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Abstract 
 

This paper introduces a novel way to measure the variability of order flows in supply chains, the 
peakedness. The peakedness can be used to measure the variability assuming the order flow is a 
general point pro- cess. We show basic properties of the peakedness, and demonstrate its computation 
from real-time continuous demand processes, and cumulative demand collected at fixed time intervals 
as well. We also show that the peakedness can be used to characterize demand, forecast, and 
inventory variables, to effectively manage the variability. Our results hold for both single stage and 
multistage inventory systems, and can further be extended to a tree-structured supply chain with a 
single supplier and multiple retailers. Furthermore, the peakedness can be applied to study traditional 
inventory problems such as quantifying bullwhip effects and determining safety stock levels. Finally, 
a numerical study based on real life Belgian supermarket data verifies the effectiveness of the 
peakedness for measuring the order flow variability, as well as estimating the bullwhip effects. 
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1 Introduction

In a supply chain for make-to-stock items (such as most consumer goods)
the root of variability lies in the variability of customer demand. Difficulties
arise in how to measure this variability and how to represent this variability
in a model to help understand its propagation and improve the management
of the supply chain. Taking the demand in a grocery store for example, it
often exhibits different types of seasonalities according to the period of the
day, the day of the week, the day of the month or the month of the year.
Measuring the variability of demand flows with such patterns is not easy.
Trying to predict how the variability of such flows might impact the supply
chain is even harder.

Indeed, variability is a major issue for supply chain management. Order
flow variability is responsible for an important portion of the inventory in
the supply chain. It is also a complicated issue in the sense that on one
hand, order flow variability is amplified up along the supply chain which is
notoriously known as the bullwhip effect (Lee et al. (1997) ); on the other
hand, as explained by Cachon (1999), the variability of flows is reduced with
aggregated flows; i.e., in a multiechelon system with N retailers and one
wholesaler, balanced ordering will reduce the supplier’s demand variance.

This paper seeks to address the issue of measuring the variability in
supply chains, especially in fast moving consumer goods supply chains. We
first take a look at how to model the underlying order flows. A traditional
approach to model order flows in a supply chain is to use a renewal pro-
cess assuming that the inter-arrival times of the order flow are i.i.d., and
follow a certain distribution. As a special form of the renewal process, the
Poisson process is perhaps the most widely used stochastic process in oper-
ations management because of its theoretical and computational simplicity.
Noticing that in practice the arrival rate of a Poisson process is not neces-
sarily constant, Cox (1955) proposes to represent the arrival rate function
by a stationary stochastic process, the resulting arrival process is known as
a doubly stochastic Poisson process.

Working with renewal processes, however, poses some problems. First
it implies making rather detailed assumptions about the interarrival distri-
butions, which most of the time are hard to characterize. An important
difficulty in practice is the fact that the arrival process will most often ex-
hibit different seasonality patterns at different time scales. – Looking at a
supermarket for example, there are clear seasonality patterns in the day, the
week, the month, the year... the combination being very hard to include in
a distribution for interarrival times – Second, the renewal process assump-
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tion is not compatible with the observation that in practice the variability
of flows does not diminish as much as one would expect with aggregated
flows. Although a doubly stochastic process can explain the aggregated or-
der variability, it imposes more assumptions on the process, that makes it
less tractable for implementation.

Another approach to characterize the demand flows in a supply chain
is using a time series model. For example, the Autoregressive Integrated
Moving Average (ARIMA) process, which uses historical data and forecasts
demand based on correlations between consecutive demand realizations (
Lee et al. (1997), Graves (1999), and Gilbert (2005)). Or more generally,
vector autoregressive time series (Aviv (2003)). However, the autoregressive
process, even though popular in the literature, requires to estimate complex
parameters. Here again the seasonalities make the estimation of the param-
eters very difficult.

This paper proposes a new measurement called the peakedness, which has
been used for a long time in the telecommunication literature to measure the
variability of flows in networks (see (Wilkinson, 1956) for a seminal paper).
The peakedness is calculated based on the number of busy servers in a queue
with infinite servers, namely the ratio of its variance over its mean value. As
demonstrated in this paper, the peakedness is easy to compute and practical
to apply in real life supply chains. Moreover, it is amenable to closed form
formulas for order variability control and system optimization.

The peakedness functional provides a new approach for measuring order
variability without relying on detailed assumptions of the underlying pro-
cess. It does not require the interarrival times of the order flows to be i.i.d
as well. Simply assuming that the order flow follows a point process with a
known long-run average arrival rate, the peakedness can be easily computed
from real life data based on a sufficiently large sample of observations. We
also show in this paper how to estimate the peakedness from real life demand
processes.

The peakedness can also be used for order variability control in a supply
chain. Taking similar modeling hypotheses as in Graves (1999), we are able
to characterize the demand, forecast and inventory variables based on the
peakedness functional. Our results hold for single stage inventory systems
and multistage inventory systems, and can further be extended to tree-
structured supply chains with a single supplier and multiple retailers. Fur-
thermore, the peakedness can be applied to study traditional supply chain
questions such as quantifying bullwhip effects, and determining inventory
safety stock levels.

The rest of the paper is organized as follows. We first give a review of the
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existing literature in section 2. We introduce the peakedness in section 3
and present some important properties for our context. We develop our
single-stage inventory system model, as well as the extensions to the multi-
stage inventory model and to the supply chain network in section 4 . In
section 5, we compute the peakedness based on the real life data of a Belgium
supermarket chain, and compare the estimated order flows variability with
simulation results and that of Graves (1999). Finally, we conclude the paper
with practical implications of this work.

2 Related work

There is a substantial body of literature concerning the variability in supply
chains. In terms of modeling the order flows, several approaches have been
used. See, for example, Browne and Zipkin (1991), Sivazlian (1974), Sahin
(1979), Sahin (1982) for renewal processes, and Hadley and Whitin (1963)
for Poisson process. For doubly stochastic Poisson processes, the reader is
referred to Cox (1955) and Ozekici and Soyer (2006). See also Song and
Zipkin (1993) for modeling the order process as a Markov chain.

Another popular approach for modeling order flows in supply chains is
a time series based model, notably the Autoregressive Integrated Moving
Average (ARIMA) process. Assuming a nonstationary ARIMA (0,1,1) de-
mand process, Graves (1999) shows that the order process of the agent is an
ARIMA(0,1,1) process as well, if employing an adjusted base-stock policy,
which replenishes the inventory and adjusts the base stock level to the new
forecasts. He further characterizes the inventory random variable and uses
it to find the safety stock requirement. Gilbert (2005) generalizes the re-
sults for any ARIMA(p,d,q)-type demand series. He shows that the orders
and inventories at all stages can also be modeled as ARIMA time series and
provides their closed form expressions for the analysis of the bullwhip effect.

The bullwhip effect and its consequences are widely discussed in the lit-
erature, mostly using the time-series model. In the economics area, Kahn
(1987) is the first to show the bullwhip effect for a firm that faces uncertain
demand modeled by an AR(1) process. The author observes that the vari-
ability of the demand has a double effect: first the variability is reproduced
in the production line through the replenishment of the stock and second
the variability is amplified due to the adjustment of the inventory level itself
in order to reflect changes in the forecasts for the future periods.

Extending Kahn’s work on AR(1) model, Lee et al. (1997) identify causes
for the bullwhip effect and analyze the implication on managerial decisions,
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such as demand signal, order batching, rationing game, and price variation.
They also demonstrate that the supplier’s demand variance is minimized
when the retailers’ orders are balanced, i.e., the same number of retailers
order each period. Assuming balanced orders, Cachon (1999) studies the
management of supply chain demand variability in a model with one sup-
plier and N retailers by ”scheduled ordering”. He shows that the supplier’s
demand variance is further reduced when the retailer order intervals are
lengthened or when the retailer’s batch size is reduced. Chen et al. (2000)
show the impact of forecasting and lead-times on the variability. They also
demonstrate that variability amplification is reduced but not eliminated by
information sharing.

Croson and Donohue (2006) find that the bullwhip effect still exists when
all major drivers of variability amplification are removed. Based on experi-
mental results of the beer game, they emphasize the impact of the behavior
of the agents on the supply chain such as the misperception of change in
demand. Studying the bullwhip effect in industry level, Cachon et al. (2007)
find that wholesale industries exhibit a bullwhip effect, but retail industries
generally do not, nor do most manufacturing industries. In addition, they
point out that industries with highly seasonal demand tend to smooth the
variability amplification. A recent paper of Chen and Lee (2009) indicates
that advanced demand information such as projected future orders of the
retailer is also an effective way to pass demand information and reduce the
order variability along the supply chain.

The impact of the variability has been studied by a number of papers,
focusing on how to set strategic safety stock levels in complex supply chain
networks. Assuming demand is stationary, Graves and Willems (2000) pro-
pose an algorithm optimizing the strategic safety stock placement in supply
chains. Graves and Willems (2008) further extend their previous work to
nonstationary demand process. Both of these work are following the so-
called “constant service time” policy.

In this paper, we follow the similar model framework and ordering policy
as in Graves (1999), but we take a broader perspective. We contribute to the
literature in the following senses: (1) Rather than assuming that the demand
follows an ARIMA process with some known parameters, we model the order
flows in a supply chain by a general point process, which makes the renewal
process to be a specific form. (2) Based on the general order flow process,
we propose an easy to calculate but effective variability measurement, the
peakedness. (3) Last but not least, our model can handle the propagation
of variability in supply chains of general structure.
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3 The peakedness functional

In this section, we introduce a new measure of flow variability in supply
chains, the peakedness. We first model order flows of supply chains by a
point process. We then introduce the concept of peakedness. We pursue by
presenting some properties that enable us to estimate the peakedness from
different forms of arrival data in practice.

3.1 A general arrival process model

We model the order flows of supply chains by a general arrival process: the
point process. A point process is used to describe a simple arrival process
with single arrivals, and is mathematically defined by

X(t) =
+∞∑
i=0

δ(t− Ti),

where {Ti}, i = 0, 1, ..., constitutes the sequence of arrival times, and δ(·)
is the Dirac delta function (Macq (2005), Daley and Vere-Jones (2002)).
X(t) is thus equal to one when an arrival occurs and to zero otherwise. By
convention, T0 = 0. The corresponding counting process of X(t) is

N(t) =
∞∑
i=0

u(t− Ti),

where u(t) is the unit step function:

u(t) =

{
0 if t < 0
1 otherwise.

We assume that the point process X(t) is stationary and give its defini-
tion from Daley and Vere-Jones (2002).

Definition 3.1. A point process is stationary when for every r = 1, 2, ... and
all bounded Borel subsets A1, ..., Ar of the real line, the joint distribution of

{N(A1 + t), ..., N(Ar + t)}

does not depend on t, (−∞ < t <∞).

Here the sets Ai are Borel sets of (0,∞) and we require t > 0. Intuitively,
by stationarity, it means that the distribution of number of arrivals does not
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depend on time t. Alternatively, the arrival rate of X(t), if denoted by λ,
0 < λ <∞, is a constant and given by λ = E[X(t)].

A point process is a general arrival process for which it is assumed that
the inter-arrival times are random variables. Unlike renewal processes, it
does not require the inter-arrival times to follow a certain distribution. As
a result, a renewal process is a special point process.

3.2 A general variability measure: the Peakedness

Suppose that all arrivals of X(t) go to a queue with an infinite number of
servers. Their service time distribution is denoted by G. We observe S(t),
the number of busy servers, and define the peakedness of the arrival flow
X(t) as

z(X,G) =
Var[S(t)]

E[S(t)]
. (1)

Specifically, when G is an exponential distribution with service rate s, 0 <
s <∞, we denote the peakedness by z(X,M(s)) ; and z(X,D(s)) when G is
deterministic with service rate s. Figure 1 shows the fictitious infinite server
pool that is used to evaluate the peakedness. We refer the interested reader
to Jagerman et al. (1997) or Wolff (1989) for a more extensive introduction
to the peakedness.

The peakedness measures the total variability of the order flow. To illus-
trate this, consider two deterministic arrival processes X1 and X2. For X1,
one order arrives every period, and for X2, 10 orders arrive every ten periods,
with no order arrivals in-between. As a result, the arrival rate for both deter-
ministic arrival process are the same, namely 1. Suppose service time is con-
stant at one period. For X1, the number of busy servers S(t) = {1, 1, ...., 1}
and the peakedness is obviously 0; while for X2, S(t) = {10, 0, ...; 10, 0, ...},
the peakedness is larger than zero. Therefore, the peakedness can differen-
tiate these two deterministic arrival processes.

Property 1. If X(t) is a Poisson process, its peakedness is 1.

This property is a direct consequence of the fact that the number of
busy servers is geometrically distributed for an M/G/∞ system whatever
the service time distribution. This is handy, as this gives an easy benchmark
for the variability of any process. Moreover this benchmark coincides with
the more familiar coefficient of variation.

In terms of implementation, the estimation of the peakedness of an ar-
rival flow poses some problems. The first problem is that the definition
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Figure 1: A schematic representation of the arrival stream and the number
of busy servers

involves observing the behavior of an infinite server system with random
service times, these service times will introduce some randomness in the es-
timation. The second problem is that in order to accurately simulate the
infinite server system we should keep all individual arrival times, this infor-
mation can quickly take a lot of storage space. In the next section we show
how we can eliminate the first problem by using the so called fluid peaked-
ness. In the subsequent subsections we show how it is possible to work with
simplified data.

3.3 The fluid peakedness

It is problematic that two sources of variability are present in the calculation
of z(X,G): one from the demand arrival process X(t), and another from
the service time uncertainty G. In order to focus on the variability of the
demand process, we propose a new measure: the fluid peakedness, based on
a “fluidity” assumption of the service process. Each infinitesimal amount
of demand is independently served by its own infinitesimal server according
to the given service time distribution G. For a single arrival at time t, the
number of servers still answering this arrival at time t′ > t would in this
case be FG(t′ − t) = P [G > t′ − t]. The fluid peakedness is then calculated
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Figure 2: Illustration of the difference among Sf (X,M(s), t) (i),
Sf (Xd,M(s), t) (ii), and Sf,d(Xd,M(s), nT ) (iii) (T = 2).

by

zf (X,G) =
Var[Sf (X,G, t)]

E[Sf (X,G, t)]
, (2)

with Sf (X,G, t) the amount of demand still being served at any time t, given
the service distribution G.

With this definition, all the randomness in Sf (X,G, t) comes from the
arrival flow and not from the service times. When the service time distri-
bution G is exponential with service rate s, Sf (X,M(s), t) can be seen as a
process that is subject to an exponential decay and increases by one each
time a new demand arrives, i.e., Sf (X,M(s), t) =

∑
Ti≤t e

−s(t−Ti). Figure
2 (i) gives an illustration of Sf (X,M(s), t), with each arrow representing a
demand arrival.

A more general discussion about the relationships of the peakedness and
the fluid peakedness is provided in Appendix A. In particular, we have the
following:

Property 2. For any point process X, z(X,M(s)) = zf (X,M(s)) + 1
2 .

A sketch of the proof is presented in Appendix A. The interested reader
may find a more detailed proof in Macq (2005).

Property 3. For any point process X, z(X,D(s)) = zf (X,D(s)).

This property follows directly from the fact that a deterministic service
distribution contains no randomness.

Hereafter in this paper, when we say peakedness, we mean fluid peaked-
ness.
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3.4 Estimating the peakedness from batch arrival data

Notice that in practice the demand arrival process X(t) is often difficult
to observe continuously for every t ≥ 0. One might only have access to
information about the cumulated demand over a time interval such as an
hour or a day. We here show how to use cumulated data to compute a
peakedness.

Denote by T the length of the time interval, and by Dn the demand
observed during the nth time period, i.e., Dn = N(nT ) − N((n − 1)T ),
n ∈ Z+. Xd = {D1, D2, ...} thus constitutes a discrete-time batch arrival
process with batch size Dn, n = 1, 2, ..., and interval arrival time length
T . In other words, Xd is obtained by aggregating the arrivals of X(t) over
periods of length T .

The number of busy servers of the discrete-time arrival process for an
exponential service time distribution M(s), if denoted by Sf (Xd,M(s), t), is
then computed recursively by

Sf (Xd,M(s), t) = Sf (Xd,M(s), (n− 1)T )e−s[t−(n−1)T ], (3)

(n− 1)T < t < nT ∀n ∈ N0

Sf (Xd,M(s), nT ) = Sf (Xd,M(s), (n− 1)T )e−sT +Dn, ∀n ∈ N0 (4)

Sf (Xd,M(s), 0) = 0. (5)

Figure 2 (ii) shows Sf (Xd,M(s), t) when T = 2.
As arrivals only occur at epochs nT , n ∈ N0, one would likely use the

values of Sf (Xd,M(s), t) at those times as sample values to compute the
peakedness. In other words one would only consider the set of measurements
{Sf (Xd,M(s), T ), Sf (Xd,M(s), 2T ), ...}. With this set of measurements, we
compute the peakedness of the process presented in Figure 2 (iii), noted
Sf,d(Xd,M(s), t) and which differs from process Sf (Xd,M(s), t). Property
4 explains how to adjust this peakedness to obtain an unbiased peakedness
for process Xd.

Property 4. Let zf,d(Xd,M(s)) be the ratio of the variance over the mean
of the elements in {Sf (Xd,M(s), T ), Sf (Xd,M(s), 2T ), ...}. Then,

zf (Xd,M(s)) = zf,d(Xd,M(s))
1 + α

2
+
λT

2

1 + α

1− α
− λT

sT
, (6)

where α = e−sT .

Proof. For batch arrival data, the arrivals only occur at nT , n ∈ Z+. Given
an exponential service distribution M(s), Sf (Xd,M(s), t) can be seen as a
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process that is fed at every arrival time and that is subject to an exponential
decay between arrival times. The value of Sf (Xd,M(s), t) can therefore been
calculated from Sf (Xd,M(s), nT ), for every t ∈ [nT, (n + 1)T ). In other
words for any value of τ ∈ (0;T ],

Sf (Xd,M(s), nT + τ) = Sf (Xd,M(s), nT )e−sτ (7)

Therefore, we have E[Sf (Xd,M(s), nT + τ)] = e−sτE[Sf (Xd,M(s), nT )]
and E[Sf (Xd,M(s), nT + τ)2] = e−2sτE[Sf (Xd,M(s), nT )2]. Consequently,
we can write:

E[Sf (Xd,M(s), t)] =
1

T

∫ T

0
E[Sf (Xd,M(s), nT )]e−sτdτ

=
1− α
sT

E[Sf (Xd,M(s), nT )], (8)

E[Sf (Xd,M(s), t)2] =
1

T

∫ T

0
E[Sf (Xd,M(s), nT )2]e−2sτdτ

=
1− α2

2sT
E[Sf (Xd,M(s), nT )2], (9)

where α = e−sT . Combining these two expressions together, we have:

Var[Sf (Xd,M(s), t)] =
1− α2

2sT
E[Sf (Xd,M(s), nT )2]

−(1− α)2

(sT )2
E2[Sf (Xd,M(s), nT )]

=
1− α2

2sT
(Var[Sf (Xd,M(s), nT )]

+E2[Sf (Xd,M(s), nT )]
)

−(1− α)2

(sT )2
E2[Sf (Xd,M(s), nT )] (10)

We easily deduce from (4) and from the definition of Dn that

E[Sf (Xd,M(s), nT )] =
E[Dn]

1− α
(11)

=
λT

1− α
. (12)

Dividing (10) by (12) eventually yields (6).
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Furthermore it is possible to find an approximation of zf (X,M(s)), i.e.
the peakedness associated to the point process X based on zf,d(Xd,M(s)).
The approximation relies on the following property.

Property 5. Let zf,d(X,M(s)) be the peakedness computed with the sample
values in {Sf (X,M(s), T ), Sf (X,M(s), 2T ), ...}, i.e. the values of Sf (X,
M(s), t) at the time of the batch arrivals in Xd. Then zf,d(X,M(s)) can be
approximated as

zf,d(X,M(s)) ' 1

2
− 1

sT
· 1− α

1 + α
+ zf,d(Xd,M(s))

(
1− α
sT

)
.

Proof. Sf (X,M(s), nT ) can be computed with the following equation

Sf (X,M(s), nT ) = Sf (X,M(s), (n− 1)T )α+

Dn∑
i=1

e−s(nT−ti) (13)

where ti, (n−1)T < ti ≤ nT is the time of arrival i. Similarly, Sf (Xd,M(s),
nT ) is easily computed in the following way:

Sf (Xd,M(s), nT ) = Sf (Xd,M(s), (n− 1)T )α+Dn. (14)

The difference between Sf (X,M(s), nT ) and Sf (Xd,M(s), nT ) is that the
service of arrival i in process X is delayed by a time T − ti in Sf (Xd,M(s),
nT ). Therefore, upon the beginning of its service in Sf (Xd,M(s), nT ), the
number of remaining associated busy servers in Sf (X,M(s), nT ) is equal to
e−s(nT−ti) whereas it is equal to 1 in Sf (Xd,M(s), nT ). The time difference
τi = nT − ti is a random variable which we will suppose to be uniformly
distributed over the interval [0,T].

(12) gives E[Sf (Xd,M(s), nT )]. The related variance is equal to

Var[Sf (Xd,M(s), nT )] = Var[Sf (Xd,M(s), nT )]α2

+Var[Dn] + 2 Cov[Sf (Xd,M(s), nT ), Dn]α

=
Var[Dn] + 2 Cov[Sf (Xd,M(s), nT ), Dn]α

1− α2
.

We therefore find

zf,d(Xd,M(s)) =
Var[Dn] + 2 Cov[Sf (Xd,M(s), nT ), Dn]α

E[Dn](1 + α)
.
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Similarly, for Sf (X,M(s), nT ), we deduce from (13)

E[Sf (X,M(s), nT )] =
E[
∑Dn

i=1 e
−µτi ]

1− α

=
E[Dn]E[e−µτ ]

1− α
.

and

Var[Sf (X,M(s), nT )]

= Var[Sf (X,M(s), nT )]α2 + Var[

Dn∑
i=1

e−µτi ]

+2 Cov[Sf (X,M(s), nT ),

Dn∑
i=1

e−µτi ]α

=
Var[

∑Dn
i=1 e

−µτi ] + 2 Cov[Sf (X,M(s), nT ),
∑Dn

i=1 e
−µτi ]α

1− α2

Applying the law of total variance, we easily solve Var[
∑Dn

i=1 e
−µτi ]:

Var[

Dn∑
i=1

e−µτi ] = E[Var[

Dn∑
i=1

e−µτi |Bn]] + Var[E[

Dn∑
i=1

e−µτi |Dn]].

If we assume that all τi’s are independent, this expression becomes

Var[

Dn∑
i=1

e−µτi ] = Var[e−µτ ]E[Dn] + E2[e−µτ ]Var[Dn].

As the service of any arrival is delayed by a time uniformly distributed over
[0, T ] in Sf (Xd,M(s), nT ), the amount of fluid operators answering any
arrival in Sf (X,M(s), nT ) is on average smaller by a factor E[e−µτ ] than
the amount of operators in Sf (Xd,M(s), nT ). We therefore assume that

Cov[Sf (X,M(s), nT ),
∑Dn

i=1 e
−µτi ] = Cov[Sf (Xd,M(s), nT ), Dn]E2[e−µτ ].

Therefore,

Var[Sf (X,M(s), nT )] ' Var[e−µτ ]E[Dn] + E2[e−µτ ]Var[Dn]

1− α2

+
2Cov[Sf (Xd,M(s), nT ), Dn]E2[e−µτ ]α

1− α2
.
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We obtain our approximation for zf,d(X,M(s)) by dividing this last expres-
sion by E[Sf (X,M(s), nT )]:

zf,d(X,M(s)) ' Var[e−µτ ]

E[e−µτ ](1 + α)

+ E[e−µτ ]

(
Var[Dn] + 2Cov[Sf (Xd,M(s), nT ), Dn]e−µT

E[Dn](1 + e−µT )

)
' Var[e−µτ ]

E[e−µτ ](1 + α)
+ E[e−µτ ]

Var[Sf (Xd,M(s), nT )]

E[Sf (Xd,M(s), nT )]
.

As,

E[e−µτ ] =
1

T

∫ T

0
e−µtdt

=
1− e−µT

µT

Var[e−µτ ] =
1

T

∫ T

0
e−2µtdt−

(
1− e−µT

µT

)2

=
1− e−2µT

2µT
−
(

1− e−µT

µT

)2

,

we can write

zf,d(X,M(s)) ' 1

2
− 1

sT
· 1− α

1 + α
+ zf,d(Xd,M(s))

(
1− α
sT

)
.

If we make the additional assumtion that zf,d(X,M(s)) = zf (X,M(s)),
i.e. that taking sample measurements of Sf (X,M(s), t) at times nT does
not introduce a bias, we obtain an estimate for zf (X,M(s)). this last as-
sumption essentially means that the arrival process is sufficiently ergodic
that in the long run the number of busy virtual servers at the times nT
has the same distribution as at any random time. Simulation experiments
confirmed the quality of this approximation for different types of demand
processes.

4 A peakedness based model

In this section we model the variability of flows in a supply chain based
on the peakedness, and investigate how to manage the variability using the
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peakedness functional. We consider a similar model as in Graves (1999),
and assume that all participants use exponential smoothing to make their
forecasts and order according to an adjusted base stock type policy. Rather
than assuming that the demand follows an ARIMA process with some known
parameters, we simply suppose that the demand is a point process and that
the long term demand arrival rate λ and its peakedness are known.

4.1 A single-stage inventory system

We start with an agent selling a single product and facing a single-stage
inventory problem in a periodic review system, with T the time length for
each review period. We assume that the order replenishment lead-time is
fixed and known as HT . In other words H is the number of periods included
in the lead-time. In each period n, n ∈ Z+, the agent receives the quantity
ordered H periods ago, observes the demand for the current period Dn,
fulfills demand from inventory as much as possible and backlogs unsatisfied
demand; and then he makes a forecast Fn for the demand in the next periods
and finally places an order for a quantity On. The demand process, the
forecast model, and the inventory control variables in each period n are as
follows.

• Demand process: We model demand as a point process with long-
term arrival rate λ, and observed at discrete-time intervals {T, 2T, ....}.
The aggregated demand process is thus a discrete batch arrival process
Xd constituted by {D1, D2, ...}, and the average number of arrivals per
time interval is equal to E[Dn] = λT , n ∈ Z+. As mentioned earlier,
the peakedness can be calculated based on the aggregated demand
arrival process.

• Forecast model: After observing the demand Dn in period n, the
agent makes a forecast Fn for the demand in period n+1. The forecasts
are made based on an exponential smoothing technique with parameter
α and initial forecast λT :

F0 = λT

Fn = (1− α)Dn + αFn−1, (15)

with α = e−sT , and n = 1, 2, .... It has been shown in the literature
that for an ARIMA(0,1,1) demand process, the exponential-weighted
moving average provides the best forecast (Graves (1999)). In this pa-
per, given that the demand process is a point process, we still use the

14



exponential smoothing technique considering its theoretical and prac-
tical popularity. We suppose that the smoothing factor s is chosen
such as to minimize the mean square forecasting error. Intuitively, a
small smoothing factor s means that more weight is given to past ob-
servations, or, equivalently, that a longer period is taken into account
in the forecast.

• Inventory control variables: In each period, the agent receives the
order issued H periods ago, and places a new order to its supplier. We
write the inventory balance equation as follows:

In = In−1 −Dn +On−H , (16)

where In is the ending inventory level of period n, and On is the order
quantity placed at period n, n = 1, 2, ....

We adopt an adjusted base-stock policy for the order placement, which
is widely used in the literature. See, for example, Kahn (1987) and
Graves (1999). The base-stock policy is adjusted as the demand fore-
cast changes over time, and indicated by.

On = Dn +H(Fn − Fn−1) (17)

The variability of the orders placed by the agent is thus twofold. It
comes first from the variability of the demand observed, and second
from the variability of adjusting the forecasts.

Substituting (17) to (16) yields:

In = In−1 −Dn +Dn−H +H(Fn−H − Fn−H−1) (18)

By repeated backward substitution, we can then rewrite (16) as

In = I0 −Dn − ...−Dn−H+1 +HFn−H , (19)

with I0 the initial inventory level set at the beginning of the planning hori-
zon.

4.1.1 Single stage peakedness model

We first model the variability of the order flow using the peakedness. Note
that the number of busy servers for the peakedness computed with a deter-
ministic service time of T would correspond to the number of arrivals during
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a period of T . Consequently we have

Dn = Sf (Xd,D(1/T ), nT ) (20)

Var[Dn] = λTzf,d(Xd,D(1/T )), (21)

where Sf,d((Xd,D(1/T ), nT ) and zf (Xd,D(1/T ), nT ), are the number of
busy servers and peakedness defined previously. (21) is obtained based on
the definition of fluid peakedness, and the expected value λT of the demand
in each period.

Analogously, we can measure the forecast and its variance by the peaked-
ness functional, as indicated in Lemma 4.1. See technical proofs in Appendix
B.

Lemma 4.1. The forecast Fn and its variance can be computed by

Fn = (1− α)Sf (Xd,M(s), nT ) (22)

Var[Fn] = (1− α)λTzf,d(Xd,M(s)) (23)

with α = e−sT and where Sf (Xd,M(s), nT ) and zf,d(Xd,M(s)) are the num-
ber of busy servers and peakedness defined previously.

We continue to characterize the inventory control variables by the peaked-
ness in Lemma 4.2.

Lemma 4.2. If ignoring the autocovariance effect of demands across peri-
ods, i.e., Cov[Dn, Dn−i] = 0, for i = 1, 2, ..., the order quantity On and its
variance can be computed by

On = Sf (Xd,D(1/T ), nT ) +H(1− α)[Sf (Xd,M(s), nT )

−Sf (Xd,M(s), (n− 1)T )] (24)

Var[On] = λTzf,d(Xd,D(1/T ))(1 + 2H(1− α))

+2(1− α)2H2λTzf,d(Xd,M(s)), (25)

if employing a base-stock policy.

The proof is given in Appendix B.2. Ignoring the autocovariance effect
is for analytical convenience and popular in the literature (see e.g., Graves
(1999) and Gilbert (2005)). Observing (25) we can see that the first item
indicates the variability propagation of the downstream node demand, and
the second item indicates the variability propagation due to the forecast.
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By substituting (20) and (22) into equation (19), we find that the inven-
tory level In and its variance are equal to

In = I0 −
H−1∑
i=0

Sf (Xd,D(1/T ), (n− i)T )

+H(1− α)Sf (Xd,M(s), (n−H)T ) (26)

Var[In] = HVar[Dn] +H2Var[Fn]

= HλTzf,d(Xd,D(1/T )) +H2(1− α)λTzf,d(Xd,M(s)) (27)

4.1.2 Extended discussion

Suppose the initial inventory level I0 is the control variable determined at
the beginning of the planning period, as the system safety stock to assure
some service level. If following the well-known assumption that inventory
fluctuations follows a Normal distribution, we then have the following propo-
sition

Proposition 4.3. If inventory fluctuations follow a Normal distribution,
the initial inventory level I0 is then set to be a multiple of Std[In], and

I0 = ξ
√
HλTzf,d(Xd,D(1/T )) +H2(1− α)λTzf,d(Xd,M(s)) (28)

with ξ the critical-fractile of service.

It should be noted that Proposition 4.3 is satisfied by a number of de-
mand models, for example, normally distributed demand models, and de-
mands of ARIMA models with the random noise εt belonging to N(0, σ2),
and mean demand in a period equal to λT .

If we further include a unit holding cost h and a unit penalty cost b to
the model, the objective is to decide I0 to minimize the expected cost in each
period such that the probability of not stocking out equals b/(b+ h), which
is alternatively a newsvendor problem. As indicated in Graves (1999) and
Veinott (1965), the adjusted base-stock inventory policy is thus myopically
optimal if On is allowed to be negative.

Noticing E[Sf (Xd,D(1/T ), nT )] = λT , and Var[Sf (Xd,D(1/T ), nT )] =
Var[Dn] = σ2, when α = 1, i.e. demands across periods are i.i.d., we find

I0 = ξ
√
HλTzf,d(Xd,D(1/T )) = ξσ

√
H,

which is the same result as in Graves (1999) and Lee et al. (1997). In
addition, the marginal safety stock decreases with the increasing lead-time.
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On the other hand, when α < 1, demands across periods are correlated, the
marginal safety stock increases as the lead-time grows.

The impact of the length of the review period is more complicated. On
one hand, as the review length increases, the variability increases due to
the larger batch size, which equals λT . On the other hand, the variability
might decrease because the mean demand tends to be stationary with larger
review periods.

4.2 Single-item multiple-stage system

In this section, we extend the previous analysis to a multi-stage inventory
system. We start with a two-stage series supply chain with a downstream
node and an upstream node. We are interested in estimating how the de-
mand variability is propagated. Results in the previous section apply to the
downstream node. We now investigate the upstream node.

The event sequence for each node in each period remains the same as
described in the single-stage model. The demand process, forecast and in-
ventory control variables for the upstream node at period n, n = 1, 2, ..., are
analyzed as follows.

• Demand process: The demand process of the upstream node is thus
the order flow issued by the downstream node, and denoted by {O}.
{O} = {O1, O2, ..., On, ...} with On the orders from downstream stage
at period n. Noticing E[Fn] = E[Dn] = λT , by (17), we then have
E[On] = λT for N = 1, 2, .... For n ≤ 0, let On = λT .

• Forecast model: At period n, after the demand at the upstream

node On is observed, a new forecast F
(2)
n for the demand in period

n+ 1 is made based on an exponential smoothing technique,

F (2)
n = (1− β)On + βF

(2)
n−1 (29)

with β = e−rT , and r is chosen such as to minimize the mean square

forecasting error. Let F
(2)
n = λT for n ≤ 0.

• Inventory control variables: The ending inventory level at the

upstream node at period n, if denoted by I
(2)
n , is then:

I(2)n = I
(2)
n−1 −On +O

(2)
n−L (30)

where L is the number of periods included in the lead-time for order

replenishment at the upstream node, and O
(2)
n is the order placed at

period n.
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Similarly, we assume that in the upstream node an order is placed
based on the adjusted base-stock policy, and calculated by

O(2)
n = On + L(F (2)

n − F (2)
n−1) (31)

The first item is the demand observed at n-th period, and the second
item is the adjusted level for the future L periods.

Let O
(2)
n = λT for n ≤ 0. Substituting (31) to (30) and by backward

repetition , we obtain

I(2)n = I
(2)
0 −On − ...−On−L+1 + L · F (2)

n−L (32)

4.2.1 Multiple stage peakedness model

Noticing that the inventory order quantities issued by the downstream node
are the order arrivals to the upstream node, we are now able to characterize
the demand and forecast of the upstream node as

On = Sf (O,D(1/T ), nT ) (33)

Var[On] = λTzf,d(O,D(1/T )) (34)

F (2)
n = (1− β)Sf (O,M(r), nT ) (35)

Var[F (2)
n ] = (1− β)λTzf,d(O,M(r)) (36)

The ending inventory level at the end of period n is then

I(2)n = I
(2)
0 −

L−1∑
i=0

Sf (O,D(1/T ), (n− i)T ) + L(1− β)Sf (O,M(r), (n− L)T )

(37)
Lemma 4.4 establishes the variability propagation equations based on the

peakedness functional, relating (37) to the peakedness of the downstream
node.

Lemma 4.4. If ignoring the autocovariance effect of demands across peri-
ods, i.e., Cov[Dn, Dn−i] = 0 for i = 1, 2, ..., the peakedness of the orders
issued by the downstream node can be calculated by

zf,d(O,D(1/T )) = (1 + 2H(1− α))zf,d(Xd,D(1/T ))

+2(1− α)2H2zf,d(Xd,M(s)) (38)
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with α = e−sT , where zf,d(Xd,D(1/T )) and zf,d(Xd,M(s)) are defined pre-
viously for the downstream demand. In addition,

zf,d(O,M(r)) =
1

(1 + β)

[(
1 + 2H

(1− α)(1− β)

1− βα

)
zf,d(Xd,D(1/T ))

+2H2 (1− α)2(1− β)

1− βα
zf,d(Xd,M(s))

]
(39)

with β = e−rT .

The proof is given in Appendix B.3.
By (38), we see that zf,d(O,D(1/T )) increases with the lead-time H of

the node, while decreases with α. Similar results apply to zf,d(O,M(r)),
which increases with the lead-time of the downstream agent.

As a remark, equations (38) and (39) permit to evaluate the amplification
of the variability at any consecutive nodes in a supply chain.

4.2.2 Extended discussion

Similarly, suppose the initial inventory level I
(2)
0 is the control variable de-

termined at the beginning of the planning period. Assume Dn ∈ N(λT, σ2),

I
(2)
0 is then set to be a multiple of Std[I

(2)
n ], and

I
(2)
0 = ξ(2)

√
LλTzf,d(O,D(1/T )) + L2(1− β)λTzf,d(O,M(r)) (40)

with ξ(2) the critical-fractile of service for the upstream node.
Substituting (38) and (39) into (40), we then continue to investigate the

impact of lead-time, demand correlation, and length of review period on the
safety stock level of the upstream stage.

When α = 1, the downstream demands are independent and identically
distributed. By (38) , zf,d(Od,D(1/T )) = zf,d(Xd,D(1/T )) and by (39)
zf,d(O,M(r)) = zf,d(Xd,D(1/T ))/(1 +β), where β is the forecast parameter
of the upstream agent. Noticing zf,d(Xd,D(1/T )) = σ2/(λT ),

I
(2)
0 = ξ

√
Lσ2 + L2(1− β)σ2/(1 + β).

The safety stock is dependent on the order lead-time L.
When α < 1, the safety stock of the upstream agent is then dependent

not only on the upstream lead-time, but also the downstream lead-time,
similar to Graves (1999).

Observing (40), we also find that as the review length gets smaller, the
inventory requirement decreases.
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4.2.3 Quantifying the bullwhip effect

Based on the variability propagation equation, we are now able to quantify
the well-known bullwhip effect using the peakedness measurement. We focus
on a two-echelon model while the results can be extended to the general case.

The following results hold based on the previous analysis.

Corollary 4.5. The variance of the order flow is propagated as

Var[O(2)
n ] = Var[On](1 + 2L(1− β)) + 2(1− β)L2Var[F (2)]

= λTzf,d(O,D(1/T ))(1 + 2L(1− β))

+2(1− β)2L2λTzf,d(O,M(r)) (41)

In addition, Var[O
(2)
n ] ≥ Var[On] ≥ Var[Dn].

As indicated in Corollary 4.5, the bullwhip effect of the upstream stage
depends not only on its lead-time L, but also on the lead-time of the down-
stream stage H. We can also easily verify that the batch order size λT and
the forecasting parameters α and β impact the bullwhip effect.

4.3 A tree-structured supply chain model

It is relatively easy to extend the model presented so far to predict the
variability in a tree-structured supply chain. Consider a supply chain model
with a single upstream agent and multiple downstream agents. We denote
by λi the arrival rate of demand at downstream agent i, and λin at the
upstream node. For technical simplicity, we need to assume that demands
at different downstream stages are independent. The analysis for the single-
stage model applies to each downstream agent.

With various order flows arriving to an upstream node, the arrival rate
and peakedness are merged according to Proposition 4.6.

Proposition 4.6.

The arrival flows of downstream agents are merged to the upstream agent

with the arrival rate λin =
∑

i λi. In addition, zin =
∑

i λizi∑
i λi

, where zi is

the peakedness for the downstream agent i, and zin is the peakedness for the
upstream agent.

The proof is easily obtained using basic computations on the variance of
S(t). See Tabordon (2002) for the details.
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By Proposition 4.6, we can therefore identify the initial safety stock level
for the upstream agent based on (40), assuming that all unsatisfied demands
are backlogged.

We now apply Proposition 4.6 to illustrate the possible utilization of our
model. We use a simple example with one supplier and N retailers, the total
time needed for the supplier to produce an item and deliver it to a retailer
is L. We will compare two types of policies, in the first case the policy is
completely decentralized and the retailers manage their inventories locally
and order to the supplier with a lead-time of L, consequently the supplier
does not need to anticipate orders, she can start production as soon as an
order arrives and deliver it on time. In the second case, which models a VMI
type policy, the supplier observes store inventory in real time, she manages
the global inventory and delivers to the retailer as needed to satisfy demand
(we suppose she can do so sufficiently fast in order to neglect safety stocks
at the retailer). These are in fact the two extreme cases, we could imagine
any situation where the retailer orders with a lead-time of Lr < L and the
supplier maintains some inventory such as to anticipate demand over a time
of L− Lr.

Suppose a tree-structured supply chain that consists in one supplier and
N retailer stores. Retailers observe their demand, make their forecast, and
place orders to the supplier in each period. Demands are assumed to be
independent. Denote by λi the arrival rate and zi the peakedness for the
demand process at store i. For simplicity, we suppose that review length,
lead-times and service levels for the different retailers are the same.

We first consider the case where each store holds inventory indepen-
dently. By Proposition 4.3, the initial inventory decision for store i, Ii,0, is
then

Ii,0 = ξ
√
HλiTzf,d,i(Xd,D(1/T )) +H2(1− αi)λiTzf,d,i(Xd,M(s)). (42)

The total inventory stocks for the supply chain system is then
∑

i Ii,0.
If employing VMI, the retailer stores provide demand information λi

and zf,d,i to the supplier and the supplier delivers the products to the re-
tailer stores while maintaining an agreed service level. The initial inventory
decision for the supplier, Id,0, is

Id,0 = ξ
√
HλinTzf,d,in(Xd,D(1/T )) +H2(1− αin)λinTzf,d,in(Xd,M(s)),

(43)
while λin and zf,d,in are obtained with Proposition 4.6. Comparing the
inventory stock requirements under both cases, i.e.,

∑
i Ii,0 − Id,0, we can
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quantify the impact of VMI on inventories depending on the characteristics
of the demand.

5 Numerical study

In this section we report a numerical study conducted (1) to demonstrate
how to calculate the peakedness from real life order flows, (2) to test whether
the variability is adequately estimated by the peakedness approach. We
compare the bullwhip effects of a two-stage supply chain by our peakedness
results with those of simulation approach and Graves (1999) as well. We
further show that by the peakedness we can determine the safety stock level
at the upstream stage of the supply chain, and estimate the total holding
and shortage cost.

Our numerical study is based on real life data collected from a supermar-
ket of Delhaize Group, which is a Belgian food retailer consisting of more
than 2600 stores on three continents. We suppose that the retail store man-
ager observes the sales every day and aggregates the demand of the entire
week, i.e., T = 1 week. Every week he makes a new forecast and issues an
order to the distribution center (DC). The DC delivers the orders within
that week, and the order fulfillment lead-time is H = 1 week. Similarly,
the DC issues orders to its upstream agent weekly, and the order fulfillment
lead-time is L = 2 weeks.

We first simulate the two-stage supply chain process. For the purpose
of this study, we consider the aggregated weekly sales for three different
products over a year, and regard it as the weekly demand, i.e., {Xd}. We
choose the smoothing factor value α that minimizes the forecast error, where
α = e−sT minimizes the mean square forecasting error. Weekly forecasts
are computed using (15), and the warm up effects with the forecasts are
avoided by duplicating the dataset to obtain a two-year horizon while using
the data for the second year only. Order quantity for each week can thus be
determined by (17) assuming that it employs an adaptive base-stock policy.
We can then obtain the bullwhip effect at the retailer stage by computing
the ratio of the variance of the order and the variance of the demand, i.e.
Var[On]/Var[Dn].

The sum of the order flows from the retailers is the demand arrival
process to the wholesaler, we repeat the simulation process with L = 2
week. Forecasts and orders of the wholesaler are determined by (29) and
(31), respectively. The smoothing factor β = e−rT is obtained by minimizing
the mean square forecasting error, like α for the demand process. It should
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Table 1: Simulation results
Product 1 2 3

Mean Demand 120.83 120.98 1.73

Retailer Variance of Demand 750.03 416.06 2.08
Smoothing factor (α) 0.65 0.80 0.95
Variance of Orders 1243.30 572.31 2.24

Wholesaler Variance of Demand 1243.30 572.31 2.24
Smoothing factor (β) 0.95 0.85 1.00
Variance of Orders 1506.17 934.96 2.24

be noted that β in Graves (1999) is obtained by 1−β = (1−α)/(1 +H(1−
α)). We summarize the simulation results including the demand and order
variances in Table 1. Similarly, the bullwhip effect (BWE) at the wholesaler
stage is measured by computing the ratio of the variance of its order and

the variance of its incoming demand, i.e. Var[O
(2)
n ]/Var[On].

The data received from the supermarket chain are daily sales for each of
the three products, the data about the exact checkout time of products is
aggregated every night and is not conserved by the chain in order to have a
more compact database. We used the results of subsection 3.4 to compute
the peakedness for each product.

Now we are ready to estimate the order flow variability and the bull-
whip effect by the peakedness. The peakedness of the order quantities
zf,d(O,D(1/T )) can be computed by (38). We can estimate zf,d(O,M(r))
using (39), and zf,d(O

(2), D(1/T )) by dividing (41) by E(On) = λT . All the
peakedness values are listed in Table 2. The bullwhip effect of the retailer
can then be calculated by zf,d(O,D(1/T ))/zf,d(Xd, D(1/T )), noticing that
the order flow rates stay the same (we assume no orders are lost).

As indicated in Graves (1999), if the demand process of the downstream
stage is an ARIMA(0,1,1) process, the order process, namely, the demand
process of the upstream stage is also an ARIMA (0,1,1) process. In addition,
a simplified measure of order variance amplification can be computed by
(1+H ∗ (1−α))2 (note that α in this paper corresponds to ‘1−α’ in Graves
(1999)), as compared to the variance of the demand. We summarize the
estimated bullwhip effects by different approaches in Table 3.

Table 3 reveals that overall the bullwhip effects estimated by the peaked-
ness approach is close to the simulation results and those estimated by
Graves (1999). We also see that bullwhip effect estimated by Graves (1999)
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Table 2: The peakedness result
Product 1 2 3

Retailer zf,d((Xd, D(1/T )) 6.21 3.44 1.20
zf,d((Xd,M(s)) 6.90 4.28 0.51
zf,d((O,D(1/T )) 12.24 5.16 1.33

Wholesaler zf,d(O,D(1/T )) 12.24 5.16 1.33
zf,d((O,M(r)) 3.59 2.29 0.60

zf,d((O
(2), D(1/T )) 14.76 8.66 1.33

Table 3: Comparison of bullwhip effects
Product 1 2 3

Retailer Simulation 1.66 1.34 1.07
Peakedness 1.97 1.50 1.10

Graves (1999) 1.82 1.44 1.10

Wholesaler Simulation 1.21 1.63 1.00
Peakedness 1.21 1.68 1.00

Graves (1999) 2.31 1.78 1.20

is a little over-estimated at the upstream stage level.
In order to compare the safety stocks for these three different approaches,

we calculate the safety stock levels at the wholesaler’s stage based on a
simplified formula of (28) (assuming α = 1):

ss = ξ ·
√
V ar[O] · L,

where ξ corresponds to the service level (SL), and L is the lead time for
replenishment at the wholesaler stage, V ar[O] is the variance of the demand
at the wholesaler stage. In addition, V ar[O] = BWE·V ar[D]. HereBWE is
computed and listed in Table 3 and V ar[D] is listed in Table 1 for different
approaches. We summarize the results of safety stock levels in Tables 4
to 6 for different service levels . As observed, the safety stock levels of
the peakedness approach is slightly higher as compared to the other two.
This is because the estimated bullwhip effects at the retailer’s stage by the
peakedness approach is slightly larger.

Suppose a simple setting with unit holding cost h and shortage cost s. We
calculate the weekly holding and shortage cost based on the real data, with
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different safety stock levels, that is, TC = h ·max[I
(2)
n , 0] + s ·max[−I(2)n , 0].

The inventory level I
(2)
n is calculated based on (32). When I

(2)
n ≥ 0, holding

cost occurs, otherwise, shortage occurs. We consider different service levels
with SL = 1−h/s for different s/h ratio. We present the relative cost values
in Table 4 (costs were normalized so that the cost of the policy based on the
simulation is 100).

We are also interested in the effective service level with these different
safety stock levels. We calculate the effective service level by the number of
periods when a stockout occurs as compared to the total number periods in
the planning horizon. The section “Effective service level” in Table 4 gives
the difference between the effective service levels reached and the target
service levels (with ′−′ meaning below the target and vice versa).

As observed from Tables 4 to 6, if we calculate the average of the normal-
ized cost for these 27 cases, we find that the peakedness approach achieves
the smallest average cost, that is, TCpeakedness = 99.31, while Graves (1999)
approach is the largest cost with TCgraves = 102.96, given the simulation
cost is 100. On the contrary, the distance of the effective service level to
the target service level by the peakedness approach is the highest, that is,
ESLpeakedness = −0.7%, whilst Graves (1999) approach obtains the smallest
effective service level with ESLgraves = −3.5%. Again, the simulation ap-
proach is in the middle at the value of −1.1%. As a summary, we notice that
the better precision of the peakedness model makes it possible to determine
safety inventory levels that generate savings for the supply chain.

6 Conclusion and further research

In this paper, we first propose to use the peakedness as a way of measur-
ing the variability of flows in a supply chain. The main advantage of this
approach is that it requires less assumptions on the underlying order flows.
Assuming that demand is a general point process, we generalize the most
popular demand models in the literature, such as time-series models, Pois-
son processes, and renewal processes. Though the peakedness might seem a
less intuitive measure of variability, it is actually very easy to compute from
real life data based on a sufficiently large sample of observations.

We further show that the peakedness can be used to characterize basic in-
ventory models in a supply chain system. We start with a single-stage inven-
tory model. Using the peakedness of the demand, we are able to characterize
the forecast (assuming forecasts are made using exponential smoothing), the
order decisions, and the inventory levels. We further make an extended dis-
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cussion of demand correlation and lead-time, and their impact on the initial
inventory stock level. By establishing the variability propagation equation
of the peakedness, we can further extend the results to multiple stage inven-
tory system, and quantify the bullwhip effects of the supply chain. Finally,
we extend the peakedness analysis to a tree-structured supply chain network
by proposing the merging equations of the peakedness.

Employing real life data from a Belgian supermarket, we show numer-
ically how the peakedness can be calculated easily. The results also verify
that the peakedness can measure the order flow variability effectively. As
compared to the ARIMA (0,1,1) assumption in Graves (1999), the peaked-
ness approach can be applied to general point processes, and the estimated
bullwhip effects are close to the simulation results.

In addition, our model can also includes cost considerations such as
inventory holding and shortage costs to find the optimal initial inventory
levels in order to achieve a specified service level. Such an analysis is based
on the assumption that inventory fluctuations follow a normal distribution.

This paper is the first attempt to use the concept of peakedness to ana-
lyze the variability in supply chain. We can see a lot of future applications
based on the peakedness model considering its simplicity for implementa-
tion and amenability for optimizing purposes. It is likely that more decision
variables could be introduced in the model, and there are many interesting
research questions. For example, how to use the peakedness for supply chain
planning, and manufacturing strategy decision. In addition, as the resulting
model is easy to compute, it could be integrated in economics based mod-
els such as the principal-agent based models that are very common in the
supply chain management literature. As Cachon (1999) observed the cost
of variability might be very different at different stages of the supply chain,
it would be interesting to link a cost model to the model presented here. It
would then be possible to build an optimization procedure to find the most
cost effective supply chain structure.
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A Link between the peakedness and the fluid
peakedness

Given a point process X(t) with rate λ, the peakedness for a general service
process G(s) is computed by

z(X,G(s)) = 1 +
s

λX

∫ ∞
−∞

(kX(t)− λXδ(t))ρF c(t)dt, (44)

where kX(t) is the covariance density function of the point process X(t),
δ(t) is the Dirac delta function and ρF c(t) is the autocorrelation function of
the service time distribution function. The fluid peakedness is computed by

zf (X,G(s)) =
s

λX

∫ ∞
−∞

kX(t)ρF c(t)dt. (45)

See Eckberg (1983) for more details about different ways of measuring the
peakedness. By comparing (44) and (45), we notice that

zf (X,G(s)) = z(X,G(s))− 1 + sρF c(0). (46)

Equation (46) implies that, for a given service time distribution G, both
definitions of peakedness only differ by a constant, i.e. a value independent
of the point process X(t) considered, and therefore provide us with the same
information about the point process.

Proof of Property 2. When the service times are exponentially dis-
tributed, ρF c(t) = 1

2se
−s|t|. Substituting ρF c(0) = 1

2s into (46) proves Prop-
erty 2.

B Other technical proofs

B.1 Proof of Lemma 4.1

Based on equation (15), we can write

Fn = (1− α)
n−1∑
i=0

αiDn−i. (47)

In the mean time, by (4) we have

Sf (Xd,M(s), nT ) =

n−1∑
i=0

αiDn−i. (48)
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Combining (47) and (48) yields Equation (22), the first statement of
Lemma 4.1. Furthermore, we already proved (see (12)) that

E[Sf (Xd,M(s), nT )] =
λT

1− α
.

We can therefore express the variability of the forecasts as a function of the
peakedness,

Var[Fn] = (1− α)2Var[Sf (Xd,M(s), nT )]

= (1− α)λTzf,d(Xd,M(s), nT ).

This completes the proof of Lemma 4.1.

B.2 Proof of Lemma 4.2

Equation (24) is obtained by substituting (20) and (22) into (17).
From equation (17), we find that

Var[On] = Var[Dn] +H2Var[∆Fn] + 2HCov[Dn,∆Fn], (49)

with ∆Fn defined as the difference between two successive forecasts, that
is ∆Fn = Fn − Fn−1. We prove (25) by expressing (49) as a function of
Var[Dn] and Var[Fn]. We then substitute them with (21) and (23). For the
second term we have:

Var[∆Fn] = Var[Fn] + Var[Fn−1]− 2 Cov[Fn, Fn−1]

= 2Var[Fn]− 2 Cov[(1− α)Dn + αFn−1, Fn−1]

= 2(1− α)Var[Fn]− 2(1− α) Cov[Dn, Fn−1]).

Noticing that Fn−1 = (1 − α)Dn−1 + αFn−2 = (1 − α)
∑∞

i=0 α
iDn−1−i,

we can write,

Cov[Dn, Fn−1] = Cov[Dn, (1− α)

∞∑
i=0

αiDn−1−i]

= (1− α)
∞∑
i=0

αiCov[Dn, Dn−1−i]

= (1− α)
∞∑
i=1

αi−1Cov[Dn, Dn−i].
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Thus,

Var[∆Fn] = 2(1− α)Var[Fn]− 2(1− α)2
∞∑
i=1

αi−1Cov[Dn, Dn−i].

Focusing now on the third term of the right-hand side of (49), we can write:

Cov[Dn, (Fn − Fn−1)] = Cov[Dn, Fn]− Cov[Dn, Fn−1]

= Cov[Dn, (1− α)
∞∑
i=0

αiDn−i]

−Cov[Dn, (1− α)

∞∑
i=0

αiDn−1−i]

= (1− α)Var[Dn] + (1− α)
∞∑
i=1

αiCov[Dn, Dn−i]

−(1− α)
∞∑
i=0

αiCov[Dn, Dn−i−1]

= (1− α)Var[Dn]

−(1− α)2
∞∑
i=1

αi−1Cov[Dn, Dn−i].

As a result, by including these two equalities into equation (49), we
obtain:

Var[On] = (1 + 2H(1− α))Var[Dn] + 2(1− α)H2Var[Fn]

−2H(1− α)2[H + 1]
∞∑
i=1

αi−1Cov[Dn, Dn−i].

If we ignore the last item, which is the autocovariance effect of demands
across periods, we then obtain a simplified expression of Var[On], and thus
Lemma 4.2 is proven.

B.3 Proof of Lemma 4.4

Equation (38) is obtained by dividing (25) with the expectation, i.e., λT .
To prove equation (39), let us first find Sf (O,M(r), nT ):

Sf (O,M(r), nT ) =
∞∑
i=0

βiOn−i
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where β = e−rT . From this, we have:

E[Sf (O,M(r), nT )] =
E[O]

1− β

=
λT

1− β

Var[Sf (O,M(r), nT )] =

∞∑
i=0

β2iVar[On]

+2

∞∑
i=0

Cov[βiOn−i,

∞∑
j=1

βi+jOn−j−i]

=
1

1− β2
Var[On]

− 2β(1− α)2

(1− β2)(1− αβ)
(Var[Dn]H +H2Var[Fn]).

To obtain this last expression, we used the fact that when we assume
Cov[Dn, Dn−1] = 0, we have:

Cov[On, On−1] = −(1− α)2(Var[Dn]H +H2Var[Fn])

Cov[On, On−2] = αCov[On, On−1]

With this result, it is relatively straigth forward to obtain a closed form
expression for the peakedness of the order placed by an agent: we divide
Var[Sf (O,M(r), nT )] by E[Sf (O,M(r), nT )].

zf,d(O,M(r))

=

(
Var[On]

1− β2
− 2β(1− α)2

(1− β2)(1− αβ)
(Var[Dn]H +H2Var[Fn])]

)
/
λT

1− β

=
1

(1 + β)λT

(
Var[Dn] +H2Var[∆Fn] + 2F (1− α)Var[Dn]

− 2β(1− α)2

1− αβ
(Var[Dn]H +H2Var[Fn])

)
=

1

(1 + β)λT

(
Var[Dn](1 + 2H

(1− α)(1− β)

1− βα
)

+ 2H2Var[Fn]
(1− α)(1− β)

1− βα

)
.

The last step is to replace Var[Dn] and Var[Fn] by the expressions provided
by equations (21) and (23).
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