4,753 research outputs found

    Improved chlorate candle provides concentrated oxygen source

    Get PDF
    Improved chlorate candle is used as a solid, portable source of oxygen in emergency situations. It contains sodium chlorate, iron, barium peroxide, and glass mixed in powdered form. The oxygen evolves from the decomposition of the sodium chlorate when an ignition pellet is electrically initiated

    Variable energy, high flux, ground-state atomic oxygen source

    Get PDF
    A variable energy, high flux atomic oxygen source is described which is comprised of a means for producing a high density beam of molecules which will emit O(-) ions when bombarded with electrons; a means of producing a high current stream of electrons at a low energy level passing through the high density beam of molecules to produce a combined stream of electrons and O(-) ions; means for accelerating the combined stream to a desired energy level; means for producing an intense magnetic field to confine the electrons and O(-) ions; means for directing a multiple pass laser beam through the combined stream to strip off the excess electrons from a plurality of the O(-) ions to produce ground-state O atoms within the combined stream; electrostatic deflection means for deflecting the path of the O(-) ions and the electrons in the combined stream; and, means for stopping the O(-) ions and the electrons and for allowing only the ground-state O atoms to continue as the source of the atoms of interest. The method and apparatus are also adaptable for producing other ground-state atoms and/or molecules

    Electron temperature and concentration in a thermal atomic oxygen source

    Get PDF
    A thermal atomic oxygen source for materials screening was built for NASA by Boeing Aerospace. The objective here was to use a microwave interferometer and Langmuir probe to characterize the electron concentration in this thermal atomic oxygen source. Typical operating conditions in the thermal atomic oxygen source were found to produce electron concentrations that were well below the detection threshold of the interferometer (10(exp 8) cm (sup -3)). The researchers calibrated (with the interferometer) the Langmuir probe at an artificially high plasma density and then used the circular and the square Langmuir probes to measure the low electron concentrations that exist during materials exposure tests. Electron concentration was measured as a function of power and position. The electrons were lost to the walls through ambipolar diffusion, and their concentration was accurately described by an equation. The electron concentration was proportional to power squared and decayed exponentially with distance

    A sputtering derived atomic oxygen source for studying fast atom reactions

    Get PDF
    A technique for the generation of fast atomic oxygen was developed. These atoms are created by ion beam sputtering from metal oxide surfaces. Mass resolved ion beams at energies up to 60 KeV are produced for this purpose using a 150 cm isotope separator. Studies have shown that particles sputtered with 40 KeV Ar(+) on Ta2O5 were dominantly neutral and exclusively atomic. The atomic oxygen also resided exclusively in its 3P ground state. The translational energy distribution for these atoms peaked at ca 7 eV (the metal-oxygen bond energy). Additional measurements on V2O5 yielded a bimodal distribution with the lower energy peak at ca 5 eV coinciding reasonably well with the metal-oxygen bond energy. The 7 eV source was used to investigate fast oxygen atom reactions with the 2-butene stereoisomers. Relative excitation functions for H-abstraction and pi-bond reaction were measured with trans-2-butene. The abstraction channel, although of minor relative importance at thermal energy, becomes comparable to the addition channel at 0.9 eV and dominates the high-energy regime. Structural effects on the specific channels were also found to be important at high energy

    Hypervelocity atomic oxygen source for the study of atom-surface interactions

    Get PDF
    Planned improvements in an electric discharge heated atomic oxygen beam source are described which will provide 6 to 7 kms(-1) beams of atomic oxygen with a flux of 10(16) cm(-2) s(-1) at 50 cm distance from the source aperture. A major advance will be the use of a zone of silence nozzle-skimmer arrangement which is necessitated by the need for high source flux and performance. It is anticipated that a Phase 2 program would provide for the fabrication of a two stage vacuum system which would be suitable for bolting on to a UHV (ultrahigh vacuum) surface study apparatus

    Spatial Variations in Vitreous Oxygen Consumption

    Get PDF
    We investigated the spatial variation of vitreous oxygen consumption in enucleated porcine eyes. A custom made oxygen source was fabricated that could be localized to either the mid or posterior vitreous cavity and steady state vitreous oxygen tension was measured as a function of distance from the source using a commercially available probe. The reaction rate constant of ascorbate oxidation was estimated ex vivo by measuring the change in oxygen tension over time using vitreous harvested from porcine eyes. Vitreous ascorbate from mid and posterior vitreous was measured spectrophotometrically. When the oxygen source was placed in either the mid-vitreous (N = 6) or the posterior vitreous (N = 6), we measured a statistically significant decrease in vitreous oxygen tension as a function of distance from the oxygen source when compared to control experiments without an oxygen source; (p<0.005 for mid-vitreous and p<0.018 for posterior vitreous at all distances). The mid-vitreous oxygen tension change was significantly different from the posterior vitreous oxygen tension change at 2 and 3mm distances from the respective oxygen source (p<0.001). We also found a statistically significant lower concentration of ascorbate in the mid-vitreous as compared to posterior vitreous (p = 0.02). We determined the reaction rate constant, k = 1.61 M^(-1)s^(-1) ± 0.708 M^(-1)s^(-1) (SE), of the oxidation of ascorbate which was modeled following a second order rate equation. Our data demonstrates that vitreous oxygen consumption is higher in the posterior vitreous compared to the mid-vitreous. We also show spatial variations in vitreous ascorbate concentration

    Superconductivity in CoSr2(Y1-xCax)Cu2O7+d

    Full text link
    The roles of aliovalent Ca(II)-for-Y(III) substitution and high-pressure-oxygen annealing in the process of "superconducterizing" the Co-based layered copper oxide, CoSr2(Y1-xCax)Cu2O7+d (Co-1212), were investigated. The as-air-synthesized samples up to x = 0.4 were found essentially oxygen stoichiometric (-0.03 <= d <= 0.00). These samples, however, were not superconductive, suggesting that the holes created by the divalent-for-trivalent cation substitution are trapped on Co in the charge reservoir. Ultra-high-pressure heat treatment carried out at 5 GPa and 500C for 30 min in the presence of Ag2O2 as an excess oxygen source induced bulk superconductivity in these samples. The highest Tc was obtained for the high-oxygen-pressure treated x = 0.3 sample at ~40 K.Comment: 16 pages, 6 figures, submitted to Solid State Communication

    Modified CVD of nanoscale structures in and EVD of thin layers on porous ceramic membranes

    Get PDF
    Experiments on the modified chemical vapour deposition (CVD) and the electrochemical vapour deposition (EVD) of yttria-stabilized zirconia on porous substrates are reported. It is shown that, in the CVD stage, deposition occurs in a small (<20 um) region at the edge of the substrate, very likely leading to pore narrowing. This result illustrates the feasibility of the CVD technique for the modification of ceramic membranes to the (sub)nanometer scale. Film growth in the EVD stage is shown to be controlled by the inpore diffusion of the oxygen source reactant for short (<5 h) deposition times. The yttria to zirconia ratio in the deposited film is determined by the ratio present in the vapour phase. Very thin (<2 um) films can be deposited, which have a potential application in solid oxide fuel cells

    A Kinetic Study of the Electrochemical Vapor Deposition of Solid Oxide Electrolyte Films on Porous Substrates

    Get PDF
    The electrochemical vapor deposition (EVD) method is a very promising technique for making gas-tight dense solidelectrolyte films on porous substrates. In this paper, theoretical and experimental studies on the kinetics of the depositionof dense yttria-stabilized zirconia films on porous ceramic substrates by the EVD method are presented. The more systematictheoretical analysis is based on a model which takes into account pore diffusion, bulk electrochemical transport, andsurface charge-transfer reactions in the film growing process. The experimental work is focused on examining the effectsof the oxygen partial pressure and substrate pore dimension on the EVD film growth rates. In accordance with thetheoretical prediction, the pressure of oxygen source reactant (e.g., water vapor), the partial pressure of oxygen and substratepore dimension are very important in affecting the rate-limiting step and film growth rate of the EVD process. In thepresent experimental conditions (e.g., low pressure of oxygen source reactant and small substrate pore-size/thicknessratio), the diffusion of the oxygen source reactant in the substrate pore is found to be the rate-limiting step for the EVDprocess

    Kinetics and morphology of electrochemical vapour deposited thin zirconia/yttria layers on porous substrates

    Get PDF
    By means of electrochemical vapour deposition (EVD), it is possible to grow thin (0.5-5 µm), dense zirconia/yttria layers on porous ceramic substrates. Kinetics of the EVD process, morphology and oxygen permeation properties of the grown layers are investigated. Very thin (~ 0.5 µm) layers are grown at relatively low temperatures (700-800 °C). Water vapour as reactant enhances the surface reaction rate at the solid oxide/oxygen source reactant interface. A transition occurs from pore diffusion (above 1000 °C) to bulk electrochemical diffusion (below 900 °C) as rate-limiting step for layer growth. The zirconia/yttria solid solution is mainly deposited in the cubic phase; the layers grow in a typical columnar way and are polycrystalline. Oxygen permeation measurements show that the oxygen permeation flux through the zirconia/yttria layers is influenced by the layer thickness, morphology, presence of water vapour and the oxygen pressure gradient over the layer
    corecore