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ABSTRACT

BACKGROUND: The aim of this study was to apply multivariate pattern recognition to predict the severity of
behavioral traits and symptoms associated with risk for bipolar spectrum disorder from patterns of whole-brain
activation during reward expectancy to facilitate the identification of individual-level neural biomarkers of bipolar
disorder risk.

METHODS: We acquired functional neuroimaging data from two independent samples of transdiagnostically
recruited adults (18-25 years of age; n = 56, mean age 21.9 = 2.2 years, 42 women; n = 36, mean age 21.2 = 2.2
years, 24 women) during reward expectancy task performance. Pattern recognition model performance in each
sample was measured using correlation and mean squared error between actual and whole-brain activation—
predicted scores on behavioral traits and symptoms.

RESULTS: In the first sample, the model significantly predicted severity of a specific hypo/mania-related symptom,
heightened energy, measured by the energy manic subdomain of the Mood Spectrum Structured Interviews (r = .42,
p = .001; mean squared error = 9.93, p = .001). The region with the highest contribution to the model was the left
ventrolateral prefrontal cortex. Results were confirmed in the second sample (r = .33, p = .01; mean squared error =
8.61, p = .01), in which the severity of this symptom was predicted using a bilateral ventrolateral prefrontal cortical
mask (r = .33, p = .009, mean squared error = 9.37, p = .04).

CONCLUSIONS: The severity of a specific hypo/mania-related symptom was predicted from patterns of whole-brain
activation in two independent samples. Given that emerging manic symptoms predispose to bipolar disorders, these
findings could provide neural biomarkers to aid early identification of individual-level bipolar disorder risk in young
adults.
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Bipolar spectrum disorder (BPSD) is a common and debili-
tating psychiatric disorder, with the 12-month prevalence of
BPSD being >2.6% in the United States (1) and the lifetime
prevalence being >4.5% (2-5). Furthermore, BPSD is the
fourth leading cause of disability in the world (6). Yet, it remains
extremely difficult to identify those young adults who are at risk
for development of future BPSD. While having a family history
of BPSD in first-degree relatives confers up to a 10-fold higher
chance of BPSD (7) depending on the presence or absence of
subthreshold BPSD symptoms, presence of such family his-
tory does not provide objective biomarkers to guide treatment
choice and novel interventions for individuals at risk for BPSD.
Thus, it is imperative that objective biomarkers of BPSD risk in
young adulthood are identified to enable early and accurate
identification of those young adults who are most at risk of

developing BPSD, provide biomarkers that distinguish be-
tween risk for future BPSD versus risk for the broader range of
anxiety and affective disorders, and identify biological targets
to ultimately guide treatment choice and novel interventions to
delay, or even prevent, development of BPSD in vulnerable
young individuals. Furthermore, identifying such biomarkers in
young adulthood provides biological targets at a critical period
when neurodevelopment is still occurring (8-10), so that these
interventions can take advantage of the plasticity of the brain
to minimize development of long-term neural abnormalities.
A way forward in the search for biomarkers of BPSD risk is
to identify biomarkers of behaviors that predispose to BPSD.
One such behavior is the complex behavioral trait, impulsive
sensation seeking (ISS), which comprises the component traits
of impulsivity; behavior characterized by little or no
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forethought, reflection, or consideration of the consequences;
and sensation seeking, the tendency and willingness to seek,
and take risks for, novel and intense sensations and experi-
ences (11). High levels of ISS are evident in adults with BPSD
(12-15), and various components of ISS also predispose to
future BPSD in young adults (16-18). Specifically, higher
scores on several ISS component traits (e.g., impulsivity) are
positively associated with (16), and account for 27% of (17),
current hypo/mania severity in young adults with subthreshold
hypo/manic symptoms. Furthermore, previous studies have
shown that subthreshold levels of hypo/mania symptoms
confer risk for future BPSD (19,20). Thus, both higher severity
ISS and subthreshold hypo/mania symptoms are associated
with risk for future BPSD, likely because of the relationship
between higher severity ISS and presence of hypo/mania.

Uncertain reward expectancy (RE) is a reward-striving
context involving subjective evaluation of future rewards, in
which elevated subjective evaluation of potential future re-
wards may trigger impulsive thoughts and decisions about
these potential rewards in individuals with BPSD and in those
with high levels of impulsivity and sensation seeking at risk of
these disorders, predisposing to hypo/mania (16,17). Eluci-
dating the neural basis of subjective evaluation of future re-
wards during RE in individuals with BPSD is thus a promising
way to identify neural biomarkers of BPSD. We previously re-
ported a steeper increase in left uncertain RE-related ventro-
lateral prefrontal cortical (vVIPFC) and ventral striatal activation
with greater likelihood (expected value) of rewards in remitted
euthymic BPSD versus healthy adults (21,22), and greater left
VIPFC activation to uncertain RE in adults with higher levels of
sensation seeking and impulsivity (22).

Most clinical neuroimaging studies use standard statistical
approaches to identify group-level patterns of neural activation
that distinguish different diagnostic groups. The limitation of
these approaches, however, is their inability to make pre-
dictions at the individual subject level. Pattern recognition
approaches can identify multivariate patterns of brain activa-
tion that are predictive of diagnosis or future outcomes
(23-25). It should be emphasized that in the context of pattern
recognition, the models’ predictive performance (or predictive
power) is measured on “new data” (or new subjects) that were
not used to train or fit the model. More specifically, the pattern
recognition framework consists of two phases: training and
testing. During the training, the model learns a relationship
between a set of patterns (e.g., multivariate patterns of brain
activation) and labels (e.g., a clinical scores), and during the
testing, given new individual patterns (e.g., patterns of brain
activation from new subjects), the model predicts their labels.
The model performance is then measured by comparing the
real and predicted labels for the test data (or test subjects).

One limitation of pattern recognition approaches when
applied to whole-brain patterns, however, is that, owing to their
multivariate nature, it is difficult to identify the contribution of
specific neural regions to the predictive model. As the model
(and predictions) is based on the whole multivariate pattern, it
is not possible to make local inferences about specific voxels;
that is, all voxels with nonzero weights contribute to the model/
predictions (26). Indeed, in recent years, there has been a huge
debate in the neuroimaging field on how to interpret weight
maps of pattern recognition approaches (27-29). The multiple
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kernel learning (MKL) approach has been proposed as an
approach that can identify a subset of relevant brain regions for
the predictive model (29). The MKL models the whole-brain
multivariate pattern as a combination of regional patterns
and learns the contribution of each neural region for the pre-
dictive model. Thus, regions that carry more information about
the variable being predicted will have a higher contribution to
the model characterized by the region’s weight. Neural regions
can then be ranked according to their weights or contributions,
which facilitates interpretation of the predictive model in terms
of contributions of different neural regions.

In the present study, our first aim was to use MKL regression
with functional neuroimaging data to identify individual-level
patterns of uncertain RE-related brain activation predictive of
the severity of behaviors linked with ISS, and thus predictive of
risk factors for future BPSD. By recruiting participants trans-
diagnostically, we ensured that participants were recruited
across a large range of severity on many different behavioral
traits and symptoms, including ISS and subthreshold hypo/
mania symptoms, and were thus recruited across a range of risk
for future BPSD. We also included in our analyses measures of
other behaviors and symptoms that are not associated spe-
cifically with risk for future BPSD, e.g., anxiety and anhedonia,
to determine the specificity of any neuroimaging findings to the
determination of ISS severity, as opposed to the severity of
other, non-ISS, behaviors. Our previous group-level neuro-
imaging findings allowed us to hypothesize that the severity of
ISS-related behavioral traits and symptoms predisposing to
future bipolar spectrum disorders, including impulsivity,
sensation seeking, and subthreshold hypo/mania-related
symptoms, would be associated with uncertain RE-related
activation specifically in reward circuitry regions, including the
left vVIPFC and ventral striatum. Given the importance of con-
firming findings in independent samples in clinical neuroscience
(80,31), our second aim was to confirm the findings from the
first sample, in an independent sample of transdiagnostically
recruited young adults.

METHODS AND MATERIALS

Participants

Neuroimaging data were employed from two independent
samples of young adults from the DIAMOND (Dimensions of
Affect, Mood, and Neural Circuitry Underlying Distress) study
(RO1MH100041). The first sample comprised 56 young adults
ranging from 18 to 25 years of age (mean age 21.9 + 2.2 years,
42 women). The second sample (confirmatory sample)
comprised 36 young adults ranging from 18 to 25 years of age
(mean age 21.2 + 2.2 years, 24 women). The first sample was
included in previous studies using conventional univariate
analyses, which examined other brain-behavior relationships
(22,32). The second sample was an independent sample not
used in these previous studies. All participants were seeking
help for psychological distress, including depressive and
anxiety symptoms, and other behavioral and emotional prob-
lems such as failing to cope with everyday stressors and
interpersonal relationships, irrespective of having a DSM-5
diagnosis or not, defined using the Structured Clinical
Interview for DSM-5 (33). The samples had a variety of
DSM-5-defined diagnoses, but not BPSD: depressive disorder
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(n = 29), anxiety disorder (n = 47), eating disorder (n = 3),
externalizing disorder (n = 13), trauma-related disorder (n = 10),
sleep disorder (n = 19), somatoform disorder (n = 3), and
adjustment disorder (n = 3). Some participants in both samples
were below the threshold for any psychiatric disorder (n = 22).
Only four participants were taking psychotropic medication.
No participant stopped medication to participate in the
study. See Supplemental Tables S2 and S6 for a complete
description.

The study protocol was approved by the University of
Pittsburgh Institutional Review Board, and all participants
provided informed consent. The full description and exclusion
criteria at screening for all participants is in the Supplement.

Clinical Scales

The pattern regression models included 21 different scales and
subscales from the DIAMOND study, which measured a range
of ISS-related behavioral traits and other behavioral traits and
symptoms, e.g., anxiety and anhedonia, and included 1) the
Urgency, Premeditation, Perseverance, Sensation Seeking,
Positive Urgency, Impulsive Behavior Scale (34); 2) the Zuck-
erman Sensation Seeking Scale (11); 3) the Behavioral Acti-
vation System (35); 4) the Mood Spectrum Self-Report
behavioral trait dimensions (36); 5) the Snaith-Hamilton Plea-
sure Scale (37); and 6) the Moods and Anxiety Symptom
Questionnaire (38). The full description of all scales and sub-
scales is in Supplemental Tables S1 to S4.

Functional Magnetic Resonance Imaging Paradigm

Details of the experimental design, imaging acquisition, pre-
processing steps, and general linear model analysis are
described in the Supplement. In summary, we employed a 16-
minute event-related card-guessing game from a previous
study (22). The trial structure comprised a choice phase, an
anticipation phase, numerical feedback, and feedback arrow
(win, loss, and neutral). During the choice phase, individuals
guessed via button press whether the value of a visually pre-
sented card was high or low (4 seconds: presentation of a
question mark). In the anticipation phase, an expectancy cue
was then presented for 2 to 6 seconds (jittered), with four types
of cues/trial types described below. The outcome then
appeared for 1 second (the number for 500 ms and then the
feedback arrow for 500 ms), followed by a 0.5- to 1.5-second
intertrial interval. Individuals practiced the task before the scan.
The four trial types were as follows: expectation of possible
win, followed by win outcome (win trials) or no change
(disappointment trials); expectation of possible loss, followed
by loss (loss trials) or no change (relief trials); mixed win/loss
trials, followed by win or loss; and neutral trials, followed by no
change. The paradigm was administered in two 8-minute
blocks, with 48 trials per block: 12 trials each for each trial
type and 50% chance of each outcome. Trials were presented
in a random order with predetermined outcomes.

Functional magnetic resonance imaging data were pre-
processed using a combination of software packages (SPM,
FSL, AFNI) implemented in Nipype (39). The regressor of pri-
mary interest was RE, a parametric modulator coupled to the
duration of the expectancy period, which reflected the ex-
pected value of the potential future reward. For each
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participant, the whole-brain pattern of activation to the RE
regressor was used in the pattern regression analyses.

Pattern Regression Analysis

Pattern regression analyses were implemented in PRoNTo
v2.1 (26). MKL pattern regression was applied to predict each
of the different clinical scales and subscales from the
individual-level whole-brain pattern of activation during RE.
The MKL regression approach models the whole brain as a
combination of regional patterns and therefore learns the
contribution of different brain regions to the predictive model
(40). As the MKL model currently implemented in PRoNTo
assumes sparsity in the kernel combination [SimpleMKL (41)],
it selects only a subset of neural regions to perform the
regression; the remaining regions have a null contribution to
the model. Regions were defined using an anatomical template
[Automated Anatomical Labeling template (42)], which splits
the brain into 116 anatomical regions. For each region, a linear
kernel was computed based on the regional pattern of acti-
vation containing all voxels within the region. The kernels were
normalized (to compensate for the fact that the number of
voxels varies among brain regions) and mean centered using
standard kernel operations implemented in PRoNTo. Age and
gender were included as covariates, using a regression model
that separates training and testing data, as previously
described (43).

A nested threefold cross-validation procedure was used to
train the model for each clinical scale and subscale, with the
same cross-validation scheme for the internal and external
loop. The external loop was used for assessing the model’s
performance, and the internal loop was used for optimizing
model hyperparameters (soft-margin parameter C for the
SimpleMKL), using mean squared error (MSE) as the optimi-
zation criterion. The performance of the regression models was
measured using two metrics of agreement between the pre-
dicted and the actual scores: Pearson’s correlation coefficient
(n and MSE. Finally, a permutation test was applied to
compute the significance of the models, and Bonferroni
correction was used to account for multiple comparisons (21
scales), using a significance threshold of .05/21 = .0024
(Figure 1).

In the second sample (confirmatory analysis), the same
analysis was performed, but using only the scale that was
significantly predicted from patterns of brain activation to RE in
the first sample. Here, we tested whether the spatial pattern
within the region identified by MKL regression as contributing
most to the models in the first sample could predict the scale in
the second sample. Thus, we used a bilateral vIPFC mask
constructed using a WFU PickAtlas tool available in SPM12 to
select the regions for the pattern regression analysis. In addi-
tion, we performed exploratory whole-brain MKL predictive
models in this second sample.

Model Interpretation

The MKL model computes two sets of weights, the kernel
weights and the voxel weights. The kernel weights represent
the contribution of each region (region weights) to the pre-
dictive model, and the voxel weights represent the contribution
of each voxel within the regions to the predictive model. Both
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Figure 1. Multiple kernel learning (MKL) framework. Training phase: (A) the MKL regression model is trained by providing examples that pair a contrast
image from the general linear model (brain patterns) and a clinical score. (B) The MKL framework uses a predefined anatomical template to segment the
contrast images into 116 anatomical brain regions. (C) The MKL simultaneously learns the contribution of each region for the decision function (region weights
or contribution) and within each region the contribution of each voxel (voxel weights). Testing phase: (D) During the testing phase, a new contrast image (brain
patterns) of a test subject is given as input for the MKL model. (E) This contrast image is parcellated using anatomical atlas. (F) The MKL regression model is
applied to the segmented contrast image to predict the clinical score. (G) The model performance is evaluated using two metrics to measure the agreement
between the predicted and the actual clinical scores: Pearson’s correlation coefficient (r) and mean squared error (MSE). AAL, Automated Anatomical Labeling.

sets of weights can be explicitly computed and plotted as brain
images. The kernel or region weights thus enable interpretation
of the predictive model in terms of contributions of anatomi-
cally defined brain regions.

RESULTS

Pattern Regression Analysis in the First Sample

Among all tested scales, after correcting for multiple com-
parisons, the MKL regression models predicted only the
(subthreshold) severity of a hypo/manic symptom, the energy-
manic subdomain of the Mood Spectrum Structured Interviews
(hereafter referred to as “energy-manic symptom”), a scale
measuring lifetime experience of elevated energy associated
with hypo/mania (36), from the pattern of whole-brain activa-
tion to RE (r = .42, p = .001; MSE = 9.93, p = .001) (Table 1).
Figure 2A shows the scatter plot between the predicted and
actual energy-manic symptom severity. For visualization pur-
poses, participants were color coded according to their cate-
gorically defined diagnosis. This figure emphasizes that the
MKL model is able to predict energy-manic symptom cutting
across different categorically defined diagnoses. Figure 2B
displays the corresponding weights map showing the contri-
bution of the different brain regions to the MKL predictive
model. The neural region with highest contribution was the left
frontal inferior operculum, part of the left vIPFC. The complete

list of neural regions that contributed to the MKL regression
model is in Supplemental Table S5.

Confirmatory Pattern Regression Analysis in the
Second Sample

Our main aim with the confirmatory analysis was to examine
whether the multivariate pattern within the bilateral vIPFC mask
could predict energy-manic symptom severity in the inde-
pendent second sample. This bilateral vIPFC mask-focused
approach significantly predicted the severity of this symptom
in this independent sample (r = .33, p = .009; MSE = 9.37,p =
.04) (Table 2). The exploratory whole-brain MKL predictive
model in this second sample also significantly predicted the
severity of this symptom (r = .33, p =.01; MSE = 8.61, p = .01);
however, there were some differences among the regions

Table 1. Measures of Agreement Between Actual and
Predicted Energy-Manic Symptom Severity Based on
Patterns of Whole-Brain Activation During Uncertain
Reward Expectancy After Controlling for Covariates (Age
and Gender) in the First Sample

MSE
9.93

r p Value
Value 42 .0017

MSE, mean squared error.
2Bonferroni correction was used to control for multiple comparisons
(21 scales), using a significance threshold of .05/21 = .0024.

p Value
.001°
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Figure 2. (A) Scatter plot between the actual and
predicted energy-manic symptom scores for the
model based on patterns of whole-brain activation
during uncertain reward expectancy using a three-
fold cross-validation scheme. The correlation coef-
ficient () and the mean squared error between the
actual and predicted energy-manic symptom scores
were .42 (p = .001) and 9.93 (p = .001), respectively.
For visualization purposes, subjects were color
coded according to the categorically defined di-
agnoses to stress the transdiagnostic nature of these
results. Some subjects, however, presented with
symptoms that did not meet the threshold for a
;gi; " DSM-5 diagnosis. (B) Weight map showing the
q%g‘ contribution of the different brain regions for pre-
dicting the energy-manic symptom score from pat-

terns of whole-brain activation during uncertain reward expectancy. The region with the highest contribution according to the multiple kernel learning predictive

model was the left ventrolateral prefrontal cortex.

selected in the first and second samples. The complete list of
neural regions that contributed to the MKL regression model
using the whole brain in the second sample is in Supplemental
Table S6. Figures 3A and B show scatter plots between the
actual and predicted energy-manic symptom severity for the
bilateral vIPFC model, and the whole-brain MKL, respectively,
in the second sample. For visualization purposes, participants
were color coded according to their categorically defined
diagnosis to emphasize the transdiagnostic nature of these
results. As noted above, this figure illustrates that the MKL
models are able to predict energy-manic symptom severity in
participants across different categorically defined diagnoses.

DISCUSSION

In the present study, we demonstrate that the severity of a
specific symptom, heightened energy associated with hypo/
mania, predisposing to future risk for BPSD, can be predicted
from patterns of neural activation during uncertain RE in a
sample of transdiagnostically recruited young adults experi-
encing psychological distress, but who have not yet developed
BPSD. Furthermore, the importance of the vIPFC, which was
identified as the neural region contributing most to the MKL
regression model in the first sample, was confirmed in a sec-
ond independent sample of transdiagnostically recruited
young adults. These findings show for the first time that
individual-level patterns of whole-brain activation, by predict-
ing the severity of a symptom associated with risk for BPSD in
on-BPSD young adults, are potential neural biomarkers that
may be used in future studies to identify those individuals most
at risk of developing these disorders.

Table 2. Measures of Agreement Between Actual and
Predicted Energy-Manic Symptom Severity Based on
Patterns of Bilateral vIPFC Activation and Whole-Brain
Activation During Uncertain Reward Expectancy After
Controlling for Covariates (Age and Gender) in the Second
Sample

r p Value MSE p Value
VIPFC .33 .009 9.37 .04
Whole Brain .33 .01 8.61 .01

MSE, mean squared error; VIPFC, ventrolateral prefrontal cortex.

A major finding was the importance of RE-related left vIPFC
activation to the MKL regression model in the first sample. Our
previous findings highlight the role of this region as a potential
neural biomarker of BPSD in individuals with, and those at risk
for, this disorder (21,22,44). The left vIPFC links stimuli to
specific reward outcomes (45,46) and is implicated in concrete
decision making focusing on immediate rewards (47,48). The
left laterality of the vIPFC likely reflects the left frontal cortex’s
role in approach behaviors (49). Thus, abnormally elevated RE-
related left vVIPFC activation in individuals with bipolar disorder
may reflect greater positive subjective evaluation of the prob-
ability for immediate future rewards and predispose to hypo/
mania. Our findings in the second sample (and the fact that the
regions with correlated information/patterns might not be
selected by the used MKL approach) suggest, however, that
we cannot exclude the fact that the right vIPFC may also have
predictive information about energy-manic symptom severity.
Future work should determine if the lateralization of the vIPFC
previously observed in univariate statistical analyses (22) is
also observed in multivariate pattern recognition analyses.
Overall, our present findings demonstrate for the first time that
RE-related patterns of activation in the vIPFC play an important
role in predicting individual-level severity of a specific ISS-
related symptom, energy-manic symptom severity, reflecting
heightened hypo/mania-related energy. Moreover, previous
studies suggest that the energy-manic symptom is a key
subdomain of the Mood Spectrum Self-Report discriminating
individuals with BPSD from those with major depressive dis-
order (50-52). Together, these findings suggest the potentially
important role of RE-related VIPFC activation in predicting
severity on a hypo/manic symptom associated with BPSD risk
in young adults. Future longitudinal studies should be per-
formed to confirm this hypothesis.

It should be noted that energy-manic scores of participants
in the present study were lower than the range previously
observed in adults with BPSD and closer to scores in healthy
participants (see Supplement), as described in several studies
(36,51,53,54). This is expected, as none of the participants had
a diagnosis of BPSD. However, the range of energy-manic
scores in participants in the present study indicates the in-
clusion of participants with higher scores that are in the BPSD
range, highlighting the heterogeneity of the participant
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Figure 3. (A) Scatter plot between the actual and predicted energy-manic symptom scores for the model based on the pattern of activation within the
bilateral ventrolateral prefrontal cortex during uncertain reward expectancy in the second sample. The correlation coefficient (r) and the mean squared error
between the actual and predicted energy-manic symptom scores were .33 (p = .009) and 9.37 (p = .04), respectively. (B) Scatter plot between the actual and
predicted energy-manic symptom scores for the model based on patterns of whole-brain activation during uncertain reward expectancy in the second sample.
The correlation coefficient (1) and the MSE between the actual and predicted energy manic scores were .33 (p = .01) and 8.61 (p = .01), respectively. For
visualization purposes, subjects were color coded according to the categorically defined diagnoses to emphasize the transdiagnostic nature of the findings.
Some subjects, however, presented with symptoms that did not meet the threshold for a DSM-5 diagnosis.

population regarding diagnosis and BPSD risk, and in accor-
dance with the Research Domain Criteria recommendation of
examining populations along a continuum from normal to
pathological to identify biomarkers reflecting pathophysiolog-
ical processes (55,56).

One important methodological innovation of this study was
the use of MKL regression to identify the specific contribution
of different neural regions to the predictive model. Another
important aspect of the present study is the confirmation of the
main results (importance of the vIPFC activation in predicting
energy-manic symptom) in a second independent sample. As
highlighted previously (30,31), of 49 clinical studies with more
than 1000 citations, findings from only 44% of these studies
were replicated. Lack of reproducibility is a key problem for
science in general, especially for medical sciences, in which
robust and reproducible findings have potential to lead to
improvement in diagnosis and treatment development. Finally,
the transdiagnostic approach of the present study, in accor-
dance with the National Institutes of Health Research Domain
Criteria dimensional approach to the study of psychiatric dis-
orders (55,56), ensured that our findings were generalizable
across different disorders rather than being specific to a given
disorder.

There were some limitations to the present study. The main
limitation was the sample size of the second sample. Although
we were able to confirm that vIPFC patterns of activation
(regions identified as the most relevant for the predictive model
in the first sample) were predictive of energy-manic symptoms
in the second, independent, sample, there were some differ-
ences in the results obtained for both samples. In particular,
the vIPFC was not selected by the exploratory whole-brain
MKL model in the second sample as the most relevant for
the predictions. One potential explanation for the difference in
the regions selected between the two samples is the fact that
the MKL implementation used in the present study, simple
MKL (41), is based on an L1-norm regularization, which, like
LASSO regression (57), might not select regions with

correlated information; that is, if two regions have correlated
information and are both relevant for the predictions, only one
of them will be included in the model. Another potential justi-
fication is the fact that the second sample was much smaller
than the first one and therefore might produce unstable results
in terms of regions selected. An additional limitation is that
even though the MKL approach is able to identify a subset of
important regions for the predictive model, it does not answer
the question of why these regions are individually relevant.
Alternative analyses (such as the mass-univariate general
linear model) are needed to examine the association between
the signal in individual regions and energy-manic symptom
severity. Future studies should aim to replicate findings in
larger samples and in other BPSD at-risk populations,
including individuals with genetic predisposition to developing
this disorder.

In summary, in the present study, individual-level severity of
a specific hypo/mania symptom related to risk for BPSD, the
energy-manic subdomain of the Mood Spectrum Self-Report,
was predicted from patterns of uncertain RE-related whole-
brain activation in two independent samples of trans-
diagnostically recruited young adults, with the left vIPFC
identified as the neural region contributing most to the pre-
dictive model in the first sample. Our previous findings indicate
a positive association between the magnitude of left vIPFC
activation to uncertain RE and the magnitude of ISS in young
adults (22), as well as significantly greater activation in this
region during this context in individuals with established BPSD
relative to healthy individuals (21). The present machine
learning study now provides further evidence that the vIPFC
multivariate pattern of activation during uncertain RE is
significantly associated with the severity of a hypo/mania
symptom that, in turn, is associated with greater future BPSD
risk, heightened energy (measured by the energy-manic sub-
domain of the Mood Spectrum Structured Interviews). Thus,
the present study builds on present research findings and in-
dicates that the vIPFC pattern of activation may indeed be an
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objective neural marker of a hypo/manic symptom that de-
notes future risk for BPSD at the individual-person level. These
findings can aid early identification of BPSD risk in young
adults and provide neural targets to guide the development
and choice of early therapeutic interventions, potentially
reducing the significant social costs and deleterious outcomes
associated with the disorder (58), in these vulnerable
individuals.
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