32,957 research outputs found

    Genomic Selective Constraints in Murid Noncoding DNA

    Get PDF
    Recent work has suggested that there are many more selectively constrained, functional noncoding than coding sites in mammalian genomes. However, little is known about how selective constraint varies amongst different classes of noncoding DNA. We estimated the magnitude of selective constraint on a large dataset of mouse-rat gene orthologs and their surrounding noncoding DNA. Our analysis indicates that there are more than three times as many selectively constrained, nonrepetitive sites within noncoding DNA as in coding DNA in murids. The majority of these constrained noncoding sites appear to be located within intergenic regions, at distances greater than 5 kilobases from known genes. Our study also shows that in murids, intron length and mean intronic selective constraint are negatively correlated with intron ordinal number. Our results therefore suggest that functional intronic sites tend to accumulate toward the 5' end of murid genes. Our analysis also reveals that mean number of selectively constrained noncoding sites varies substantially with the function of the adjacent gene. We find that, among others, developmental and neuronal genes are associated with the greatest numbers of putatively functional noncoding sites compared with genes involved in electron transport and a variety of metabolic processes. Combining our estimates of the total number of constrained coding and noncoding bases we calculate that over twice as many deleterious mutations have occurred in intergenic regions as in known genic sequence and that the total genomic deleterious point mutation rate is 0.91 per diploid genome, per generation. This estimated rate is over twice as large as a previous estimate in murids

    A global transcriptional network connecting noncoding mutations to changes in tumor gene expression.

    Get PDF
    Although cancer genomes are replete with noncoding mutations, the effects of these mutations remain poorly characterized. Here we perform an integrative analysis of 930 tumor whole genomes and matched transcriptomes, identifying a network of 193 noncoding loci in which mutations disrupt target gene expression. These 'somatic eQTLs' (expression quantitative trait loci) are frequently mutated in specific cancer tissues, and the majority can be validated in an independent cohort of 3,382 tumors. Among these, we find that the effects of noncoding mutations on DAAM1, MTG2 and HYI transcription are recapitulated in multiple cancer cell lines and that increasing DAAM1 expression leads to invasive cell migration. Collectively, the noncoding loci converge on a set of core pathways, permitting a classification of tumors into pathway-based subtypes. The somatic eQTL network is disrupted in 88% of tumors, suggesting widespread impact of noncoding mutations in cancer

    Population genomic analysis of base composition evolution in Drosophila melanogaster.

    Get PDF
    The relative importance of mutation, selection, and biased gene conversion to patterns of base composition variation in Drosophila melanogaster, and to a lesser extent, D. simulans, has been investigated for many years. However, genomic data from sufficiently large samples to thoroughly characterize patterns of base composition polymorphism within species have been lacking. Here, we report a genome-wide analysis of coding and noncoding polymorphism in a large sample of inbred D. melanogaster strains from Raleigh, North Carolina. Consistent with previous results, we observed that AT mutations fix more frequently than GC mutations in D. melanogaster. Contrary to predictions of previous models of codon usage in D. melanogaster, we found that synonymous sites segregating for derived AT polymorphisms were less skewed toward low frequencies compared with sites segregating a derived GC polymorphism. However, no such pattern was observed for comparable base composition polymorphisms in noncoding DNA. These results suggest that AT-ending codons could currently be favored by natural selection in the D. melanogaster lineage

    A novel lncRNA as a positive regulator of carotenoid biosynthesis in Fusarium

    Get PDF
    The fungi Fusarium oxysporum and Fusarium fujikuroi produce carotenoids, lipophilic terpenoid pigments of biotechnological interest, with xanthophyll neurosporaxanthin as the main end product. Their carotenoid biosynthesis is activated by light and negatively regulated by the RING-finger protein CarS. Global transcriptomic analysis identified in both species a putative 1-kb lncRNA that we call carP, referred to as Fo-carP and Ff-carP in each species, upstream to the gene carS and transcribed from the same DNA strand. Fo-carP and Ff-carP are poorly transcribed, but their RNA levels increase in carS mutants. The deletion of Fo-carP or Ff-carP in the respective species results in albino phenotypes, with strong reductions in mRNA levels of structural genes for carotenoid biosynthesis and higher mRNA content of the carS gene, which could explain the low accumulation of carotenoids. Upon alignment, Fo-carP and Ff-carP show 75-80% identity, with short insertions or deletions resulting in a lack of coincident ORFs. Moreover, none of the ORFs found in their sequences have indications of possible coding functions. We conclude that Fo-carP and Ff-carP are regulatory lncRNAs necessary for the active expression of the carotenoid genes in Fusarium through an unknown molecular mechanism, probably related to the control of carS function or expressio

    A Growth model for DNA evolution

    Full text link
    A simple growth model for DNA evolution is introduced which is analytically solvable and reproduces the observed statistical behavior of real sequences.Comment: To be published in Europhysics Letter

    arrEYE : a customized platform for high-resolution copy number analysis of coding and noncoding regions of known and candidate retinal dystrophy genes and retinal noncoding RNAs

    Get PDF
    Purpose: Our goal was to design a customized microarray, arrEYE, for high-resolution copy number variant (CNV) analysis of known and candidate genes for inherited retinal dystrophy (iRD) and retina expressed noncoding RNAs (ncRNAs). Methods: arrEYE contains probes for the full genomic region of 106 known iRD genes, including those implicated in retinitis pigmentosa (RP) (the most frequent iRD), cone rod dystrophies, macular dystrophies, and an additional 60 candidate iRD genes and 196 ncRNAs. Eight CNVs in iRD genes identified by other techniques were used as positive controls. The test cohort consisted of 57 patients with autosomal dominant, X-linked, or simplex RP. Results: In an RP patient, a novel heterozygous deletion of exons 7 and 8 of the HGSNAT gene was identified: c.634-408_820+338delins AGAATATG, p.(G1u2 I 2Glyfs*2). A known variant was found on the second allele: c.1843G>A, p.(A1a615Thr). Furthermore, we expanded the allelic spectrum of USH2A and RCBTB1 with novel CNVs. Conclusion: The arrEYE platform revealed subtle single-exon to larger CNVs in iRD genes that could be characterized at the nucleotide level, facilitated by the high resolution of the platform. We report the first CNV in HGSNAT that, combined with another mutation, leads to RP, further supporting its recently identified role in nonsyndromic iRD

    Long non-coding RNAs in cutaneous melanoma : clinical perspectives

    Get PDF
    Metastatic melanoma of the skin has a high mortality despite the recent introduction of targeted therapy and immunotherapy. Long non-coding RNAs (lncRNAs) are defined as transcripts of more than 200 nucleotides in length that lack protein-coding potential. There is growing evidence that lncRNAs play an important role in gene regulation, including oncogenesis. We present 13 lncRNA genes involved in the pathogenesis of cutaneous melanoma through a variety of pathways and molecular interactions. Some of these lncRNAs are possible biomarkers or therapeutic targets for malignant melanoma

    Interpreting the dependence of mutation rates on age and time

    Get PDF
    Mutations can arise from the chance misincorporation of nucleotides during DNA replication or from DNA lesions that are not repaired correctly. We introduce a model that relates the source of mutations to their accumulation with cell divisions, providing a framework for understanding how mutation rates depend on sex, age and absolute time. We show that the accrual of mutations should track cell divisions not only when mutations are replicative in origin but also when they are non-replicative and repaired efficiently. One implication is that the higher incidence of cancer in rapidly renewing tissues, an observation ascribed to replication errors, could instead reflect exogenous or endogenous mutagens. We further find that only mutations that arise from inefficiently repaired lesions will accrue according to absolute time; thus, in the absence of selection on mutation rates, the phylogenetic "molecular clock" should not be expected to run steadily across species.Comment: 5 figures, 2 table
    corecore