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Abstract In this work we present a novel MILP based heuristics for computing nonstationary (s,S) policy
parameters. This approach presents advantages with respect to other existing methods, since it is
easy to implement and features narrower optimality gaps.
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1. Introduction

The stochastic lot sizing problem consists in controlling an inventory system facing random
demand over a given planning horizon. The decision maker faces inventory holding costs, if she
orders too much; and backorder penalty costs, if she orders too little and demand fulfilment is
delayed until the next replenishment arrives. Each time production runs there are fixed and
variable production/ordering costs that must be accounted for while controlling the system. The
structure of the optimal control policy to this problem has been characterised — under very
mild assumptions — over fifty years ago [8]. This control policy, named (s,S), is surprisingly
simple; this policy monitors the inventory position, i.e. on hand stock minus backorders plus
incoming orders, and issues an order to bring the inventory position up to S whenever the
inventory position falls below s.

As pointed out by [4] incorporating more realistic assumptions about product demand con-
stitutes an important research direction in inventory theory. The ability to model and control
a nonstationary demand process is essential in practical settings, since only very few businesses
actually face stationary demand, while most products are subject to demand processes that
evolve over time with frequent changes in their directions and rates of growth or decline.

When demand is nonstationary an (s,S) policy is still cost optimal. However, computing
optimal control parameters for this policy constitutes a hard combinatorial task. Standard
pseudo-polynomial dynamic programming (DP) algorithms can only tackle small instances.
This motivates the investigation of effective heuristics. To date, there are only two established
heuristics for computing optimal control policy parameters under nonstationary demand [1, 2].
Unfortunately, these heuristics present a number of drawbacks. They are not easy to implement,
since they require dedicated code. Furthermore, in a recent study [3], their respective optimality
gap on a large test bed has been found to average 4% to 5%. The same work also demonstrated
that approaches such as [9, 6], despite implementing heuristics for control policies that are
theoretically inferior to a nonstationary (s,S) policy, feature much lower optimality gaps, i.e.
around 1.5%, on the same test bed. This demonstrates that further research is needed to develop
more effective heuristics for computing nonstationary (s,S) control policy parameters.
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In this work we develop an MILP based heuristics for computing nonstationary (s,S) policy
parameters. The key insight upon which sour approach is based comes from the study in [3],
which showed that a nonstationary (R,S) policy often performs very close to optimal. The idea
is then to use an existing MILP model for computing nonstationary (R,S) policy parameters
[5] as a proxy to determine near optimal (s,S) policy parameters. Our heuristics is easy to
implement, since it is based solely on a standard MILP model and on a simple binary search
procedure. It performs better than other existing approaches, featuring an average optimality
gap of 0.2% on our preliminary tests.

2. The stochastic lot sizing problem

The finite-horizon single-item single-stocking location nonstationary stochastic lot sizing prob-
lem as introduced in [8] can be formalised as follows. We consider a finite planning horizon of
n periods. Customer demand dt in each period t = 1, . . . , n is a random variable with known
probability distribution. There are three types of costs: a nonlinear purchasing or ordering cost
c(z), where z is the amount purchased, which takes the general form

c(z) =

{
K + vz if z > 0
0 otherwise

where K and v denote the fixed and variable purchasing/ordering cost components, respectively;
a holding cost of h is paid of each unit of inventory carried from one period to the next; and
a shortage cost p which is paid for each unit of demand backordered at the end of a period.
Holding and shortage costs are charged at the end of a period. Ordering costs are charged when
a purchase is made. Without loss of generality, see [8], delivery of an order is immediate.

Let y denote the stock level immediately after purchases are delivered, the expected holding
and shortage cost for a generic period are given by

L(y) =





∫ y

0
h(y − ω)g(ω)dω +

∫ ∞

y

p(ω − y)g(ω)dω y ≥ 0
∫ ∞

0
p(ω − y)g(ω)dω y < 0

where gt(·) denotes the probability density function of the demand in period t. If the initial
inventory at the beginning of the planning horizon is x and Cn(x) represents the expected total
cost over the n-periods planning horizon if provisioning is done optimally then Cn(x) satisfies

Cn(x) = min
y≥x

{
c(y − x) + Ln(y) +

∫ ∞

0
Cn−1(y − ω)gn(ω)dω

}

If yn(x) is the argument minimising the above functional equation, then yn(x)− x denotes the
optimal initial purchase.

3. (s,S) policy

As shown in [8], the optimal control policy for the problem introduced in Section 2 takes a
surprisingly simple form. The result stems from the study of the following function

Gn(y) = cy + Ln(y) +

∫ ∞

0
Cn−1(y − ω)gn(ω)dω

More specifically, Scarf proved that Gn(y) is K-convex.
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Definition 1. Let K ≥ 0, and let f(x) be a differentiable function, f(x) is K-convex if

K + f(a+ x)− f(x)− af ′(x) ≥ 0

for all positive a and all x. This definition can be extended to a non differentiable function.

It follows that, under general nonstationary settings, the optimal policy can be described via
n pairs (si,Si), where si denotes the reorder point and Si the order-up-to-level for period i.
In practice, Sn denotes the absolute minimum of Gn(y) and sn < Sn is the unique value such
that K +Gn(Sn) = Gn(sn). The fact that Gn(y) is K-convex ensures that ripples in the above
nonlinear function do not affect the existence of a unique reorder point sn ≤ Sn, since their
height will never exceed K.

We shall now illustrate graphically the notion of K-convexity on a simple numerical example.
Consider a planning horizon of n = 4 period and a demand dt normally distributed in each period
t with mean µt ∈ {20, 40, 60, 40}, for period t = 1, . . . , n respectively. The standard deviation
σt of the demand in period t is equal to 0.25µt. Other problem parameters are K = 100, h = 1
and p = 10; to better conceptualise the example we let v = 0. In Fig. 1 we plot Gn(y) for
an initial inventory y ∈ (0, 200). In period one, when the opening inventory level y falls below

Opening inventory level
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Figure 1. Plot of Gn(y)
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Figure 2. Gn(y) vs Ĝn(y)

14 it is convenient to pay the fixed ordering cost K to increase available inventory to Sn, i.e.
K +Gn(Sn) = Gn(sn) ≤ Gn(y). Comparable graphs can be produced for all other periods.

4. (R,S) policy

A widely adopted control policy, alternative to the (s,S) policy, is the (R,S) policy. In this pol-
icy, all replenishment periods must be fixed at the beginning of the planning horizon; however,
the decision maker can decide upon the actual order quantity just before issuing a replenish-
ment. Under a nonstationary settings this policy takes the form (δi,Si), where δi is a binary
variable that is set to 1 if a replenishment is scheduled in period i and Si denotes the order-up-
to-level associated with a replenishment that occurs in period i. [5] developed a mixed integer
linear programming model to compute near-optimal (R,S) policy parameters. To model non-
linear expected holding and shortage costs the authors exploit piecewise linear upper and lower
bounds of the first order loss function [7]. An interesting feature of the model in [5] is the fact
that, despited being explicitly developed for the (R,S) policy, it can nevertheless be used as a
“proxy” to the expected total cost of an (s,S) policy, i.e. Gn(y). In fact, we can first observe
that the optimal expected total cost and the order-up-to-level for period one returned by the
model for an initial stock level of x units are tight approximation to Cn(x) and yn(x) = Sn,
respectively. Furthermore, if we set δ1 = 0 — i.e. we do not schedule any replenishment at the
beginning of the planning horizon — since Gn(y) is K-convex, there is a unique reorder point
sn < Sn such that K +Gn(Sn) = Gn(sn). We can therefore exploit a binary search on y < Sn
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Table 1. Optimal policy for the numerical example; expected total cost (ETC) estimated at 95% confidence.

SDP — ETC: (362.2,362.9) MILP — ETC: (363.0,363.1)
t St st St st

1 70.0 14.0 70.2 15.0
2 141 29.5 53.9 29.0
3 113 58.0 116 58.1
4 53.5 28.5 53.9 29.0

to find sn. In the binary search procedure, the cost associated with a given opening inventory
level y can be approximated using Ĝn(y), the solution of the MILP model. We then repeat this

procedure to find Si and si for each period i = 1, . . . , n, by analysing Ĝn(y), Ĝn−1(y), . . ..

In Fig. 2, for the numerical example previously discussed, we plot Ĝn(y), obtained via the
MILP model in [5], when we vary y, i.e. the opening inventory level at the beginning of the
planning horizon. We also compare it to the plot of Gn(y) obtained via a standard DP approach.
The optimal policy found via DP for the above example is contrasted in Table 1 against the
policy obtained via the MILP heuristics.

5. Computational Experience

We conducted a comprehensive numerical analysis on 1152 small instances over an 8-period
planning horizon. These instanced have been solved to optimality via DP. Factors that have
been varied in our analysis include demand pattern, fixed and proportional ordering cost, holding
cost, penalty cost and demand variability. All instances could be solved in about 10 secs by
our method, as opposed to about a minute required by the DP code. The average optimality
gap observed for our approach is 0.2%. In contrast, [1, 2] feature optimality gaps of 2.09% and
3.52%, respectively; however, these latter heuristics are faster than ours.
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