45,417 research outputs found

    Concentration inequalities for order statistics

    Full text link
    This note describes non-asymptotic variance and tail bounds for order statistics of samples of independent identically distributed random variables. Those bounds are checked to be asymptotically tight when the sampling distribution belongs to a maximum domain of attraction. If the sampling distribution has non-decreasing hazard rate (this includes the Gaussian distribution), we derive an exponential Efron-Stein inequality for order statistics: an inequality connecting the logarithmic moment generating function of centered order statistics with exponential moments of Efron-Stein (jackknife) estimates of variance. We use this general connection to derive variance and tail bounds for order statistics of Gaussian sample. Those bounds are not within the scope of the Tsirelson-Ibragimov-Sudakov Gaussian concentration inequality. Proofs are elementary and combine R\'enyi's representation of order statistics and the so-called entropy approach to concentration inequalities popularized by M. Ledoux.Comment: 13 page

    Order Statistics and Benford's Law

    Full text link
    Fix a base B and let zeta have the standard exponential distribution; the distribution of digits of zeta base B is known to be very close to Benford's Law. If there exists a C such that the distribution of digits of C times the elements of some set is the same as that of zeta, we say that set exhibits shifted exponential behavior base B (with a shift of log_B C \bmod 1). Let X_1, >..., X_N be independent identically distributed random variables. If the X_i's are drawn from the uniform distribution on [0,L], then as N\to\infty the distribution of the digits of the differences between adjacent order statistics converges to shifted exponential behavior (with a shift of \log_B L/N \bmod 1). By differentiating the cumulative distribution function of the logarithms modulo 1, applying Poisson Summation and then integrating the resulting expression, we derive rapidly converging explicit formulas measuring the deviations from Benford's Law. Fix a delta in (0,1) and choose N independent random variables from any compactly supported distribution with uniformly bounded first and second derivatives and a second order Taylor series expansion at each point. The distribution of digits of any N^\delta consecutive differences \emph{and} all N-1 normalized differences of the order statistics exhibit shifted exponential behavior. We derive conditions on the probability density which determine whether or not the distribution of the digits of all the un-normalized differences converges to Benford's Law, shifted exponential behavior, or oscillates between the two, and show that the Pareto distribution leads to oscillating behavior.Comment: 14 pages, 2 figures, version 4: Version 3: most of the numerical simulations on shifted exponential behavior have been suppressed (though are available from the authors upon request). Version 4: a referee pointed out that we need epsilon > 1/3 - delta/2 in the proof of Theorem 1.5; this has now been adde

    On Order Statistics for GS-Distributions

    Get PDF
    In this article, a class of distributions is used to establish several recurrence relations satisfied by single and product moments of order statistics and progressive Type-II right censoring. The recurrence relations for moments of some specific distributions including uniform (a;b); exponential (λ); generalized exponential (α;λ;ν); beta (1;b); beta (b;1); logistic (α;β) and other distributions from order statistics and progressive Type-II right censoring can be obtained as special cases. A short explanation of GS-distribution can be found in reference [27]. As an example, means, variances and covariances for standard exponential distribution of progressive Type-II right censored order statistics are computed. Various characterizations of the recently introduced GS-distributions are presented. These characterizations are based on a simple relationship between two truncated moments ; on hazard function ; and on functions of order statistics. A characterization of the GS-distributions based on conditional moment of order statistics is extended to truncated moment of order statistics

    Order statistics of the trapping problem

    Full text link
    When a large number N of independent diffusing particles are placed upon a site of a d-dimensional Euclidean lattice randomly occupied by a concentration c of traps, what is the m-th moment of the time t_{j,N} elapsed until the first j are trapped? An exact answer is given in terms of the probability Phi_M(t) that no particle of an initial set of M=N, N-1,..., N-j particles is trapped by time t. The Rosenstock approximation is used to evaluate Phi_M(t), and it is found that for a large range of trap concentracions the m-th moment of t_{j,N} goes as x^{-m} and its variance as x^{-2}, x being ln^{2/d} (1-c) ln N. A rigorous asymptotic expression (dominant and two corrective terms) is given for for the one-dimensional lattice.Comment: 11 pages, 7 figures, to be published in Phys. Rev.

    Order statistics of 1/f^{\alpha} signals

    Get PDF
    Order statistics of periodic, Gaussian noise with 1/f^{\alpha} power spectrum is investigated. Using simulations and phenomenological arguments, we find three scaling regimes for the average gap d_k= between the k-th and (k+1)-st largest values of the signal. The result d_k ~ 1/k known for independent, identically distributed variables remains valid for 0<\alpha<1. Nontrivial, \alpha-dependent scaling exponents d_k ~ k^{(\alpha -3)/2} emerge for 1<\alpha<5 and, finally, \alpha-independent scaling, d_k ~ k is obtained for \alpha>5. The spectra of average ordered values \epsilon_k= ~ k^{\beta} is also examined. The exponent {\beta} is derived from the gap scaling as well as by relating \epsilon_k to the density of near extreme states. Known results for the density of near extreme states combined with scaling suggest that \beta(\alpha=2)=1/2, \beta(4)=3/2, and beta(infinity)=2 are exact values. We also show that parallels can be drawn between \epsilon_k and the quantum mechanical spectra of a particle in power-law potentials.Comment: 8 pages, 5 figure
    • …
    corecore