263 research outputs found

    Optimizing Inventory for Profitability and Order Fulfillment Improvement

    Get PDF
    Despite the extensive research on inventory management, few studies have investigated the optimization of inventory classification and control policies for maximizing the net present value of profit and order fulfillment performance. This dissertation aims to fill the gaps, and consists of two main essays. Essay One (Chapter 1) presents a new multi-period optimization model to explicitly address nonstationary demand, arbitrary review periods, and SKU-specific lead times, with the objective of maximizing the net present value of profit. A real-world application and computational experiments show that the optimal dynamic inventory classification and control decisions obtained from the model significantly reduce both safety stock and base stock levels compared to a multi-criteria inventory classification scheme and the traditional ABC approach. Essay Two (Chapter 2) examines two order-based fulfillment performance measures: the order fill rate, defined as the percentage of orders that are completely filled from available inventory; and the average customer-order fill rate, defined as the mean percentage of total units in a customer order that can be filled from on-hand inventory. Novel optimization models are developed to maximize the order fulfillment performance. Computational results indicate that a commonly used item-based measure in general does not adequately indicate order-based performance, and the tradeoffs between profit and order-based measures vary with inventory investment. This research contributes to the existing literature by providing new approaches to optimize inventory classification and control policies with various performance criteria. It also provides practitioners with a viable way to manage inventory with nonstationary demand, general review periods and lead times, and further allows companies to quantity the tradeoffs of different performance measures

    Market Transparency in Business-to-Business (B2B) E-Commerce

    Get PDF
    Market transparency, in its most succint form, refers to the level of current trade information revealed to the public by market makers. We analyze the effect of market transparency on the outcomes of postedoffer style B2B markets under both stationary and non-stationary demand conditions. We find that sellers on average can extract significantly higher surplus than buyers, yet the difference decreases with increasing market transparency. Also, poor price-tracking ability of the posted-offer market after an external demand shock hurts buyers only. Seller profits are much less sensitive to the shock compared to buyer surpluses

    Non-stationary demand forecasting by cross-sectional aggregation

    Get PDF
    In this paper the relative effectiveness of top-down (TD) versus bottom-up (BU) approaches is compared for cross-sectionally forecasting aggregate and sub-aggregate demand. We assume that the sub-aggregate demand follows a non-stationary Integrated Moving Average (IMA) process of order one and a Single Exponential Smoothing (SES) procedure is used to extrapolate future requirements. Such demand processes are often encountered in practice and SES is one of the standard estimators used in industry (in addition to being the optimal estimator for an IMA process). Theoretical variances of forecast error are derived for the BU and TD approach in order to contrast the relevant forecasting performances. The theoretical analysis is supported by an extensive numerical investigation at both the aggregate and sub-aggregate level, in addition to empirically validating our findings on a real dataset from a European superstore. The results demonstrate the increased benefit resulting from cross-sectional forecasting in a non-stationary environment than in a stationary one. Valuable insights are offered to demand planners and the paper closes with an agenda for further research in this area. © 2015 Elsevier B.V. All rights reserved

    Measuring the variability in supply chains with the peakedness

    Get PDF
    This paper introduces a novel way to measure the variability of order flows in supply chains, the peakedness. The peakedness can be used to measure the variability assuming the order flow is a general point pro- cess. We show basic properties of the peakedness, and demonstrate its computation from real-time continuous demand processes, and cumulative demand collected at fixed time intervals as well. We also show that the peakedness can be used to characterize demand, forecast, and inventory variables, to effectively manage the variability. Our results hold for both single stage and multistage inventory systems, and can further be extended to a tree-structured supply chain with a single supplier and multiple retailers. Furthermore, the peakedness can be applied to study traditional inventory problems such as quantifying bullwhip effects and determining safety stock levels. Finally, a numerical study based on real life Belgian supermarket data verifies the effectiveness of the peakedness for measuring the order flow variability, as well as estimating the bullwhip effects.variability, peakedness, supply chain
    corecore