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Abstract

In this article, a class of distributions is used to establish several recurrence relations

satisfied by single and product moments of order statistics and progressive Type-II right

censoring. The recurrence relations for moments of some specific distributions including uni-

form (a, b), exponential (λ), generalized exponential (α, λ, ν), beta (1, b), beta (b, 1), logistic

(α, β) and other distributions from order statistics and progressive Type-II right censoring

can be obtained as special cases. A short explanation of GS-distribution can be found in

reference [27]. As an example, means, variances and covariances for standard exponential

distribution of progressive Type-II right censored order statistics are computed. Various

characterizations of the recently introduced GS-distributions are presented. These charac-

terizations are based on a simple relationship between two truncated moments ; on hazard

function ; and on functions of order statistics. A characterization of the GS-distributions

based on conditional moment of order statistics is extended to truncated moment of order

statistics.
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1 Introduction

Recently, Muiñoa et al. [27] introduced a class of distributions consisting of unimodal

distributions called GS-distributions. This new class contains certain well-known distributions

for which cumulative distribution functions have closed forms. GS-distributions has several

interesting properties. First, it includes as special cases, various statistical distributions for

which the cumulative distribution functions have a closed form (see Table 1). Second, the GS-

distributions can be used to model observed data, when the true underlying distribution is not

known. For further details and the domain of applicability of this class, we refer the interested

reader to Muiñoa et al. [27] . The GS-distributions are a 4-parameter family of distributions.

In this paper, we obtained some recurrence relations between moments of order statistics

as well as those of single and product moments of progressive Type II right censoring for

GS-distributions when all the parameters are assumed to be positive integers. Various charac-

terizations of the recently introduced GS-distributions are presented. These characterizations

are based on a simple relationship between two truncated moments ; on hazard function ; and

on functions of order statistics. A characterization of the GS-distributions based on conditional

moment of order statistics is extended to truncated moment of order statistics. In the applica-

tions where the underlying distribution is assumed to be GS-distribution, the investigator needs

to verify that this distribution is in fact the GS-distribution. To this end the investigator has

to rely on the characterizations of the underlying distribution and determine if the correspond-

ing conditions are satisfied. So, the problem of characterizing the GS-distribution becomes

essential. One of our objectives here, is to present characterizations of GS-distributions. We

shall do this in three different directions as discussed in Section 5.

The pdf (probability density function) of a GS- distribution with cdf (cumulative distri-

bution function), F , is given by

f(x) = α (F (x))β (1− (F (x))ρ)γ , a < x < b, (1)

where α, ρ > 0 and β, γ ≥ 0 are parameters.
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Table 1

Distribution GS − distributions

α β ρ γ

Uniform(a, b) 1
b−a 0 1 0

Exponential(λ) λ 0 1 1

Generalized Exponential (α, λ, ν) α
λ

α−1
α

1
α 1

Logistic(α, β) 1
β 1 1 1

Beta(b, 1) b b−1
b 1 0

Beta(1, b) b 0 1 b−1
b

F (2,m) 1 0 1 2+m
m

F (n, 2) n2

4
n−2
n

2
n 2

Note: F (2,m) ( and F (n, 2)) is the F distribution with parameters (2,m) (and (n, 2)).

Let X1,X2, · · · , Xn be independent random variables having pdf f(x) and cdf F (x). Let

X1:n ≤ X2:n ≤ · · · ≤ Xn:n denote their corresponding the order statistics. The pdf of Xr:n and

the pdf of (Xr:n, Xs:n) are respectively:

fr:n(x) =

[
(n)!

(r − 1)!(n− r)!

]
(F (x))r−1f(x)(1− F (x))n−r, 1 ≤ r ≤ n (2)

fr,s:n(x, y) =

[
(n)!

(r − 1)!(s− r − 1)!(n− r)!

]
(F (x))r−1f(x)(F (y))− F (x))s−r−1

× f(y)(1− F (y))n−s, 1 ≤ r ≤ s ≤ n.
(3)

Progressive Type-II censoring schemes are the most popular censoring schemes which are

used in practice. It can be briefly described as follows: Suppose n independent items are put

on life test with continuous identically distributed failure times X1, X2, · · · , Xn. Suppose a

censoring scheme (R1, R2, · · · , Rm) is prefixed such that at the first failure, R1 surviving items

are removed from the experiment at random; at the second observed failure, R2 surviving

items are removed from the experiment at random; this process continues until at the mth

observed value, Rm items are removed from the test at random, n = m +
∑m

i=1Ri. We will
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denote the m order observed failure times by X
(R1,R2,··· ,Rm)
1:m:n , X

(R1,R2,··· ,Rm)
2:m:n , · · · , X(R1,R2,··· ,Rm)

m:m:n

and call them the progressive Type-II right censored order statistics from a sample of size n

with progressive censoring scheme (R1, R2, · · · , Rm). Many authors have studied progressive

censoring. Among them are Cohen ([7], [8]), Aggarwala, and Balakrishnan [2], Balakrishnan

and Sandhu [5] and Balakrishnan [7]. For an extensive survey of progressive censored see

Balakrishnan and Aggarwala [4].

The probability density function of X
(R1,R2,··· ,Rm)
1:m:n , X

(R1,R2,··· ,Rm)
2:m:n ,

· · · , X(R1,R2,··· ,Rm)
m:m:n is given by (Balakrishnan and Sandhu [5]):-

f1,2,··· ,m:m:n(x1,x2, · · · , xm) = A(n,m− 1)
∏m
i=1 f(xi)(1− F (xi))

Ri ,

a < x1 < x2 < · · · < xm < b,

where

A(n,m− 1) = n(n−R1 − 1)(n−R1 −R2 − 2) · · · (n−R1 −R2 − · · · −Rm−1 −m+ 1).

2 Recurrence Relations between Moments of Order Statistics

for GS-Distributions

This section deals with obtaining several recurrence relations satisfied by single and product

moments for order statistics of GS-distributions as follow:

Note: Throughout Sections 2 and 3 we assume that α, ρ > 0, β, γ ≥ 0 are positive integers.

Relation 1 For all 1 ≤ r ≤ n, k = 0, 1, 2, · · · .

α

γ∑
i = 0

(
γ

i

)
(−1)i

(β+ρi+ r − 1)!(n)!

(n+ β+ρi− 1)!(r − 1)!
[µ

(k+1)
β+ρi+r:n+β+ρi−1] = (k + 1)µ(k)r:n

+ α

γ∑
i = 0

(
γ

i

)
(−1)i

(β+ρi+ r − 1)!(n)!

(n+ β+ρi− 1)!(r − 1)!
[µ

(k+1)
β+ρi+r−1:n+β+ρi−1].

Proof. We have

f(x) = α(F (x))β(1− (F (x))ρ)
γ
, a ≤ x ≤ b.
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Let

µ
(k)
r:n =

[
(n)!

(r − 1)!(n− r)!

] ∫ b
a x

k(F (x))r−1f(x)(1− F (x))n−rdx .

Using binomial expansion to expand (1− (F (x))ρ)
γ

in (1), we obtain

f(x) = α

γ∑
i = 0

(
γ

i

)
(−1)i(F (x))β+ρi, (4)

and hence

µ
(k)
r:n = α

∑γ
i=0

(
γ

i

)
(−1)i

[
(n)!

(r − 1)!(n− r)!

] ∫ b
a x

k(F (x))β+ρi+r−1(1− F (x))n−rdx.

Integrating by parts yields

(
k + 1

α
)µ(k)r:n =

γ∑
i=0

(
γ

i

)
(−1)i[−(β + ρi+ r − 1)

[
(n)!

(r − 1)!(n− r)!

]
×
∫ b

a
xk(F (x))β+ρi+r−2f(x)(1− F (x))n−rdx

+ (n− r)
[

(n)!

(r − 1)!(n− r)!

] ∫ b

a
xk(F (x))β+ρi+r−1f(x)

× (1− F (x))n−r−1dx] .

(5)

The proof is completed by rewriting (5).

Relation 2 For all 2 ≤ n

α

γ∑
i = 0

(
γ

i

)
(−1)i

(β+ρi)!(n)!

(n+ β+ρi− 1)!
[µβ+ρi+1,β+ρi+1:n+β+ρi−1] = µ2:n

+ α

γ∑
i = 0

(
γ

i

)
(−1)i

(β+ρi)!(n)!

(n+ β+ρi− 1)!
[µβ+ρi,β+ρi+1:n+β+ρi−1].

Relation 3 For all 1 ≤ r < n

α

γ∑
i = 0

(
γ

i

)
(−1)i

(β+ρi+ r − 1)!(n)!

(n+ β+ρi− 1)!(r − 1)!
[µβ+ρi+r,n+β+ρi−1:n+β+ρi−1] = µn:n

+ α

γ∑
i = 0

(
γ

i

)
(−1)i

(β+ρi+ r − 1)!(n)!

(n+ β+ρi− 1)!(r − 1)!
[µβ+ρi+r−1,n+β+ρi−1:n+β+ρi−1],
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Relation 4 For all 1 ≤ r < s < n

α

γ∑
i = 0

(
γ

i

)
(−1)i

(β+ρi+ r − 1)!(n)!

(n+ β+ρi− 1)!(r − 1)!
[µβ+ρi+r,s+β+ρi−1:n+β+ρi−1] = µs:n

+ α

γ∑
i=0

(
γ

i

)
(−1)i

(β+ρi+ r − 1)!(n)!

(n+ β+ρi− 1)!(r − 1)!
[µβ+ρi+r−1,s+β+ρi−1:n+β+ρi−1].

Proof. Let

µs:n = E(X0
r:nXs:n)

=

[
(n)!

(s− r − 1)!(r − 1)!(n− s)!

] ∫ b

a

∫ y

a
y(F (x))r−1f(x)

× (F (y)− F (x))s−r−1f(y)(1− F (y))n−sdxdy

=

[
(n)!

(s− r − 1)!(r − 1)!(n− s)!

] ∫ b

a
yξ(y)f(y)(1− F (y))n−sdx,

(6)

ξ(y) =
∫ y
a (F (x))r−1f(x)(F (y)− F (x))s−r−1dx.

From (1), we have

ξ(x) = α

γ∑
i=0

(
γ

i

)
(−1)i

∫ y

a
(F (x))β+ρi+r−1(F (y)− F (x))s−r−1dx. (7)

Integrating by parts yields

ξ(x) = α

γ∑
i=0

(
γ

i

)
(−1)i[−(β + ρi+ r − 1)

∫ y

a
x(F (x))β+ρi+r−2f(x)

× (F (y)− F (x))s−r−1dx+ (s− r − 1)

∫ y

a
x(F (x))β+ρi+r−1f(x)

× (F (y)− F (x))s−r−2dx ].

Substituting this in (6), we obtain
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µs:n = α

γ∑
i=0

(
γ

i

)
(−1)i[−(β + ρi+ r − 1)

[
(n)!

(s− r − 1)!(r − 1)!(n− s)!

]
×
∫ b

a

∫ y

a
xy(F (x))β+ρi+r−2f(x)(F (y)− F (x))s−r−1

× f(y)(1− F (y))n−sdxdy + (s− r − 1)

[
(n)!

(s− r − 1)!(r − 1)!(n− s)!

]
×
∫ b

a

∫ y

a
xy(F (x))β+ρi+r−1(F (y)− F (x))s−r−2f(y)(1− F (y))n−sdxdy] .

(8)

The proof is completed by rewriting (8).

3 Recurrence Relations for Single and Product Moments of

progressive Type-II right censoring

In this section, some recurrence relations for moments for progressive Type-II right censoring

of GS-distributions are established as follow:

Relation 5 For all 1 ≤ m ≤ n, k = 0, 1, 2, · · · .

α

γ∑
ξ=0

β+ρξ∑
τ=0

(
γ

ξ

)(
β + ρξ

τ

)
(−1)ξ(−1)τ (R1 + τ)

(
n

n+ τ − 1

)
[µ

(R1+τ−1,R2,··· ,Rm)
1:m:n+τ−1 ](k+1)

= [(k + 1)[µ
(R1,R2,···,Rm)
1:m:n ](k) − α

γ∑
ξ=0

β+ρξ∑
τ=0

(
γ

ξ

)(
β + ρξ

τ

)
(−1)ξ(−1)τ

× {n(n−R1 − 1)

n+ τ − 1
[µ

(R1+R2+τ,R3,··· ,Rm)
1:m−1:n+τ−1 ](k+1)}].

Relation 6 For all 1 ≤ m ≤ n, k = 0, 1, 2, · · · .

α

γ∑
ξ=0

β+ρξ∑
τ=0

(
γ

ξ

)(
β + ρξ

τ

)
(−1)ξ(−1)τ (Rm + τ)

(
A(n,m− 1)

A(n+ τ − 1,m− 1)

)
× [µ

(R1,R2,···,Rm−1,Rm+τ−1)
m:m:n+τ−1 ](k+1) = [(k + 1)[µ(R1,R2,···,Rm)

m:m:n ](k)

− α
γ∑
ξ=0

β+ρξ∑
τ=0

(
γ

ξ

)(
β + ρξ

τ

)
(−1)ξ(−1)τ{− A(n,m− 1)

A(n+ τ − 1,m− 2)

× [µ
(R1,R2,···,Rm−1+Rm+τ)
m−1:m−1:n+τ−1 ](k+1)}].
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Relation 7 For all 1 ≤ r ≤ m ≤ n, k = 0, 1, 2, · · · .

α

γ∑
ξ=0

β+ρξ∑
τ=0

(
γ

ξ

)(
β + ρξ

τ

)
(−1)ξ(−1)τ (Rr + τ)

(
A(n, r − 1)

A(n+ τ − 1, r − 1)

)
× [µ

(R1,R2,···,Rr−1,Rr+τ−1,Rr+2,··· ,Rm)
r:m:n+τ−1 ](k+1) = [(k + 1)[µ(R1,R2,···,Rm)

r:m:n ](k)

− α
γ∑
ξ=0

β+ρξ∑
τ=0

(
γ

ξ

)(
β + ρξ

τ

)
(−1)ξ(−1)τ{

(
A(n, r)

A(n+ τ − 1, r − 1)

)
× µ(R1,R2,···,Rr−1,Rr+Rr+1+τ,Rr+2,··· ,Rm)

r:m−1:n+τ−1 ](k+1)

− A(n, r − 1)

A(n+ τ − 1, r − 2)
[µ

(R1,R2,···,Rr−1+Rr+τ,··· ,Rm)
r−1:m−1:n+τ−1 ](k+1)}].

Proof. We have

[µ(R1,R2,··· ,Rm)
r:m:n ](k) = E(X(R1,R2,··· ,Rm)(k)

r:m:n ) = A(n,m− 1)

×
∫
· · ·
∫
0<x1<x2<··· < xm < ∞

{∫ xr+1

xr−1

xkr [1− F (xr)]
Rr f(xr)dxr

}
× (1− F (x1))

R1f(x1)(1− F (x2))
R2f(x2) · · · (1− F (xm))Rm

× f(xm)dx1dx2 · · · dxr−1dxr+1 · · · dxm,

0 < x1 < x2 < · · · < xr < · · · < xm <∞.

Let

Ω =
∫ xr+1

xr−1
xkr [1− F (xr)]

Rr f(xr)dxr.

We have from (1)

f(x) = α
∑γ

ξ=0

∑β+ρξ
τ = 0

(
γ

ξ

)(
β + ρξ

τ

)
(−1)ξ(−1)τ (1− F (x))τ .

We have

Ω = α
∑γ

ξ=0

∑β+ρξ
τ = 0

(
γ

ξ

)(
β + ρξ

τ

)
(−1)ξ(−1)τ

∫ xr+1

xr−1
xkr [1− F (xr)]

Rr+τ dxr.

Integrating by parts yields



GS-Distributions 245

Ω =
α

k + 1

γ∑
ξ=0

β+ρξ∑
τ=0

(
γ

ξ

)(
β + ρξ

τ

)
(−1)ξ(−1)τ{xk+1

r+1 [1− F (xr+1)]
Rr+τ

− xk+1
r−1 [1− F (xr−1)]

Rr+τ + (Rr + τ)

∫ xr+1

xr−1

xk+1
r [1− F (xr)]

Rr+τ−1 f(xr)dxr}.

Then

[µ(R1,R2,··· ,Rm)
r:m:n ](k) = (

α

k + 1
)A(n,m− 1)

γ∑
ξ = 0

β+ρξ∑
τ = 0

(
γ

ξ

)(
β + ρξ

τ

)
(−1)ξ(−1)τ

× {
∫∫

0<x1<x2<···<xm < ∞
· · ·
∫ xr+1

xr−1

xk+1
r+1(1− F (x1))

R1f(x1)(1− F (x2))
R2

× f(x2) · · · [1− F (xr−1)]
Rr−1 f(xr−1) [1− F (xr+1)]

Rr+Rr+1+τ f(xr+1) · · ·

× (1− F (xm))Rmf(xm)dx1dx2 · · · dxr−1dxr+1 · · · dxm

−
∫∫

0<x1<x2 < ··· < xm < ∞
· · ·
∫ xr+1

xr−1

xk+1
r−1(1− F (x1))

R1

× f(x1)(1− F (x2))
R2f(x2) · · · [1− F (xr−1)]

Rr−1+Rr+τ f(xr−1) [1− F (xr+1)]
Rr+1

× f(xr+1) · · · (1− F (xm))Rmf(xm) dx1dx2 · · · dxr−1dxr+1 · · · dxm + (Rr + τ)

×
∫∫

0<x1 < x2<··· < xm < ∞
· · ·
∫ xr+1

xr−1

xk+1
r (1− F (x1))

R1f(x1)(1− F (x2))
R2f(x2) · · ·

× [1− F (xr)]
Rr+τ−1 f(xr) · · · (1− F (xm))Rmf(xm)dx1dx2 · · · dxr · · · dxm.

We obtain

[µ(R1,R2,··· ,Rm)
r:m:n ](k) = (

α

k + 1
)

γ∑
ξ=0

β+ρξ∑
τ=0

(
γ

ξ

)(
β + ρξ

τ

)
(−1)ξ

× (−1)τ{
(

A(n, r)

A(n+ τ − 1, r − 1)

)
× µ(R1,R2,···,Rr+Rr+1+τ,Rr+2··· ,Rm)(k+1)

r:m−1:n+τ−1

−
(

A(n, r − 1)

A(n+ τ − 1, r − 2)

)
µ
(R1,R2,···,Rr−1+Rr+τ,Rr+1··· ,Rm)(k+1)
r−1:m−1:n+τ−1

+ (Rr + τ)

(
A(n, r − 1)

A(n+ τ − 1, r − 1)

)
µ
(R1,R2,···,Rr+τ−1,Rr+1,··· ,Rm)(k+1)
r:m:n+τ−1 }.

The proof is completed.

Relation 8 For all 1 < s ≤ m ≤ n.
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α

γ∑
ξ=0

β+ρξ∑
τ=0

(
γ

ξ

)(
β + ρξ

τ

)
(−1)ξ(−1)τ (Rs + τ)

(
A(n, s− 1)

A(n+ τ − 1, s− 1)

)
× µ(R1,R2,···,Rs+τ−1,Rs+1,··· ,Rm)

1,s:m:n+τ−1 = µ
(R1,R2,··· ,Rm)
1:m:n

− α
γ∑
ξ=0

β+ρξ∑
τ=0

(
γ

ξ

)(
β + ρξ

τ

)
(−1)ξ(−1)τ{

(
A(n, s)

A(n+ τ − 1, s− 1)

)

× µ(R1,R2,··· ,Rs+Rs+1+τ,··· ,Rm)
1,s:m−1:n+τ−1 −

(
A(n, s− 1)

A(n+ τ − 1, s− 2)

)
× µ(R1,R2,··· ,Rs−1+Rs+τ,··· ,Rm)

1,s−1:m−1:n+τ−1 }].

Relation 9 For all 1 ≤ r < m ≤ n.

α

γ∑
ξ=0

β+ρξ∑
τ=0

(
γ

ξ

)(
β + ρξ

τ

)
(−1)ξ(−1)τ (Rm + τ)

(
A(n,m− 1)

A(n+ τ − 1,m− 1)

)
× µ(R1,R2,···,Rm+τ−1,Rm+1,··· ,Rm)

r,m:m:n+τ−1 = µ(R1,R2,··· ,Rm)
r:m:n

− α
γ∑
ξ=0

β+ρξ∑
τ=0

(
γ

ξ

)(
β + ρξ

τ

)
(−1)ξ(−1)τ{−

(
A(n,m− 1)

A(n+ τ − 1,m− 2)

)
× µ(R1,R2,···,Rr,Rr+1,··· ,Rm−1+Rm+τ,··· ,Rm)

r,m−1:m−1:n+τ−1 }].

Relation 10 For all 1 ≤ r < s ≤ m ≤ n.

α

γ∑
ξ=0

β+ρξ∑
τ=0

(
γ

ξ

)(
β + ρξ

τ

)
(−1)ξ(−1)τ (Rs + τ)

(
A(n, s− 1)

A(n+ τ − 1, s− 1)

)
× µ(R1,R2,···,Rs+τ−1,Rs+1,··· ,Rm)

r,s:m:n+τ−1 = µ(R1,R2,··· ,Rm)
r:m:n

− α
γ∑
ξ=0

β+ρξ∑
τ=0

(
γ

ξ

)(
β + ρξ

τ

)
(−1)ξ(−1)τ{

(
A(n, s)

A(n+ τ − 1, s− 1)

)

× µ(R1,R2,···,Rr,Rr+1,··· ,Rs+Rs+1+τ,··· ,Rm)
r,s:m−1:n+τ−1 −

(
A(n, s− 1)

A(n+ τ − 1, s− 2)

)
× µ(R1,R2,···,Rr,Rr+1,··· ,Rs−1+Rs+τ,··· ,Rm)

r,s−1:m−1:n+τ−1 }].

Proof. We have
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µ(R1,R2,··· ,Rm)
r,s:m:n = E(X(R1,R2,··· ,Rm)

r:m:n X(R1,R2,··· ,Rm)(0)
s:m:n ) = A(n,m− 1)

×
∫∫

0<x1 < x2<··· < xm < ∞
· · ·
∫ xr+1

xr−1

xr(1− F (x1))
R1f(x1)(1− F (x2))

R2

× f(x2) · · · [1− F (xr)]
Rr f(xr) · · · (1− F (xm))Rmf(xm)dx1dx2 · · · dxr · · · dxm,

0 < x1 < x2 < · · · < xr < · · ·xs < · · · < xm <∞.

Let

∆ =
∫ xs+1

xs−1
[1−F (xs)]

Rs f(xs)dxs.

We have from (1)

f(x) = α
∑γ

ξ=0

∑β+ρξ
τ=0

(
γ

ξ

)(
β + ρξ

τ

)
(−1)ξ(−1)τ (1− F (x))τ .

Then

∆ = α
∑γ

ξ=0

∑β+ρξ
τ = 0

(
γ

ξ

)(
β + ρξ

τ

)
(−1)ξ(−1)τ

∫ xs+1

xs−1
[1− F (xs)]

Rs+τ dxs.

Integrating by parts yields

∆ = α

γ∑
ξ=0

β+ρξ∑
τ = 0

(
γ

ξ

)(
β + ρξ

τ

)
(−1)ξ(−1)τ{xs+1 [1− F (xs+1)]

Rs+τ

− xs−1 [1− F (xs−1)]
Rs+τ + (Rs + τ)

∫ xs+1

xs−1

xs [1− F (xs)]
Rs+τ−1 f(xs)dxs}.
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Then

µ(R1,R2,··· ,Rm)
r:m:n = (

α

k + 1
)A(n,m− 1)

γ∑
ξ = 0

β+ρξ∑
τ=0

(
γ

ξ

)(
β + ρξ

τ

)
(−1)ξ(−1)τ

× {
∫∫

0<x1 < x2<···<xm < ∞
· · ·
∫ xr+1

xr−1

xrxs(1− F (x1))
R1f(x1)(1− F (x2))

R2

× f(x2) · · · [1− F (xr)]
Rr f(xr) · · · [1− F (xs−1)]

Rs−1 f(xs−1) [1− F (xs+1)]
Rs+Rs+1+τ

× f(xs+1) · · · (1− F (xm))Rmf(xm)dx1dx2 · · · dxrdxr+1 · · · dxs−1dxs+1 · · · dxm

−
∫∫

0<x1<x2 < ··· < xm < ∞
· · ·
∫ xr+1

xr−1

xrxs(1− F (x1))
R1f(x1)(1− F (x2))

R2f(x2) · · ·

× [1− F (xr)]
Rr f(xr) · · · [1− F (xs−1)]

Rs−1+Rs+τ f(xs−1) [1− F (xs+1)]
Rr+1 f(xs+1)

× · · · (1− F (xm))Rmf(xm)dx1dx2 · · · dxrdxr+1 · · · dxs−1dxs+1 · · · dxm

+ (Rs + τ)

∫∫
0<x1 < x2<···<xm < ∞

· · ·
∫ xr+1

xr−1

xrxs(1− F (x1))
R1f(x1)(1− F (x2))

R2f(x2)

× · · · [1− F (xr)]
Rr f(xr) · · · [1− F (xs)]

Rs+τ−1 f(xs) · · · (1− F (xm))Rm

× f(xm)dx1dx2 · · · dxr · · · dxs · · · dxm.

We have,

µ(R1,R2,··· ,Rm)
r:m:n = α

γ∑
ξ=0

β+ρξ∑
τ=0

(
γ

ξ

)(
β + ρξ

τ

)
(−1)ξ(−1)τ

× {(n− s−
s∑

i = 1

Ri)µ
(R1,R2,···,Rr,Rr+1,··· ,Rs+Rs+1+τ,··· ,Rm)
r,s:m−1:n+τ−1

− (n− s+ 1−
s−1∑
i = 1

Ri)µ
(R1,R2,···,Rr,Rr+1,··· ,Rs−1+Rs+τ,··· ,Rm)
r,s−1:m−1:n+τ−1

+ (Rs + τ) µ
(R1,R2,··· ,Rs+τ−1,··· ,Rm)
r,s:m:n+τ−1 }.

The proof is completed.

Special Cases

1. Recurrence relations for moments from progressive Type-II right censoring for some spe-

cific distributions (see Table 1) can be obtained as special cases from Relations [5 − 10] .

2. Recurrence relations for moments from Type-II censored can be obtained by letting R1 =

R2 = · · · = Rm−1 = 0, Rm 6= 0.
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3. The Relations for logistic distribution of progressive Type-II right censored are obtained

as a special case from Relations [5 − 10] , α = 1, β = 1, ρ = 1 and γ = 1,(see Balakrishnan

et al. [6]).

4. The Relations for standard exponential distribution of progressive Type-II right censored

are obtained as a special case from Relations [5 − 10] , α = 1, β = 0, ρ = 1 and γ = 1, we

have

Relation 11 For all 1 ≤ r ≤ n

(Rr + 1)[µ(R1,R2,··· ,Rm)
r:m:n ](k+1) = (k + 1)[µ(R1,R2,··· ,Rm)

r:m:n ](k)

+ (n− r + 1−
r−1∑
i=1

Ri)[µ
(R1,R2,···,Rr−1+Rr+1,··· ,Rm)
r−1:m−1:n ](k+1)

− (n− r −
r∑
i=1

Ri)[µ
(R1,R2,···,Rr+Rr+1+1,··· ,Rm)
r:m−1:n ](k+1).

Relation 12 For all 1 ≤ r < s ≤ n

(Rs + 1)µ(R1,R2,··· ,Rm)
r,s:m:n = µ(R1,R2,··· ,Rm)

r:m:n

− (n− s−
s∑
i=1

Ri)µ
(R1,R2,···,Rr,Rr+1,··· ,Rs+Rs+1+1,··· ,Rm)
r,s:m−1:n

+ (n− s+ 1−
s−1∑
i = 1

Ri)µ
(R1,R2,···,Rr,Rr+1,··· ,Rs−1+Rs+1,··· ,Rm)
r,s−1:m−1:n .

Remark 1

1. Recurrence relations for moments of progressively censored order statistics from logistic

distribution are obtained by Balakrishnan et al. [6].

2. Aggarwala and Balakrishnan [2] have established recurrence relations for moments like

the Relations (11 and 12).

3. Depending on Relations [11 and 12], aggarwala and Balakrishnan [2] have obtained re-

cursive algorithm for exponential distribution.
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4. The recurrence relations for moments of usual order statistics for standard exponential

distribution are obtained as a special case from Relations [11 and 12] as follows:

Relation 13 For all 1 ≤ r ≤ n

(n− r + 1)µ
(k+1)
r:n = (k + 1)µ

(k)
r:n + (n− r + 1)µ

(k+1)
r−1:n.

Relation 14 For all 1 ≤ r < s ≤ n

µr,s:n = µr:n + (n− s+ 1)µr,s−1:n − (n− s)µr,s:n.

Remark 2

Relations (13 and 14) have been established by Joshi [24] and Joshi and Balakrishnan [25]

and presented by Aggarwala and Balakrishnan [2] as special cases.

4 Numerical Results

In this section, using Relations [11 and 12] , means, variances and covariances for standard

exponential distribution of progressive Type-II right censored order statistics are computed.

The computations are presented in Tables (2 - 5) below :

Table 2

m�r 1 2 3 4

1 0.1

2 0.1 0.2428572

3 0.1 0.2428572 0.5761905

4 0.1 0.2428572 0.5761905 1.076190

Means for standard exponential distribution of progressive Type − II right censored,

m = 1(1)4, n = 10, R = (2, 3, 0, 1) and Rm = n−m−
∑m−1

i=1 Ri
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Table 3

m r�s 1 2 3 4

1 1 0.01

2 1 0.01 0.01

2 0.0304082

3 1 0.01 0.01 0.01

2 0.0304082 0.0304082

3 0.1415193

4 1 0.01 0.01 0.01 0.01

2 0.0304082 0.0304082 0.0304082

3 0.1415193 0.1415193

4 0.3915193

Variances and covariances for standard exponential distribution of progressive Type − II right

censored,m = 1(1)4, n = 10, R = (2, 3, 0, 1) and Rm = n−m−
∑m−1

i=1 Ri

Table 4

m�r 1 2 3 4 5 6 7 8 9 10

1 0.05

2 0.05 0.1088

3 0.05 0.1088 0.1713

4 0.05 0.1088 0.1713 0.2379

5 0.05 0.1088 0.1713 0.2379 0.3289

6 0.05 0.1088 0.1713 0.2379 0.3289 0.4539

7 0.05 0.1088 0.1713 0.2379 0.3289 0.4539 0.6206

8 0.05 0.1088 0.1713 0.2379 0.3289 0.4539 0.6206 0.8206

9 0.05 0.1088 0.1713 0.2379 0.3289 0.4539 0.6206 0.8206 1.0706

10 0.05 0.1088 0.1713 0.2379 0.3289 0.4539 0.6206 0.8206 1.0706 1.4039

Means for standard exponential distribution of progressive Type − II right censored,

m = 1(1)10, n = 20, R = (2, 0, 0, 3, 2, 1, 0, 0, 0, 2) and Rm = n−m−
∑m−1

i=1 Ri
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Table 5

m r�s 1 2 3 4 5 6 7

1 1 0.0025

2 1 0.0025 0.0025

2 0.006

3 1 0.0025 0.0025 0.0025

2 0.006 0.006

3 0.0099

4 1 0.0025 0.0025 0.0025 0.0025

2 0.006 0.006 0.006

3 0.0099 0.0099

4 0.01431

5 1 0.0025 0.0025 0.0025 0.0025 0.0025

2 0.006 0.006 0.006 0.006

3 0.0099 0.0099 0.0099

4 0.0143 0.0143

5 0.02258

6 1 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025

2 0.006 0.006 0.006 0.006 0.006

3 0.0099 0.0099 0.0099 0.0099

4 0.0143 0.0143 0.0143

5 0.02258 0.02258

6 0.0382

7 1 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025

2 0.006 0.006 0.006 0.006 0.006 0.006

3 0.0099 0.0099 0.0099 0.0099 0.0099

4 0.0143 0.0143 0.0143 0.0143

5 0.02258 0.02258 0.02258

6 0.0382 0.0382

7 0.065978
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Table 5 (continued)

m r�s 1 2 3 4 5 6 7 8 9 10

8 1 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025

2 0.006 0.006 0.006 0.006 0.006 0.006 0.006

3 0.0099 0.0099 0.0099 0.0099 0.0098 0.0099

4 0.0143 0.0143 0.0143 0.0143 0.0143

5 0.02258 0.02258 0.0226

6 0.0382 0.0382 0.0382

7 0.066 0.066

8 0.0106

9 1 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025

2 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006

3 0.0099 0.0099 0.0099 0.0099 0.0099 0.0099 0.0099

4 0.0143 0.0143 0.0143 0.0143 0.0143

5 0.02258 0.02258 0.0226 0.0226

6 0.0382 0.0382 0.0382 0.0382

7 0.066 0.066 0.066

8 0.0106 0.0106

9 0.1685

10 1 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025

2 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006

3 0.0099 0.0099 0.0099 0.0099 0.0099 0.0099 0.0099 0.0099

4 0.0143 0.0143 0.0143 0.0143 0.0143 0.0143 0.0143

5 0.0226 0.0226 0.0226 0.0226 0.0226 0.0226

6 0.0382 0.0382 0.0382 0.0382 0.0382

7 0.066 0.066 0.066 0.066

8 0.0106 0.0106 0.0106

9 0.1685 0.1685

10 0.2796

Variances and covariances for standard exponential distribution of progressive Type − II right

censored, m = 1(1)10, n = 20, R = (2, 0, 0, 3, 2, 1, 0, 0, 0, 2) and Rm = n−m−
∑m−1

i = 1Ri

Remark 3

If r is increasing, the single and product moments are increasing too.
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5 Characterization Results

As we mentioned in the introduction section, the GS- distributions have applications in many

fields of study which have been mentioned in [27] and the references therein. So, an investigator

will be vitally interested to know if their model fits the requirements of GS- distribution. To this

end, the investigator relies on characterizations of this distribution, which provide conditions

under which the underlying distribution is indeed a GS- distribution. In this section we will

present various characterizations of the GS- distributions.

Throughout this section we assume, when needed, that the distribution function F is twice

differentiable on its support.

5.1. Characterization based on two truncated moments

In this subsection we present characterizations of the GS- distributions in terms of truncated

moments. We like to mention here the works of Galambos and Kotz [9], Kotz and Shanbhag

[27], Glä nzel [10− 12], Glänzel [6], Glänzel et al. [13] , Glänzel and Hamedani [15] and

Hamedani [17− 19] in this direction. Our characterization results presented here will employ

an interesting result due to Glänzel [11] (Theorem G below).

Theorem 1. Let (Ω, F, P ) be a given probability space and let H = [a, b] be an interval

for some a < b (a = −∞, b =∞ might as well be allowed) . Let X : Ω→ H be a continuous

random variable with the distribution function F and let g and h be two real functions

defined on H such that

E [g (X) |X ≥ x] = E [h (X) |X ≥ x] η (x) , x ∈ H,

is defined with some real function η. Assume that g, h ∈ C1 (H) , η ∈ C2 (H) and F is

twice continuously differentiable and strictly monotone function on the set H. Finally, assume

that the equation hη = g has no real solution in the interior of H. Then F is uniquely

determined by the functions g, h and η, particularly

F (x) =

∫ x

a
C

∣∣∣∣ η′ (u)

η (u)h (u)− g (u)

∣∣∣∣ exp (−s (u)) du,

where the function s is a solution of the differential equation s′ = η′ h
ηh−g and C is a

constant, chosen to make
∫
H dF = 1.
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Remarks 4. (a) In Theorem 1, the interval H need not be closed. (b) The goal is to

have the function η as simple as possible. For a more detailed discussion on the choice of η,

we refer the reader to Glänzel and Hamedani [15] and Hamedani [17− 19].

Proposition 1. Let X : Ω → (a, b) be a continuous random variable with cdf F and

let h (x) = 1 and g (x) =
∫ x
a (F (u))β (1− (F (u))ρ)γ du for x ∈ (a, b) . The pdf of X is

(1) if and only if the function η defined in Theorem 1 has the form

η (x) =
1

2α
+

1

2

∫ x

a
(F (u))β (1− (F (u))ρ)γ du, a < x < b.

Proof. Let X have pdf (1) , then

(1− F (x))E [h (X) |X ≥ x] = (1− F (x)) , a < x < b,

and

(1− F (x))E [g (X) |X ≥ x] =

∫ b

x

∫ t

a
(F (u))β (1− (F (u))ρ)γ duf (t) dt

=

∫ b

x

1

α
F (t) f (t) dt =

1

2α

(
1− (F (x))2

)
, a < x < b,

and finally

η (x)h (x)− g (x) =
1

2

(
1

α
−
∫ x

a
(F (u))β (1− (F (u))ρ)γ du

)
6= 0 for a < x < b.

Conversely, if η is given as above, then

s′ (x) =
η′ (x)h (x)

η (x)h (x)− g (x)
=

(F (x))β (1− (F (x))ρ)γ(
1
α −

∫ x
a (F (u))β (1− (F (u))ρ)γ du

) ,
and hence

s (x) = − ln

(
1

α
−
∫ x

a
(F (u))β (1− (F (u))ρ)γ du

)
, a < x < b.

Now, in view of Theorem 1 (with C = α) , X has pdf (1) .
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Corollary 1. Let X : Ω → (a, b) be a continuous random variable and let h (x) = 1 for

x ∈ (a, b) . The pdf of X is (1) if and only if there exist functions g and η defined in Theorem

1 satisfying the differential equation

η′ (x)

η (x)− g (x)
=

(F (x))β (1− (F (x))ρ)γ(
1
α −

∫ x
a (F (u))β (1− (F (u))ρ)γ du

) , a < x < b.

Remark 5. The general solution of the differential equation given in Corollary 1 is

η (x) =

(
1

α
−
∫ x

a
(F (u))β (1− (F (u))ρ)γ du

)−1
×
[
−
∫
g (x)

(
(F (x))β (1− (F (x))ρ)γ

)
dx+D

]
,

for a < x < b , whereD is a constant. One set of appropriate functions is given in Proposition

1 with D = 1
2α2 .

5.2. Characterization based on the hazard function

For the sake of completeness, we state the following definition.

Definition 1. Let F be an absolutely continuous distribution with the corresponding pdf

f. The hazard function corresponding to F is denoted by λF and is defined by

λF (x) =
f (x)

1− F (x)
, x ∈ SuppF, (9)

where SuppF is the support of F.

It is obvious that the hazard function of a twice differentiable distribution function satisfies

the first order differential equation

λ
′
F (x)

λF (x)
− λF (x) = k (x) , (10)

where k (x) is an appropriate integrable function. Although this differential equation has an

obvious form since

f ′ (x)

f (x)
=
λ
′
F (x)

λF (x)
− λF (x) ,
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for many univariate continuous distributions (10) seems to be the only differential equation

in terms of the hazard function. The goal here is to establish a differential equation which has

as simple form as possible and is not of the trivial form (10). For some general families of dis-

tributions this may not be possible. Here is our characterization result for the GS-distributions.

Proposition 2. Let X : Ω→ (a, b) be a continuous random variable. The pdf of X is (1)

with ρ = 1 if and only if its hazard function λF satisfies the differential equation

λ′F (x)− q (x)λ2F (x) = 0, a < x < b, (11)

with boundary condition λF (xm) = α2−(β+γ−1) , where F (xm) = 1
2 and

q (x) =
(β + γ − 1)F (x)− β

F (x)
, a < x < b.

Proof. If X has pdf (1) , then obviously (11) holds. If λF satisfies (11) , then

λ′F (x)

λF (x)
=

(
β

F (x)
− γ − 1

1− F (x)

)
f (x) .

Integrating both sides of the above equation with respect to x from xm to x , we arrive at

ln

(
λF (x)

λF (xm)

)
= ln

(
2β+γ−1 (F (x))β (1− F (x))γ

)
,

from which , after some computations and using the boundary condition, (1) is obtained.

Remark 6. For characterizations of other well-known continuous distributions based on

the hazard function, we refer the reader to Hamedani [20] and Hamedani and Ahsanullah [22] .

5.3. Characterization based on truncated moments of

certain functions of order statistics

Let X1:n ≤ X2:n ≤ · · · ≤ Xn:n be n order statistics from a continuous cdfF.

Proposition 3. Let X : Ω → (a, b) be a continuous random variable with cdf F and

pdffthen X has pdf (1) iff

E
[
Xk
r+1:n|Xr:n = x

]
= xk +

k Λ (x)

(1− F (x))n−r
, (12)
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where k ∈ N and

Λ (x) =
∫ b
x y

k−1
[
1− α

∫ y
a (F (u))β (1− (F (u))ρ)γ du

]n−r
dy .

Proof. If X has pdf (1) , then

E(Xk
r+1:n | Xr:n = x) =

cr,r+1:n

cr:n

(∫ b
x y

kF (x)r−1f(x)f(y)(1− F (y))n−r−1dy

F (x)r−1f(x)(1− F (x))n−r

)

=
(n− r)

(1− F (x))n−r

∫ b

x
yk(1− F (y))n−r−1f(y)dy.

Integrating by parts yields

E(Xk
r+1:n | Xr:n = x) =

(n− r)
(1− F (x))n−r

(
−yk(1− F (y))n−r

n− r
| bx+ k

∫ b

x

yk−1(1−F (y))n−r

n− r
dy

)
= xk +

k

(1− F (x))n−r

∫ b

x
yk−1

[
1− α

∫ y

a
(F (t))β(1− (F (t))ρ)

γ
dt

]n−r
dy.

= xk +
kΛ(x)

(1− F (x))n−r
.

If (12) holds, then

Let E(Xk
r+1:n | Xr:n = x) = xk +

kΛ(x)

(1− F (x))n−r
, then

(n− r)
(1− F (x))n−r

∫ b
x y

k(1− F (y))n−r−1f(y)dy = xk +
kΛ(x)

(1− F (x))n−r
.

Multiplying both sides by (1− F (x))(n−r) we obtain

(n− r)
∫ b
x y

k(1− F (y))n−r−1f(y)dy = xk(1− F (x))n−r + kΛ(x).

Differentiating both sides with respect to x yields

− (n− r)xk(1− F (x))n−r−1f(x) = kxk−1(1− F (x))n−r

− (n− r)xk(1− F (x))n−r−1f(x)− kxk−1

×
[
1− α

∫ x

a
(F (y))β(1− (F (y))ρ)

γ
dy

]n−r
.

Simplifying, we get

F (x) = α
∫ x
a (F (y))β(1− (F (y))ρ)

γ
dy.
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We present here characterization results similar to Proposition 3 but based on truncated mo-

ments of the order statistics. We refer the reader to Ahsanullah and Hamedani [1] , Hamedani et

al. [23] and Hamedani [21] , among others , for characterizations of other well-known continuous

distributions in this direction.

Proposition 4. Let X : Ω→ (a, b) be a continuous random variable with cdf F such that

limx→b x
δ (1− F (x))n = 0, for some δ ≥ 0. Then

E
[
Xδ

1:n|X1:n > t
]

= tδ +
δΦ (t)

(1− F (t))n
, a < t < b, (13)

where

Φ (t) =

∫ b

t
xδ−1

[
1− α

∫ x

a
(F (u))β (1− (F (u))ρ)γ du

]n
dx,

for some α, ρ > 0 and β, γ ≥ 0 if and only if X has pdf (1) .

Proof. If X has pdf (1) , then clearly (13) is satisfied. Now, if (13) holds, then using integra-

tion by parts on the left hand side of (13) , in view of the assumption limx→b x
δ (1− F (x))n = 0,

we have (after some simplifications)

∫ b

t
xδ−1 (1− F (x))n dx = Φ (t) , a < t < b. (14)

Differentiating both sides of (14) with respect to t , we arrive at

(1− F (t))n =

[
1− α

∫ t

a
(F (u))β (1− (F (u))ρ)γ du

]n
, a < t < b, (15)

from which we obtain

F (t) =

∫ t

a
α (F (u))β (1− (F (u))ρ)γ du, a ≤ t ≤ b.

Proposition 5. Let X : Ω→ (a, b) be a continuous random variable with cdf F and let δ

be a positive number. Then

E
[
Xδ
n:n|Xn:n < t

]
= tδ − δΨ (t)

(F (t))n
, a < t < b, (16)

where
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Ψ (t) =

∫ t

a
xδ−1

[
α

∫ x

a
(F (u))β (1− (F (u))ρ)γ du

]n
dx,

for some α, ρ > 0 and β, γ ≥ 0 if and only if X has pdf (1) .

Proof. Is similar to that of Proposition 4.

Let Xj , j = 1, 2, · · · , n be n i.i.d. (independent and identically distributed) random variables

with cdf F and corresponding pdf f and let X1:n ≤ X2:n ≤ · · · ≤ Xn:n be their corresponding

order statistics. Let X∗1:n−r be the 1st order statistic from a sample of size n − r of random

variables with cdf Ft (x) = F (x)−F (t)
1−F (t) , x ≤ t < b (t is fixed) and corresponding pdf ft (x) =

f(x)
1−F (t) , x ≤ t < b . Then

(Xr+1:n|Xr:n = t)
d
= X ∗

1:n−r (
d
= meansequalin distribution) ,

that is

fXr+1:n|Xr:n (x|t) = fX∗1:n−r (x) = (n− r) (1− Ft (x))n−r−1
f (x)

1− F (t)
, x ≤ t < b.

Remarks 7. (i) In view of the explanation in the above paragraph, we can obtain Propo-

sition 3 directly via the proof of Proposition 4. (ii) Propositions 4 and 5 can be extended in a

straightforward manner to include possibly other distributions by replacing the given functions

of the order statistics with more general functions and of course under appropriate conditions.

(iii) A more general form of (1) can be considered via

f (x) = Πk
i=1Hi (x) , a < x < b,

where

Hi (x) = (F (x))βi or (1− (F (x))ρi)γi .

(iv) In fact f (x) can be any appropriate function of F (x) .
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6 Conclusion

In this article,

1. Several recurrence relations satisfied by single and product moments for GS-distributions

of order statistics and progressive Type-II right censoring are established.

2. Recurrence relations for moments of progressive Type-II right censoring and order statis-

tics for some specific distributions including ( Uniform (a, b), exponential (λ), generalized

exponential (α, λ, ν), beta(1, b), beta (b, 1), logistic (α, β), F (2,m), F (n, 2)) can be ob-

tained as special cases.

3. The recurrence relations for moments of usual order statistics from GS-distributions are

also obtained as special cases.

4. Some computations including means, variances and covariances for standard exponential

distribution of progressive Type-II right censored order statistics are computed.

5. Some characterizations of GS-distributions based on moments of order statistics; on trun-

cated moments; on hazard function; on truncated moments of functions of order statistics

are given.
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