spread of infestations within the Peace River region 

between 2004 and 2006. In particular, I found no evidence that direct anthropogenic 

manipulation of beetle distribution via movement and/or storage of infested host material 

facilitated spread of incipient-epidemic populations. This contrasts, however, with the 
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influence of anthropogenic activities that indirectly influenced the mountain pine beetle 

system (Raffa et al. 2008). For example, human alteration of fire regimes in British 

Columbia has facilitated large tracts of suitable hosts for mountain pine beetle to establish 

(Taylor and Carroll 2004). Taylor and Carroll (2004) found that in the early 1900s 

approximately 17% of pine stands were in age classes susceptible to mountain pine beetle, 

which rose markedly by 2006 to 55% of pine stands on the landscape, well outside the range 

of natural variability. Changes in fire suppression have altered species composition as well 

as age class structure, causing a three-way interaction between mountain pine beetle, its host 

species, and humans that has allowed mountain pine beetle to take advantage of increased 

availability of suitable hosts. Another human-caused process that has indirectly facilitated 

spread and establishment of populations of mountain pine beetle in the Peace River region of 

British Columbia is climate change (Carroll et al. 2004; Kurz et al. 2008; Raffa et al. 2008). 

The ability of mountain pine beetle to successfully establish and spread in the Peace River 

region has been due to an increase in summer and winter temperatures that has facilitated 

univoltine development as well as high over-wintering survival within populations. The 

contrast between direct and indirect impacts of human activities exemplifies the importance 

of understanding the complexity of ecosystems when applying management and control 

techniques of pests. 

4.1.3. Establishment of Infestations at Higher Elevations 

A result of this study of particular concern is the successful establishment of 

infestations at higher elevations than within their native range. The elevational shift of 

mountain pine beetle could indicate that the host within the region is highly susceptible to 

attacks, the climate of such areas is conducive to the establishment of infestations (Carroll et 
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al. 2004), and/or that insects dispersing long-distances had a greater relative likelihood of 

being dispersed to higher elevation sites by convective currents in this region than in other 

areas. It is likely that human mitigated climate change has provided opportunity for this 

eruptive herbivore to move into higher elevation sites, allowing them to successfully attack 

and kill host trees in this novel habitat. 

4.1.4. Effect of Management on Spread of Beetle Infestations 

Control tactics, including fall and burn and single tree removal, successfully 

diminished the short-distance dispersal potential of mountain pine beetle. However, 

management for long-distance dispersal is much more difficult and may require the use of 

alternate methods such as use of baited traps outside of host stands (e.g. in large clearings or 

stands of non-host species). This would allow for capture of insects dispersing long-

distances while limiting "spill-over" attack that could result from luring in mountain pine 

beetle populations. 

4.1.5. Potential for Continued Spread of Mountain Pine Beetle 

The continuing spread of mountain pine beetle is still a large concern for forest 

managers across Canada but particularly in northern Alberta and Saskatchewan. Although 

mountain pine beetle broods in northern Alberta had an 80% rate of mortality in the winter in 

2008 (Alberta Sustainable Resource Development 2008), the beetle has gained a foothold in 

northwestern British Columbia and northern Alberta and will probably continue to exist at 

endemic levels for a prolonged period (Alberta Sustainable Resource Development 2008). 

The continued spread of the insects, either in the Peace River region or in other mountainous 

regions such as the southern Rocky Mountains in Colorado, will potentially be facilitated by 

large, low-elevation valleys orientated along the dominant wind direction, acting as conduits 
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of suitable habitat for the insect. The orientation of landscape features will also influence the 

reproduction of mountain pine beetle and susceptibility of hosts, allowing populations on 

warmer and drier sites to have greater rates of increase and spread into adjacent stands. In 

order to minimize local spread of outbreaking populations, stake holders including forestry 

companies and government organizations should focus control efforts and inventory on such 

landscape features. As demonstrated within this study, control measures are effective in 

decreasing localized spread of populations; however, where long-distance dispersal is present 

alternate control tactics may have to be employed in order to effectively deal with long­

distance inputs. 

4.2: Areas of Further Research 

Examining the influence of pattern of landscape-scale variables on occurrence of 

infestations within the Peace River region provides valuable baseline information about the 

ability of native insects to spread beyond geoclimatic barriers (Ranta et al. 2002) such as the 

Rocky Mountains (Carroll et al. 2004). In particular, movement of mountain pine beetle into 

higher elevation sites provides another example of the alteration of fauna to the changing 

climate regime. Predicting the spread potential of new infestations based on landscape 

features and their orientation, in concert with new spread modeling approaches (e.g., 

Gamarra and He 2008; Zhu et al. 2008; Zheng et al. 2009), may also provide coarse-scale 

tools for directing control activities. However, the underlying mechanisms of spread of 

mountain pine beetle infestations relative to landscape features and their orientation should 

be further examined in the field. For example, windward-facing slopes of various landscape 

features should be inventoried for infestations and compared with inventory of leeward sites 

to examine differences in establishment rates relative to wind vectors (both within stands and 
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at the meso-scale) and site conditions, such as soil moisture. Deposition patterns of mountain 

pine beetle could also be examined relative to multiple hill topography in small-scale 

simulated or computer modeling experiments. 
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Appendix A: R code for fitting spatial point pattern regression models to annual inventory 
datasets. 
#Pattern of spread by mountain pine beetle infestations in Peace River 
#region of British Columbia, Canada between 2004 and 2006. 
#Description: Selection of covariates for 2004, 2005, and 2006 that 
#provide the most inference about intensity of mountain pine beetle 
#infestations. 
########################################################### 

#Load packages 
library(spatstat) 
library(shapefiles) 
library(maptools) 

#Read in shapefile data (2004, 2005, and 2006) 
mpb04 <- readShapePoints("2004mpb_licensees") 
mpb05 <- readShapePoints("2005mpb_licensees") 
mpb06 <- readShapePoints("2006mpb_licensees") 

#Extract X and Y coordinates from ShapePoints 
X04 <- mpb04$Easting 
Y04 <- mpb04$Northing 

X05 <- mpb05$Easting 
Y05 <- mpb05$Northing 

X06 <- mpb06$Easting 
Y06 <- mpb06$Northing 

#Create object window from research area boundary 
landforml <- readAsciiGridCtpi_utm_susl.txt", as.image=TRUE)#Canyons 
tpil <- as.im(landforml) 

#Create object window for analysis from one of the susceptibility datasets 
(these have been clipped by tpi raster in Arcview but are slightly smaller 
that tpi boundary in some areas) 
tpil.win <- as.owin(tpil) 

#Convert ShapePoints to point pattern manually 
xxx04 <- ppp(x=mpb04$Easting, y=mpb04$Northing, window=tpil.win) 
xxx05 <- ppp(x=mpb05$Easting, y=mpb05$Northing, window=tpil.win) 
xxx06 <- ppp(x=mpb06$Easting, y=mpb06$Northing, window=tpil.win) 

#Read in distance dataset! Use as covariate to represent location instead 
of X and Y coordinates! 
d i s t a n c e <- r e a d A s c i i G r i d C d i s t _ s o u r c e . t x t " , as.image=TRUE) 

#Distance from roads 
roads <- r e a d A s c i i G r i d C r o a d s _ u t m . t x t " , a s . image=TRUE) 

•Distance from rivers 
r i v e r s <- r e a d A s c i i G r i d C r i v e r s . t x t " , a s . image=TRUE) 

•Distance from mills 
mills <- readAsciiGrid("mills_utm.txt", as.image=TRUE) 
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#Create density plot of datasets 
dens2004 <- density(xxx04) 
dens2005 <- density(xxx05) 

•Convert covariates to images 
distance <- as.im(distance) 
rivers <- as.im(rivers) 
mills <- as.im(mills) 
roads <- as.im(roads) 

###Fit models to see which best fits the dataset 

#2004 

##Linear gradient 
fm.linear <- ppm(xxx04, -distance, Poisson(), 
covariates=list(distance=distance)) 
fm.homo <- ppm(xxx04, ~1, PoissonO) 
AIC(fm.linear) 
anova(fm.linear, fm.homo, test="Chisq") 

##Wave propagation 
fm.wave <- ppm(xxx04, ~ I ( d i s t a n c e d ) , PoissonO, 
covariates=list(distance=distance)) 
AIC(fm.wave) 
summary(fm.wave) 
sqrt(diag(vcov(fm.wave))) 
anova(fm.homo, fm.wave, test="Chisq") 

##Distance from roads 
fm.roads <- ppm(xxx04, -roads, PoissonO, covariates=list(roads=roads)) 
AIC(fm.roads) 

##Distance from mills 
fm.mills <- ppm(xxx04, -mills, PoissonO, covariates=list(mills=mills)) 
AIC(fm.mills) 

##Distance from rivers 
fm.rivers <- ppm(xxx04, -rivers, PoissonO, 
covariates=list(rivers=rivers) ) 
AIC(fm.rivers) 

#2005 

##Linear gradient 
fm.linear <- ppm(xxx05, -distance, PoissonO, 
covariates=list(distance=distance) ) 
fm.homo <- ppm(xxx05, -1, PoissonO) 
AIC(fm.linear) 

##Wave propagation 
fm.wave <- ppm(xxx05, - I ( d i s t a n c e d ) , PoissonO, 
covariates=list(distance=distance) ) 
AIC(fm.wave) 

##Stratified dispersal (distance from infestations of the previous year) 
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fm.strat <- ppm(xxx05, ~ dens2004, Poisson(), 
covariates=list(dens2004=dens2004) ) 
AIC (fm.strat) 
summary(fm.strat) 
sqrt(diag(vcov(fm.strat))) 
anova(fm.homo, fm.strat, test="Chisq") 

##Distance from roads 
fm.roads <- ppm(xxx05, ~roads, PoissonO, covariates=list(roads=roads)) 
AIC(fm.roads) 

##Distance from mills 
fm.mills <- ppm(xxx05, -mills, PoissonO, covariates=list(mills=mills)) 
AIC (fm.mills) 

##Distance from rivers 
fm.rivers <- ppm(xxx05 
covariates=list(rivers 
AIC(fm.rivers) 

#2006 

##Distance from roads 
fm.roads <- ppm(xxx06, -roads, PoissonO, covariates=list(roads=roads)) 
AIC(fm.roads) 

##Distance from mills 
fm.mills <- ppm(xxx06, -mills, PoissonO, covariates=list(mills=mills)) 
AIC (fm.mills) 

##Distance from rivers 
fm.rivers <- ppm(xxx06, -rivers, PoissonO, 
covariates=list(rivers=rivers) ) 
AIC(fm.rivers) 

##Linear gradient 
fm. linear <- ppm(xxx06, -distance, PoissonO, 
covariates=list(distance=distance) ) 
fm.homo <- ppm(xxx06, - 1, PoissonO) 
AIC(fm.linear) 

##Wave propagation 
fm.wave <- ppm(xxx06, - I (distanceA2) , PoissonO, 
covariates=list(distance=distance) ) 
AIC (fm.wave) 
summary(fm.wave) 
sqrt(diag(vcov(fm.wave)) ) 
vcov(fm.wave) 

##Stratified dispersal (distance from infestations of the previous year) 
fm.strat <- ppm(xxx06, - dens2005, PoissonO, 
covariates=list(dens2005=dens2005)) 
AIC (fm.strat)# 1023605 

, -rivers, PoissonO, 
=rivers)) 
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Appendix B: R code for contingency tests (infestations relative to landscape features) 
•Contingency test - Distribution of infestations relative to landform 
•Description: Compare observed distribution of infestations, by area 
•infested (ha), per landform class to expected area infested per flandform 
class (i.e. area infested per landform class based on a #uniform 
distribution of infestations within those classes) 
####################################################################### 

###Observed Area Infested per Landform Class 

#Load foreign to be able to read dbf files 
library(foreign) 

#Read in infestation data 
data<-read.dbf("mpb_licensees.dbf") 

#Examine fields in dataset 
summary(data) 

#Subset dataset: "Year", "Area", "HAZ_CLASS", "SPOT" 
frame <- data[,c("YEAR", "Area", "SPOT")] 

#Subset dataset for records by years (2004, 2005, 2006) 
yr2004 <- frame[frame$YEAR=='2004',] 
yr2005 <- frame[frame$YEAR=='2005', ] 
yr200 6 <- frame[frame$YEAR=='2006',] 

•Calculate area infested in each landform class (ha) 
summary2004 <- aggregate(yr2004[,"Area"], by=list(Landform=yr2004$SPOT), 
function(x) sum (x)) 
summary2005 <- aggregate(yr2005[,"Area"] , by=list(Landform=yr2005$SPOT), 
function(x) sum (x)) 
summary2006 <- aggregate(yr2006[,"Area"], by=list(Landform=yr2006$SPOT), 
function(x) sum (x)) 
summary2004 

tRename area columns 
colnames(summary2004)[2] <- "Area2004" 
colnames(summary2005)[2] <- "Area2005" 
colnames(summary2006)[2] <- "Area2006" 

#Combine area fields into one matrix 
area <- cbind(Landform=summary2004$Landform, 
Area2004.Obs=summary2004$Area2004, Area2005.Obs=summary2005$Area2005, 
Area2 0 0 6.Obs=summary200 6$Area2 00 6) 
area <- as.data.frame(area) 

#Change 
area[are 
area[are 
area[are 
area[are 
area[are 
area[are 
area[are 

from Number to 
a$Landform==l, 
a$Landform==2, 
a$Landform==3, 
a$Landform==4, 
a$Landform==5, 
a$Landform==6, 
a$Landform==7, 

Name of landform 
"Landform"] 
"Landform"] 
"Landform"] 
"Landform"] 
"Landform"] 
"Landform"] 
"Landform"] 

< 
< 
< 
< 
< 
< 
< 

"Canyons, deeply inci" 
"Local ridges/hills i" 
"Midslope drainages," 
"Midslope ridges, sma" 
"Mountain tops, high" 
"Open slopes" 
"Plains" 
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area[area$Landform==8, "Landform"] <- "U-shaped valleys" 
area[area$Landform==9, "Landform"] <- "Upland drainages, he" 
area[area$Landform==10, "Landform"] <- "Upper slopes, mesas" 
area 

#Total area infested per year (2004, 2005, and 2006 in hectares) 
total.04 <- sum(area[,2]) 
total.05 <- sum(area[,3]) 
total.06 <- sum(area[,4]) 

###2004: Expected area infested (hectares per landform class) 

#Read in landform dataset that is cut to extent of mountain pine beetle 
infestations in 2004 
L04<-read.dbf("2004tpihull.dbf") 

#Examine fields in dataset 
summary(L04) 

#Convert GRIDCODE to factor 
L04$GRIDCODE <- as.factor(L04$GRIDCODE) 

#Sum area (m2) in each landform class 
sum.L04 <- aggregate(L04[,c("F_AREA")], by=list(Gridcode=L04$GRIDCODE), 
function(x) sum (x)) 
sum.L04 
colnames(sum.L04)[2] <- "Area" 
L04.total <- sum(sum.L04$Area) 
L04.total*(m2) 

•Calculate the proportion of area occupied by each landscape feature 
sum.L04$Proportion <- sum.L04$Area/L04.total 
sum.L04 

•Calculate expected area infested for each landform class in hectares 
sum.L04$Area2004.Exp <- (total.04*sum.L04$Proportion) 
sum(sum.L04$Area2004.Exp) 
total.04 
sum.L04 

•Convert Gridcode to numeric 
sum.L04$Gridcode<-as.numeric(as.character(sum.L04$Gridcode)) 
class(sum.L04) 
summary(sum.L04) 

•Replace Gridcode values 
sum.L04[sum.L04$Gridcode 
sum.L04[sum.L04$Gridcode 
sum.L04[sum.L04$Gridcode 
sum.L04[sum.L04$Gridcode 
sum.L04[sum.L04$Gridcode 
sum.L04[sum.L04$Gridcode 
sum.L04[sum.L04$Gridcode 
sum.L04[sum.L04$Gridcode 
sum.L04[sum.L04$Gridcode 
sum.L04[sum.L04$Gridcode 
sum.L04 
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with equivalent 
==1, "Gridcode" 
==2, "Gridcode" 
==3, "Gridcode" 
==4, "Gridcode" 
==5, "Gridcode" 
==6, "Gridcode" 
==7, "Gridcode" 
==8, "Gridcode" 
==9, "Gridcode" 
==10, "Gridcode" 

landform class 
<- "Canyons, deeply inci' 
<- "Midslope drainages," 
<- "Upland drainages, he' 
<- "U-shaped valleys" 
<- "Plains" 
<- "Open slopes" 
<- "Upper slopes, mesas" 
<- "Local ridges/hills i" 
<- "Midslope ridges, sma" 
I <- "Mountain tops, high" 



###2005: Expected area infested (hectares per landform class) 

#Read in landform dataset that is cut to extent of mountain pine beetle 
infestations in 2005 
L05<-read.dbf("2005tpihull.dbf") 

#Sum area (m2) in each landform class 
sum.L05 <- aggregate(L05[,c("F_AREA") 
function(x) sum (x)) 
colnames(sum.L05)[2] <- "Area" 
L05.total <- sum(sum.L05$Area) 
sum.L05 

by=list(Gridcode=L05$GRIDCODE), 

•Calculate the proportion of area occupied by each landscape feature 
sum.L05$Proportion <- sum.L05$Area/L05.total 
sum.L05 

#Calculate expected area infested for each class in hectares 
sum.L05$Area2005.Exp <- total.05*sum.L05$Proportion 
sum.L05 

•Convert Gridcode to numeric 
sum.L05$Gridcode<-as.numeric(as.character(sum.L05$Gridcode)) 
class(sum.L05) 
summary(sum.L05) 

•Replace Gridcode values 
sum.L05[sum.L0 5$Gridcode 
sum.L05[sum.L0 5$Gridcode 
sum.L05[sum.L05$Gridcode 
sum.L05[sum.L05$Gridcode 
sum.L05[sum.L05$Gridcode 
sum.L05[sum.L05$Gridcode 
sum.L05[sum.L05$Gridcode 
sum.L05[sum.L05$Gridcode 
sum.L05[sum.L05$Gridcode 
sum.L05[sum.L0 5$Gridcode 
sum.L05 

with equivalent 
=1, "Gridcode" 
=2, "Gridcode" 
=3, "Gridcode" 
=4, "Gridcode" 
=5, "Gridcode" 
= 6, "Gridcode" 
=7, "Gridcode" 
=8, "Gridcode" 
= 9, "Gridcode" 

==10, "Gridcode"] 

landform class 
<- "Canyons, deeply inci' 
<- "Midslope drainages," 
<- "Upland drainages, he' 
<- "U-shaped valleys" 
<- "Plains" 
<- "Open slopes" 
<- "Upper slopes, mesas" 
<- "Local ridges/hills i" 
<- "Midslope ridges, sma" 
<- "Mountain tops, high" 

###2006: Expected area infested (hectares per landform class) 

#Read in landform dataset that is cut to extent of mountain pine beetle 
infestations in 2006 
L0 6<-read.dbf("200 6tpihull.dbf") 

#Sum area (m2) in each landform class 
sum.L06 <- aggregate(L06[,c("F_AREA") 
function(x) sum (x)) 
colnames(sum.L06)[2] <- "Area" 
L06.total <- sum(sum.L06$Area) 
sum.L06 

by=list(Gridcode=L0 6$GRIDCODE) , 

#Calculate the proportion of area occupied by each landscape feature 
sum.L06$Proportion <- sum.L06$Area/L06.total 
sum.L0 6 
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#Calculate expected area of infestations in each class in hectares 
sum.L0 6$Area2 006.Exp <- total.06*sum.L05$Proportion 
sum.L06 

#Convert Gridcode to numeric 
sum.L0 6$Gridcode<-as.numeric(as.character(sum.LO6$Gridcode)) 

#Repla 
sum.LO 
sum.LO 
sum.LO 
sum.LO 
sum.LO 
sum.LO 
sum.LO 
sum.LO 
sum.LO 
sum.LO 
sum.LO 

ce Gr 
6 [sum 
6 [sum 
6 [sum 
6 [sum 
6 [sum 
6 [sum 
6 [sum 
6 [sum 
6 [sum 
6 [sum 
6 

idcode 
.L06$G 
.L06$G 
.L06$G 
.L06$G 
.L06$G 
.L06$G 
.L06$G 
.L06$G 
.L06$G 
.L06$G 

values 
ridcode 
ridcode 
ridcode 
ridcode 
ridcode 
ridcode 
ridcode 
ridcode 
ridcode: 

ridcode 

wi 

==1 
==2 
==3 
==4 
==5 
--=6 
--=1 
==8 
==9 
1 ==10 

th equivalent 
, "Gridcode" 
, "Gridcode" 
, "Gridcode" 
, "Gridcode" 
, "Gridcode" 
, "Gridcode" 
, "Gridcode" 
, "Gridcode" 
, "Gridcode" 

Gridcode 

landform class 
<- "Canyons, deeply inci' 
<- "Midslope drainages," 
<- "Upland drainages, he' 
<- "U-shaped valleys" 
<- "Plains" 
<- "Open slopes" 
<- "Upper slopes, mesas" 
<- "Local ridges/hills i" 
<- "Midslope ridges, sma" 
| <- "Mountain tops, high" 

###Contingency test 

#Combine expected and observed values in a single dataframe 
chi_area <- cbind(Landform=area$Landform, Area2004.Obs=area$Area2004.Obs, 
Area2 005.Obs=area$Area2 005.Obs, Area2006.Obs=area$Area200 6.Obs, 
Area2 004.Exp=sum.L04$Area2004.Exp, Area2 005.Exp=sum.L05$Area2 0 05.Exp, 
Area2 00 6.Exp=sum.L0 6$Area20 0 6.Exp) 

#Convert from matrix to a dataframe 
chi_area <- as.data.frame(chi_area) 

tConvert factors to numerical data 
chi_area$Area2 004.Obs <- as.numeric(as.character(chi_area$Area2 0 04.Obs)) 
chi_area$Area2 005.Obs <- as.numeric(as.character(chi_area$Area2005.Obs)) 
chi area$Area2006.Obs <- as.numeric(as.character(chi area$Area2006.Obs)) 

chi_area$Area2004.Exp <-
chi_area$Area2005.Exp <-
chi area$Area2006.Exp <-

as.numeric(as.character(chi_area$Area2 004.Exp)) 
as.numeric(as.character(chi_area$Area2 0 05.Exp)) 
as.numeric(as.character(chi area$Area2006.Exp)) 

#Double check: Do total area infested in observed equal expected total 
area infested per year? Yes! 
sum(chi_area$Area2 00 6.Obs) 
sum(chi_area$Area2 00 6.Exp) 

#Subset expected and observed values for each year 
chi2004 <- chi_area[l:10,c("Area2004.Exp", "Area2004.Obs")] 
chi2005 <- chi_area[l:10,c("Area2005.Exp", "Area2005.Obs")] 
chi2006 <- chi_area[l:10,c("Area2006.Exp","Area2006-Obs")] 

#Chi-squared test (Is the distribution of mountain pine beetle 
infestations greater in some landforms relative to an expected uniform 
distribution?) 
chisq.test(chi2004) 
chisq.test(chi2005) 
chisq.test(chi2006) 
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Appendix C: R code for contingency tests (infestations relative to susceptible habitat) 
#Contingency test - Distribution of infestations relative to #susceptible 
habitat 
•Description: Compares observed distribution of infestations, by area 
#infested (ha) per susceptibility class relative to expected (i.e. area 
#infested per susceptibility class based on a uniform distribution of 
•infestations within those classes). 
####################################################################### 

###Observed Area Infested per Susceptibility Class 

#Load foreign to be able to read dbf files 
library(foreign) 

#Read in data for infested stands 
data<-read.dbf("mpb_licensees.dbf") 

#Subset dataset: "YEAR","AREA", "HAZ", "HAZ_CLASS" 
frame <- data[,c("YEAR","Area", "HAZ", "HAZ_CLASS")] 

#Subset dataset: three years (2004, 2005, 2006) 
yr2004 <- frame[frame$YEAR=='2004',] 
yr2005 <- frame[frame$YEAR=='2005',] 
yr2006 <- frame[frame$YEAR=='2006',] 

•Calculate area infested per class 
area04 <- aggregate(yr2004[,c("Area")], 
by=list(HazardCl=yr2004$HAZ_CLASS), function (x) sum (x)) 
area05 <- aggregate(yr2005[,c("Area")], 
by=list(HazardCl=yr2005$HAZ_CLASS), function(x) sum (x)) 
area06 <- aggregate(yr2006[,c("Area")], 
by=list(HazardCl=yr2006$HAZ_CLASS), function(x) sum (x)) 
area04 

tRename area columns 
colnames(area04)[2] <- "Area2004" 
colnames(area05)[2] <- "Area2005" 
colnames(area06)[2] <- "Area2006" 
summary(area04) 

•Convert "HazardCl" (i.e susceptibility class) to numeric 
area04$HazardCl <- as.numeric(as.character(area04$HazardCl)) 
summary(area04) 

•Combine area fields into one matrix 
area <- cbind(HazardCl=area04$Hazard,Area2 004.Obs=area04$Area2 0 04, 
Area2 005.Obs=area05$Area2 005, Area200 6.Obs=area06$Area200 6) 
area 
total.04 <- sum(area[,2]) 
total.05 <- sum(area[,3]) 
total.06 <- sum(area[,4]) 
total.04 
total.05 
total.06 

###2004: Expected area infested (hectares per susceptibility class) 
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Iandscape0 4<-read.dbf("2004hazhull.dbf") 

#Subset "HAZ_CLASS" and "area_clip" columns 
L04 <- landscape04[,c("HAZ_CLASS","Area_calc")] 

#Sum area (meters squared) in each hazard class 
sum.L04 <- aggregate(L04[,c("Area_calc")], 
by=list(HazardCl=L04$HAZ_CLASS) , function(x) sum (x)) 
colnames(sum.L04)[2] <- "Area" 
sum <- sum(sum.L04$Area) 
sum 

•Simplify (find proportion) 
sum.L04$Proportion <- sum.L04$Area/sum 
sum.L04 

#Create a column with total.04 as the only number in all rows 
sum.L04$Total <- total.04 
sum.L04 

•Calculate expected area (ha) infested per class based on proportion of 
that class on landscape 
sum.L04$Area2004.Exp <- (sum.L04$Total*sum.L04$Proportion) 
sum.L04 

###2005: Expected area infested (hectares per susceptibility class) 

landscape05<-read.dbf("2005hazhull.dbf") 
landscape05[1:5,] 

#Subset "HAZ_CLASS" and "area_clip" columns 
L05 <- landscape05[,c("HAZ_CLASS","Area_calc")] 

iWere all data imported? 
dim(L05) 

#Sum area (meters squared) in each hazard class 
sum.L05 <- aggregate(L05[,c("Area_calc")], 
by=list(HazardCl=L05$HAZ_CLASS), function(x) sum (x)) 
colnames(sum.L05)[2] <- "Area" 
sum05 <- sum(sum.L05$Area) 
sum05 

•Simplify (find proportion) 
sum.L05$Proportion <- sum.L05$Area/sum05 
sum.L05 

#Calculate expected area of infested in each class based on proportion 
area in each class on landscape 
sum.L05$Area2005.Exp <- total.05*sum.L05$Proportion 
sum.L05 

###2006: Expected area infested (hectares per landform class) 

landscape0 6<-read.dbf("2 006hazhull.dbf") 
landscape0 6[1:5,] 
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#Subset "HAZ_CLASS" and "area_clip" columns 
L06 <- landscape06[,c("HAZ_CLASS","Area_calc")] 

fWere all data imported? 
dim(L06) 

#Sum area (meters squared) in each hazard class 
sum.L06 <- aggregate(L06[,c("Area_calc")], 
by=list(HazardCl=L06$HAZ_CLASS), function(x) sum (x)) 
colnames(sum.L0 6)[2] <- "Area" 
sum06 <- sum(sum.L06$Area) 

•Simplify (find proportion) 
sum.L06$Proportion <- sum.L06$Area/sum06 
sum.L06 

#Calc. expected area of infestations in each hazard class based on 
proportion area per hazard class on landscape 
sum.L06$Area2006.Exp <- total.06*sum.L05$Proportion 
sum.L06 

###Contingency test 

#C"ombine exp and observed area columns fields into a single matrix 
overall <- cbind(HazardCl=area0 4$Hazard,Area2 004.Obs=area04$Area20 04, 
Area2 0 04.Exp=sum.L04$Area20 04.Exp, Area2 005.Obs=area05$Area200 5, 
Area2 0 05.Exp=sum.L05$Area2 00 5.Exp, Area200 6.Obs=area06$Area200 6, 
Area2 0 0 6.Exp=sum.L0 6$Area200 6.Exp) 

#View result 
overall 

fConvert to data frame 
overall <- as.data.frame(overall) 

#Subset expected and observed values for each year 
chi2004 <- overall[,c("Area2004.Exp", "Area2004.Obs")] 
chi2005 <- overall[,c("Area2005.Exp", "Area2005.Obs")] 
chi2006 <- overall[,c("Area2006.Exp","Area2006.Obs")] 
chi2004 

#Double check: Do total area infested in observed equal expected total 
area infested per year? Yes! 
sum(overall$Area2 00 6.Obs) 
sum(overall$Area2 00 6.Exp) 

#Chi-squared test (Is the distribution of mountain pine beetle 
infestations greater in some hazard classes relative to an expected 
uniform distribution?) 
chisq.test(chi2004) 
chisq.test(chi2005) 
chisq.test(chi2 00 6) 

110 



Appendix D: Example R code for bootstrapping 
•Bootstrapping of contingency tests for stand susceptibility classes 
#H0 The distribution of infestations is random relative to •susceptibility 
classes 
•Description: Compare distribution of infestations to a random 
•distribution 1000 times for 2004 dataset 
####################################################################### 

#Start of program 
for(i in 1:1000) 
{ 
cat(c("Test", i)) 

#Load foreign package (have to read .dbf first otherwise other packages 
mask read.dbf function 
library(foreign) 

#Read in observed infestation data 
data<-read.dbf("mpb_licensees.dbf") 
data <- as.data.frame(data) 

#Change column names: "dbf.YEAR", "dbf.Area", "dbf.HAZ", and 
"dbf.HAZ_CLASS" 
colnames(data)[6] <- "YEAR" 
colnames(data)[3] <- "Area" 
colnames(data)[4] <- "HAZ" 
colnames(data)[5] <- "HAZ_CLASS" 

#Subset dataset: "YEAR","AREA", "HAZ", "HAZ_CLASS" 
frame <- data[,c("YEAR","Area", "HAZ", "HAZ_CLASS")] 

•Remove "data" 
rm(data) 

•Subset 2004 dataset 
yr2004 <- frame[frame$YEAR=='2004',] 

•Remove "frame" 
rm(frame) 

•Calculate area infested in each susceptibility class (i.e. HAZ_CLASS) 
in hectares actual2004 <- aggregate(yr2004[,"Area"] , 
by=list(HazardClass=yr2004$HAZ_CLASS), function(x) sum (x)) 
actual2004 

•Subset 2004 area column 
area.yr2004 <- yr2004[,c("YEAR", "Area")] 

•Randomize areas 
random <- area.yr2004[sample(nrow(area.yr2004)), ] 

•Remove "data" 
rm(area.yr2004) 

•Load spatial data packages 
library(shapefiles) 
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library(maptools) 
library(maps) 

#Read in shapefile with extent of infested area 
bndy2004 <- read.shape("2004hull_buf25clip") 

•Convert shapefile to polygon 
bndy2004.poly <- Map2poly(bndy2004) 

#Read in susceptbility polygon data (creates a SpatialPolygonDataFrame) 
susceptibility2004 <- readShapePoly("2004hazhull") 

•Generate a shapefile of random points in infested area (bndy2004) 
random.pnts04 <- dotsInPolys(bndy2004.poly, nrow(yr2004), f="random", 
compatible=FALSE) 

#Query hazard class for each point 
query.haz <- overlay(susceptibility2004, random.pnts04) 
summary(query.haz) 

•Remove "landforms2004" and "random.pnts04" 
rm(susceptibility20 04, random.pnts04) 

•Join randomized area column to query.landforms 
final <-cbind(HazardClass=query.haz$HAZ_CLASS, Area=random$Area) 
final <- as.data.frame(final) 
summary(final) 

•Calculate area infested in each hazard class (ha; RANDOM). 
random2004 <- aggregate(final[,"Area"], 
by=list(HazardClass=yr2004$HAZ_CLASS), function(x) sum (x)) 

•Join RANDOM and ACTUAL areas in a single dataframe 
final2004 <- cbind(HazardClass=random2004$HazardClass, 
ExpectedArea=random2 0 04$x, ObservedArea=actual2004$x) 
final2004 <- as.data.frame(final2004) 

•Prepare chi-squared dataframe 
chi2004 <- final2004[,c("ExpectedArea", "ObservedArea")] 

•Chi-squared test (expected = random infestations, observed = actual 
infestations) and write results of consecutive analyses to a single file 
without over writing other previous (APPEND) 
chi <- chisq.test(chi2004) 
chi.clean <- c(chi$statistic, chi$parameter, chi$p.value) 
write (chi.clean, "//home/honey/Transfer_linux/Output/2 0 04SR_suscept.txt", 
append=TRUE, sep="\t") 

•Trigger garbage collection 
cat(c("End", i, "Memory",gc())) 

•Delete All Objects 
rm(list=ls()) 

•Detach 'shapefiles1 package so this it doesn't mask foreign package 
detach(3) 
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#End l o o p 
} 
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Appendix E: Example R code for selection of spatial point process models 
#Influence of covariates on occurrences of mountain pine beetle 
#infestations in the Peace River region of British Columbia 
•Description: Backwards selection of covariates for 2004 point process 
•models 
####################################################################### 

#Load packages 
library(spatstat) 
library(shapefiles) 
library(maptools) 

#Read in shapefile data (2004, 2005, and 2006) 
mpb04 <- readShapePoints("2004mpb_licensees") 

#Extract X and Y coordinates from ShapePoints 
X04 <- mpb04$Easting 
Y04 <- mpb04$Northing 

#Creat object window from research area boundary 
landforml <- readAsciiGridCtpi_utm_susl.txt", as.image=TRUE)#Canyons for 
deeply incised streams 
tpil <- as.im(landforml) 

#Create object window for analysis from one of the susceptibility datasets 
(these have been clipped by tpi and susceptibility rasters in Arcview) 
tpil.win <- as.owin(tpil) 

tConvert ShapePoints to point pattern manually 
xxx04 <- ppp(x=mpb04$Easting, y=mpb04$Northing, window=tpil.win) 

#Read in elevation data (ASCII) 
elevation <- readAsciiGrid("ddcutm_sus.txt", as.image=TRUE) 

##Read in landform covariates (ASCII) 
#Canyons or deeply incised streams (north-south orientation) 
IfIns <- readAsciiGrid("IfIns.txt", as.image=TRUE) 
#U-shaped Valleys (northeast-southwest orientation) 
lf4nesw <- readAsciiGrid("If4nesw.txt", as.image=TRUE) 
#Local ridges or hills in valleys (western aspect) 
lf8w <- readAsciiGridClf8w.txt", as . image=TRUE) 
#Midslope ridges or small hills in plains (southwest aspect) 
lf9sw <- readAsciiGridClf9sw.txt", as . image=TRUE) 

#Read in susceptibility covariate (ASCII) 
sus5 <- readAsciiGridCsus5.txt", as. image=TRUE) 

#Read in distance dataset. Use as covariate to represent location instead 
of X and Y coordinates. 
distance <- readAsciiGridCdist.txt", as . image=TRUE) 

#Convert covariates from list class to image class 
elevation.im <- as.im(elevation) 
lflns <- as.im(lflns) 
lf4nesw <- as.im(If4nesw) 
lf8w <- as.im(lf8w) 
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If9sw <- as.im(lf9sw) 
sus5 <- as.im(sus5) 
distance <- as.im(distance) 

#Extract susO's object window 
sus5.win <- as.owin(sus5) 

#Use cut command to make landform and susceptibility a factor! 
sus5 <- cut(sus5, 2) 
IfIns <- cut (IfIns, 2) 
lf4nesw <- cut(lf4nesw, 2) 
lf8w <- cut (lf8w, 2) 
lf9sw <- cut (lf9sw, 2) 

###Model with all covariates 
final2004 <- ppm(xxx04, ~ distance + NS.Canyons + NESW.Ushapedvalleys + 
W.Localridges + SW.Midsloperidges + Elevation + High.Susceptibility, 
Poisson(), covariates = list(distance=distance, NS.Canyons=lfIns, 
NESW.Ushapedvalleys=lf4nesw, W.Localridges=lf8w, SW.Midsloperidges=lf9sw, 
Elevation=elevation.im, High.Susceptibility=sus5)) 

summary(final2 00 4) 
AIC(final2004 
vcovmatrix <- vcov(final2004, what="vcov") 
sqrt(diag(vcovmatrix)) 

## fm2004.1 <- ppm(xxx04, ~ distance + NS.Canyons + NESW.Ushapedvalleys + 
W.Localridges + SW.Midsloperidges + Elevation, Poisson(), covariates = 
list(distance=distance, NS.Canyons=lfIns, NESW.Ushapedvalleys=lf4nesw, 
W.Localridges=lf8w, SW.Midsloperidges=lf9sw, Elevation=elevation.im)) 

AIC(fm2004.1) 
anova(fm2004.1, final2004, test="Chisq") 

## fm2004.2 <- ppm(xxx04, ~ distance + NS.Canyons + NESW.Ushapedvalleys + 
W.Localridges + SW.Midsloperidges, PoissonO, covariates = 
list(distance=distance, NS.Canyons=lfIns, NESW.Ushapedvalleys=lf4nesw, 
W.Localridges=lf8w, SW.Midsloperidges=lf9sw)) 

AIC(fm2004.2 
anova(fm2004.2, fm2004.1, test="Chisq") 

fm2004.3 <- ppm(xxx04, ~ distance + NS.Canyons + NESW.Ushapedvalleys + 
W.Localridges, PoissonO, covariates = list(distance=distance, 
NS.Canyons=lfIns, NESW.Ushapedvalleys=lf4nesw, W.Localridges=lf8w)) 

AIC(fm2004.3) 
anova(fm2004.3, fm2004.2, test="Chisq") 

fm2004.4 <- ppm(xxx04, ~ distance + NS.Canyons + NESW.Ushapedvalleys, 
PoissonO, covariates = list(distance=distance, NS.Canyons=lfIns, 
NESW.Ushapedvalleys=lf4nesw)) 

AIC(fm2004.4) 
anova(fm2004.4, fm2004.3, test="Chisq") 
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fm2004.5 <- ppm(xxx04, ~ distance + NS.Canyons, Poisson(), covariates = 
list(distance=distance, NS.Canyons=lfIns)) 

AIC(fm2004.5) 
anova(fm2004.5, fm2004.4, test="Chisq") 

fm2004.6 <- ppm(xxx04, ~ distance, PoissonO, covariates = 
list(distance=distance)) 

AIC(fm2004.6)# 324185.7 
anova(fm2004.6, fm2004.5, test="Chisq") 

fm2004.7 <- ppm(xxx04, ~ 1, Poisson(),covariates=list(distance=distance)) 

AIC(fm2004.7)# 
anova(fm2004.7, fm2004.6, test="Chisq") 
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Appendix F: Contingency tests examining the pattern of infestation relative to landscape 
features and susceptible habitat. 

Results of contingency tests results indicate a significant difference between observed 

area infested per landscape feature and susceptibility classes, assuming uniform distribution 

of infested area per class. The expected area per classes was calculated based on the 

proportion of that class available within the research area. Results indicate that in 2004 U-

shaped valleys, canyons or deeply incised streams, local ridges or hills in valleys, and 

midslope ridges or small hills in plains had more area infested than expected (Table Fl and 

Fig. Fl). In 2005, U-shaped valleys, canyons or deeply incised streams, and midslope ridges 

or small hills in plains exhibited more area infested than expected. This pattern persisted for 

U-shaped valleys, canyons or deeply incised streams, local ridges or hills in valleys, 

midslope ridges or small hills in plains, as well as open slopes, in 2006. 
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Figure Captions 

Figure Fl Differences between expected and observed area (in hectares) infested by 

mountain pine beetle per (A) type of landscape feature and (B) stand susceptibility 

class within the Peace River region of British Columbia for initial year of recorded 

incipient-epidemic populations. 
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Fig. Fl 
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Table Fl Test statistics and ̂ -values for contingency tests examining the effect of landscape 
features and distribution of highly susceptible habitat on the occurrence of mountain pine 
beetle infestations, assuming an uniform distribution across classes. Data is for the years 
2004-2006 in the Peace River region of British Columbia. 

Influence of Type of Landscape Feature Influence of Habitat Susceptibility 
Year df X2 P-value X2 P-value 

2004 

2005 

2006 

9 

9 

9 

1937.81 

2068.00 

9022.51 

0.001 

0.001 

0.004 

1,930.21 

1,870.20 

13,605.73 

0.001 

0.001 

0.001 
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