8,550 research outputs found

    An Integer Programming Formulation Using Convex Polygons for the Convex Partition Problem

    Get PDF
    A convex partition of a point set P in the plane is a planar partition of the convex hull of P into empty convex polygons or internal faces whose extreme points belong to P. In a convex partition, the union of the internal faces give the convex hull of P and the interiors of the polygons are pairwise disjoint. Moreover, no polygon is allowed to contain a point of P in its interior. The problem is to find a convex partition with the minimum number of internal faces. The problem has been shown to be NP-hard and was recently used in the CG:SHOP Challenge 2020. We propose a new integer linear programming (IP) formulation that considerably improves over the existing one. It relies on the representation of faces as opposed to segments and points. A number of geometric properties are used to strengthen it. Data sets of 100 points are easily solved to optimality and the lower bounds provided by the model can be computed up to 300 points

    Fat Polygonal Partitions with Applications to Visualization and Embeddings

    Get PDF
    Let T\mathcal{T} be a rooted and weighted tree, where the weight of any node is equal to the sum of the weights of its children. The popular Treemap algorithm visualizes such a tree as a hierarchical partition of a square into rectangles, where the area of the rectangle corresponding to any node in T\mathcal{T} is equal to the weight of that node. The aspect ratio of the rectangles in such a rectangular partition necessarily depends on the weights and can become arbitrarily high. We introduce a new hierarchical partition scheme, called a polygonal partition, which uses convex polygons rather than just rectangles. We present two methods for constructing polygonal partitions, both having guarantees on the worst-case aspect ratio of the constructed polygons; in particular, both methods guarantee a bound on the aspect ratio that is independent of the weights of the nodes. We also consider rectangular partitions with slack, where the areas of the rectangles may differ slightly from the weights of the corresponding nodes. We show that this makes it possible to obtain partitions with constant aspect ratio. This result generalizes to hyper-rectangular partitions in Rd\mathbb{R}^d. We use these partitions with slack for embedding ultrametrics into dd-dimensional Euclidean space: we give a polylog(Δ)\mathop{\rm polylog}(\Delta)-approximation algorithm for embedding nn-point ultrametrics into Rd\mathbb{R}^d with minimum distortion, where Δ\Delta denotes the spread of the metric, i.e., the ratio between the largest and the smallest distance between two points. The previously best-known approximation ratio for this problem was polynomial in nn. This is the first algorithm for embedding a non-trivial family of weighted-graph metrics into a space of constant dimension that achieves polylogarithmic approximation ratio.Comment: 26 page

    Partitioning Regular Polygons into Circular Pieces I: Convex Partitions

    Get PDF
    We explore an instance of the question of partitioning a polygon into pieces, each of which is as ``circular'' as possible, in the sense of having an aspect ratio close to 1. The aspect ratio of a polygon is the ratio of the diameters of the smallest circumscribing circle to the largest inscribed disk. The problem is rich even for partitioning regular polygons into convex pieces, the focus of this paper. We show that the optimal (most circular) partition for an equilateral triangle has an infinite number of pieces, with the lower bound approachable to any accuracy desired by a particular finite partition. For pentagons and all regular k-gons, k > 5, the unpartitioned polygon is already optimal. The square presents an interesting intermediate case. Here the one-piece partition is not optimal, but nor is the trivial lower bound approachable. We narrow the optimal ratio to an aspect-ratio gap of 0.01082 with several somewhat intricate partitions.Comment: 21 pages, 25 figure

    On a decomposition of regular domains into John domains with uniform constants

    Get PDF
    We derive a decomposition result for regular, two-dimensional domains into John domains with uniform constants. We prove that for every simply connected domain Ω⊂R2\Omega \subset {\Bbb R}^2 with C1C^1-boundary there is a corresponding partition Ω=Ω1∪…∪ΩN\Omega = \Omega_1 \cup \ldots \cup \Omega_N with ∑j=1NH1(∂Ωj∖∂Ω)≤θ\sum_{j=1}^N \mathcal{H}^1(\partial \Omega_j \setminus \partial \Omega) \le \theta such that each component is a John domain with a John constant only depending on θ\theta. The result implies that many inequalities in Sobolev spaces such as Poincar\'e's or Korn's inequality hold on the partition of Ω\Omega for uniform constants, which are independent of Ω\Omega

    Solving Irregular Strip Packing Problems With Free Rotations Using Separation Lines

    Full text link
    Solving nesting problems or irregular strip packing problems is to position polygons in a fixed width and unlimited length strip, obeying polygon integrity containment constraints and non-overlapping constraints, in order to minimize the used length of the strip. To ensure non-overlapping, we used separation lines. A straight line is a separation line if given two polygons, all vertices of one of the polygons are on one side of the line or on the line, and all vertices of the other polygon are on the other side of the line or on the line. Since we are considering free rotations of the polygons and separation lines, the mathematical model of the studied problem is nonlinear. Therefore, we use the nonlinear programming solver IPOPT (an algorithm of interior points type), which is part of COIN-OR. Computational tests were run using established benchmark instances and the results were compared with the ones obtained with other methodologies in the literature that use free rotation

    Approximation Schemes for Partitioning: Convex Decomposition and Surface Approximation

    Full text link
    We revisit two NP-hard geometric partitioning problems - convex decomposition and surface approximation. Building on recent developments in geometric separators, we present quasi-polynomial time algorithms for these problems with improved approximation guarantees.Comment: 21 pages, 6 figure
    • …
    corecore