44,429 research outputs found
Recommended from our members
Osteoprotegerin reduces osteoclast resorption activity without affecting osteogenesis on nanoparticulate mineralized collagen scaffolds.
The instructive capabilities of extracellular matrix-inspired materials for osteoprogenitor differentiation have sparked interest in understanding modulation of other cell types within the bone regenerative microenvironment. We previously demonstrated that nanoparticulate mineralized collagen glycosaminoglycan (MC-GAG) scaffolds efficiently induced osteoprogenitor differentiation and bone healing. In this work, we combined adenovirus-mediated delivery of osteoprotegerin (AdOPG), an endogenous anti-osteoclastogenic decoy receptor, in primary human mesenchymal stem cells (hMSCs) with MC-GAG to understand the role of osteoclast inactivation in augmentation of bone regeneration. Simultaneous differentiation of osteoprogenitors on MC-GAG and osteoclast progenitors resulted in bidirectional positive regulation. AdOPG expression did not affect osteogenic differentiation alone. In the presence of both cell types, AdOPG-transduced hMSCs on MC-GAG diminished osteoclast-mediated resorption in direct contact; however, osteoclast-mediated augmentation of osteogenic differentiation was unaffected. Thus, the combination of OPG with MC-GAG may represent a method for uncoupling osteogenic and osteoclastogenic differentiation to augment bone regeneration
Bioactive sphene-based ceramic coatings on cpTi substrates for dental implants: An in vitro study
Titanium implant surface modifications have been widely investigated to favor the process of osseointegration. The present work aimed to evaluate the effect of sphene (CaTiSiO5) biocoating, on titanium substrates, on the in vitro osteogenic differentiation of Human Adipose-Derived Stem Cells (hADSCs). Sphene bioceramic coatings were prepared using preceramic polymers and nano-sized active fillers and deposited by spray coating. Scanning Electron Microscopy (SEM) analysis, surface roughness measurements and X-ray diffraction analysis were performed. The chemical stability of the coatings in Tris-HCl solution was investigated. In vitro studies were performed by means of proliferation test of hADSCs seeded on coated and uncoated samples after 21 days. Methyl Thiazolyl-Tetrazolium (MTT) test and immunofluorescent staining with phalloidin confirmed the in vitro biocompatibility of both substrates. In vitro osteogenic differentiation of the cells was evaluated using Alizarin Red S staining and quantification assay and real-time PCR (Polymerase Chain Reaction). When hADSCs were cultured in the presence of Osteogenic Differentiation Medium, a significantly higher accumulation of calcium deposits onto the sphene-coated surfaces than on uncoated controls was detected. Osteogenic differentiation on both samples was confirmed by PCR. The proposed coating seems to be promising for dental and orthopedic implants, in terms of composition and deposition technology
Resveratrol mediated modulation of Sirt-1/Runx2 promotes osteogenic differentiation of mesenchymal stem cells: potential role of Runx2 deacetylation.
Osteogenic repair in response to bone injury is characterized by activation and differentiation of mesenchymal stem cells (MSCs) to osteoblasts. This study determined whether activation of Sirt-1 (a NAD(+)-dependent histone deacetylase) by the phytoestrogen resveratrol affects osteogenic differentiation.
Monolayer and high-density cultures of MSCs and pre-osteoblastic cells were treated with an osteogenic induction medium with/without the Sirt-1 inhibitor nicotinamide or/and resveratrol in a concentration dependent manner.
MSCs and pre-osteoblastic cells differentiated to osteoblasts when exposed to osteogenic-induction medium. The osteogenic response was blocked by nicotinamide, resulting in adipogenic differentiation and expression of the adipose transcription regulator PPAR-γ (peroxisome proliferator-activated receptor). However, in nicotinamide-treated cultures, pre-treatment with resveratrol significantly enhanced osteogenesis by increasing expression of Runx2 (bone specific transcription factor) and decreasing expression of PPAR-γ. Activation of Sirt-1 by resveratrol in MSCs increased its binding to PPAR-γ and repressed PPAR-γ activity by involving its cofactor NCoR (nuclear receptor co-repressor). The modulatory effects of resveratrol on nicotinamide-induced expression of PPAR-γ and its cofactor NCoR were found to be mediated, at least in part, by Sirt-1/Runx2 association and deacetylation of Runx2. Finally, knockdown of Sirt-1 by using antisense oligonucleotides downregulated the expression of Sirt-1 protein and abolished the inhibitory effects of resveratrol, namely nicotinamide-induced Sirt-1 suppression and Runx2 acetylation, suggesting that the acetylated content of Runx2 is related to downregulated Sirt-1 expression.
These data support a critical role for Runx2 acetylation/deacetylation during osteogenic differentiation in MSCs in vitro. (242 words in abstract)
Interleukin-18 enhances vascular calcification and osteogenic differentiation of vascular smooth muscle cells through TRPM7 channel activation
Objective—Vascular calcification (VC) is an important predictor of cardiovascular morbidity and mortality. Osteogenic differentiation of vascular smooth muscle cells (VSMCs) is a key mechanism of VC. Recent studies show that IL-18 (interleukin-18) favors VC while TRPM7 (transient receptor potential melastatin 7) channel upregulation inhibits VC. However, the relationship between IL-18 and TRPM7 is unclear. We questioned whether IL-18 enhances VC and osteogenic differentiation of VSMCs through TRPM7 channel activation.
Approach and Results—Coronary artery calcification and serum IL-18 were measured in patients by computed tomographic scanning and enzyme-linked immunosorbent assay, respectively. Primary rat VSMCs calcification were induced by high inorganic phosphate and exposed to IL-18. VSMCs were also treated with TRPM7 antagonist 2-aminoethoxy-diphenylborate or TRPM7 small interfering RNA to block TRPM7 channel activity and expression. TRPM7 currents were recorded by patch-clamp. Human studies showed that serum IL-18 levels were positively associated with coronary artery calcium scores (r=0.91; P<0.001). In VSMCs, IL-18 significantly decreased expression of contractile markers α-smooth muscle actin, smooth muscle 22 α, and increased calcium deposition, alkaline phosphatase activity, and expression of osteogenic differentiation markers bone morphogenetic protein-2, Runx2, and osteocalcin (P<0.05). IL-18 increased TRPM7 expression through ERK1/2 signaling activation, and TRPM7 currents were augmented by IL-18 treatment. Inhibition of TRPM7 channel by 2-aminoethoxy-diphenylborate or TRPM7 small interfering RNA prevented IL-18–enhanced osteogenic differentiation and VSMCs calcification.
Conclusions—These findings suggest that coronary artery calcification is associated with increased IL-18 levels. IL-18 enhances VSMCs osteogenic differentiation and subsequent VC induced by β-glycerophosphate via TRPM7 channel activation. Accordingly, IL-18 may contribute to VC in proinflammatory conditions
Human endothelial-like differentiated precursor cells maintain their endothelial characteristics when cocultured with mesenchymal stem cell and seeded onto human cancellous bone
Introduction. Cancellous bone is frequently used for filling bone defects in a clinical setting. It provides favourable conditions for regenerative cells such as MSC and early EPC. The combination of MSC and EPC results in superior bone healing in experimental bone healing models. Materials and Methods. We investigated the influence of osteogenic culture conditions on the endothelial properties of early EPC and the osteogenic properties of MSC when cocultured on cancellous bone. Additionally, cell adhesion, metabolic activity, and differentiation were assessed 2, 6, and 10 days after seeding.
Results. The number of adhering EPC and MSC decreased over time; however the cells remained metabolically active over the 10-day measurement period. In spite of a decline of lineage specific markers, cells maintained their differentiation to a reduced level. Osteogenic stimulation of EPC caused a decline but not abolishment of endothelial characteristics and did not induce osteogenic gene expression. Osteogenic stimulation of MSC significantly increased their metabolic activity whereas collagen-1α and alkaline phosphatase gene expressions declined. When cocultured with EPC, MSC’s collagen-1α gene expression increased significantly. Conclusion. EPC and MSC can be cocultured in vitro on cancellous bone under osteogenic conditions, and coculturing EPC with MSC stabilizes the latter’s collagen-1α gene expression
BMP2 Increases Adipogenic Differentiation in the Presence of Dexamethasone, which is Inhibited by the Treatment of TNF-alpha in Human Adipose Tissue-Derived Stromal Cells
BACKGROUND/AIMS:
The aim of this study was to analyze the effect of BMP2 on osteogenic differentiation of human adipose tissue-derived stromal cells (hADSCs).
METHODS:
Cultured cells were differentiated into osteogenic lineage in the presence of BMP2. Gene expressions were determined by real time PCR.
RESULTS:
BMP2 increased (2/8) or inhibited (6/8) osteogenic differentiation according to hADSCs batches. Regardless of the BMP2 action on osteogenic differentiation, BMP2 induced lipid droplet formation under an osteogenic differentiation condition in all batches of hADSCs, not hBMSCs, to be tested, which was confirmed by analysis of adipogenesis related genes expression. hADSCs expressed various BMP receptors. BMP2 increased expression of BMP2-responsive genes such as DLX3 and ID2, and induced SMAD1 phosphorylation in hADSCs and hBMSCs. BMP2 increased osteogenic differentiation of hADSCs in osteogenic medium in which dexamethasone was omitted. The addition of BMP2 in the control culture media containing dexamethasone alone lead to formation of lipid droplets and increased C/EBP-α expression in hADSCs. In the presence of TNF-α, BMP2 stimulated osteogenic differentiation of hADSCs even in hADSCs batches in which treatment of BMP2 alone inhibited osteogenic differentiation.
CONCLUSION:
These data indicate that the control of osteogenesis and adipogenesis in hADSCs is closely related, and that hADSCs have preferential commitment to adipogenic lineages
Nuclear receptor profile in calvarial bone cells undergoing osteogenic versus adipogenic differentiation
Nuclear receptors (NRs) are key regulators of cell function and differentiation. We examined NR expression during osteogenic versus adipogenic differentiation of primary mouse calvarial osteoblasts (MOBs). MOBs were cultured for 21 days in osteogenic or adipogenic differentiation media. von Kossa and Oil Red O staining, and qRT-PCR of marker genes and 49 NRs were performed. PCR amplicons were subcloned to establish correct sequences and absolute standard curves. Forty-three NRs were detected at days 0–21. Uncentered average linkage hierarchical clustering identified four expression clusters: NRs (1) upregulated during osteogenic, but not adipogenic, differentiation, (2) upregulated in both conditions, with greater upregulation during adipogenic differentiation, (3) upregulated equally in both conditions, (4) downregulated during adipogenic, but not osteogenic, differentiation. One-way ANOVA with contrast revealed 20 NRs upregulated during osteogenic differentiation and 12 NRs upregulated during adipogenic differentiation. Two-way ANOVA demonstrated that 18 NRs were higher in osteogenic media, while 9 NRs were higher in adipogenic media. The time effect revealed 16 upregulated NRs. The interaction of condition with time revealed 6 NRs with higher expression rate during adipogenic differentiation and 3 NRs with higher expression rate during osteogenic differentiation. Relative NR abundance at days 0 and 21 were ranked. Basal ranking changed at least 5 positions for 13 NRs in osteogenic media and 9 NRs in adipogenic media. Osteogenic and adipogenic differentiation significantly altered NR expression in MOBs. These differences offer a fingerprint of cellular commitment and may provide clues to the underlying mechanisms of osteogenic versus adipogenic differentiation. J. Cell. Biochem. 105: 1316–1326, 2008. © 2008 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/61336/1/21931_ftp.pd
Basic fibroblastic growth factor affects the osteogenic differentiation of dental pulp stem cells in a treatment‐dependent manner
AimTo determine how basic fibroblastic growth factor (bFGF) affected the osteogenic differentiation of human dental pulp stem cells (DPSCs) in vitro and in vivo.MethodologyBasic fibroblastic growth factor stimulation of DPSCs was divided into a pre‐treatment period and an osteogenic differentiation period. Alizarin red quantification experiments and alkaline phosphatase activity quantification assay were performed to examine the osteogenic differentiation of DPSCs after different bFGF stimulation. Quantification reverse transcription polymerase chain reaction was used to analyze the osteogenic gene expression of DPSCs after different bFGF stimulation. In addition, DPSCs that received the 1 and 2 weeks bFGF pre‐treatments as in the in vitro experiments were mineralized for 1 week and seeded into hydroxyapatite/tricalcium phosphate (HA/TCP) pills and subcutaneously transplanted into naked mice for 2 or 3 months. The transplants were removed, sliced and stained using Modified Ponceau Trichrome Stain to observe the formation of mineralized tissue.ResultsBasic fibroblastic growth factor stimulation in the osteogenic differentiation period decreased the in vitro osteogenic differentiation ability of DPSCs. One week pre‐treatment with bFGF increased the in vitro osteogenic differentiation ability of DPSCs, whereas 2 weeks pre‐treatment with bFGF decreased the in vitro osteogenic differentiation ability of DPSCs. The pre‐treatment period was vital for the osteogenic differentiation of DPSCs in vitro. The in vivo results were similar to the in vitro results.ConclusionsBasic fibroblastic growth factor affected the osteogenic differentiation of DPSCs in a treatment‐dependent manner both in vitro and in vivo.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111933/1/iej12368.pd
Pluronic F-127 hydrogel as a promising scaffold for encapsulation of dental-derived mesenchymal stem cells.
Dental-derived mesenchymal stem cells (MSCs) provide an advantageous therapeutic option for tissue engineering due to their high accessibility and bioavailability. However, delivering MSCs to defect sites while maintaining a high MSC survival rate is still a critical challenge in MSC-mediated tissue regeneration. Here, we tested the osteogenic and adipogenic differentiation capacity of dental pulp stem cells (DPSCs) in a thermoreversible Pluronic F127 hydrogel scaffold encapsulation system in vitro. DPSCs were encapsulated in Pluronic (®) F-127 hydrogel and stem cell viability, proliferation and differentiation into adipogenic and osteogenic tissues were evaluated. The degradation profile and swelling kinetics of the hydrogel were also analyzed. Our results confirmed that Pluronic F-127 is a promising and non-toxic scaffold for encapsulation of DPSCs as well as control human bone marrow MSCs (hBMMSCs), yielding high stem cell viability and proliferation. Moreover, after 2 weeks of differentiation in vitro, DPSCs as well as hBMMSCs exhibited high levels of mRNA expression for osteogenic and adipogenic gene markers via PCR analysis. Our histochemical staining further confirmed the ability of Pluronic F-127 to direct the differentiation of these stem cells into osteogenic and adipogenic tissues. Furthermore, our results revealed that Pluronic F-127 has a dense tubular and reticular network morphology, which contributes to its high permeability and solubility, consistent with its high degradability in the tested conditions. Altogether, our findings demonstrate that Pluronic F-127 is a promising scaffold for encapsulation of DPSCs and can be considered for cell delivery purposes in tissue engineering
- …