84,045 research outputs found

    Sensing behavior of acetone vapors on TiO2_2 nanostructures --- application of density functional theory

    Full text link
    The electronic properties of TiO2_2 nanostructure are explored using density functional theory. The adsorption properties of acetone on TiO2_2 nanostructure are studied in terms of adsorption energy, average energy gap variation and Mulliken charge transfer. The density of states spectrum and the band structure clearly reveals the adsorption of acetone on TiO2_2 nanostructures. The variation in the energy gap and changes in the density of charge are observed upon adsorption of acetone on n-type TiO2_2 base material. The results of DOS spectrum reveal that the transfer of electrons takes place between acetone vapor and TiO2_2 base material. The findings show that the adsorption property of acetone is more favorable on TiO2_2 nanostructure. Suitable adsorption sites of acetone on TiO2_2 nanostructure are identified at atomistic level. From the results, it is confirmed that TiO2_2 nanostructure can be efficiently utilized as a sensing element for the detection of acetone vapor in a mixed environment.Comment: 13 pages, 14 figures, 3 table

    First Principles Molecular Dynamics Study of CdS Nanostructure Temperature-Dependent Phase Stability

    Get PDF
    First principles molecular dynamics simulations are used to determine the relative stability of wurtzite, graphitic, and rocksalt phases of the CdS nanostructure at various temperatures. Our results indicate that in the temperature range from 300 to 450 K, the phase stability sequence for the CdS nanostructure is rocksalt, wurtzite, and graphitic phases. The same situation holds for bulk CdS crystals under high pressure and 0 K. Our work also demonstrates that although the temperature can affect the total energy of the CdS nanostructure, it cannot change its phase stability sequence in the temperature range studied in this letter

    Porosity-moderated ultrafast electron transport in Au nanowire networks

    No full text
    We demonstrate for first time the ultrafast properties of a newly formed porous Au nanostructure. The properties of the porous nanostructure are compared with those of a solid gold film using time-resolved optical spectroscopy.The experiments suggest that under the same excitation conditions the relaxation dynamics are slower in the former. Our observations are evaluated by simulations based on a phenomenological rate equation model. The impeded dynamics has been attributed to the porous nature of the structure in the networks, which results in reduced efficiency during the dissipation of the laser-deposited energy. Importantly,the porosity of the complex three-dimensional nanostructure is introduced as a geometrical control parameter of its ultrafast electron transport

    Large tunable photonic band gaps in nanostructured doped semiconductors

    Full text link
    A plasmonic nanostructure conceived with periodic layers of a doped semiconductor and passive semiconductor is shown to generate spontaneously surface plasmon polaritons thanks to its periodic nature. The nanostructure is demonstrated to behave as an effective material modeled by a simple dielectric function of ionic-crystal type, and possesses a fully tunable photonic band gap, with widths exceeding 50%, in the region extending from mid-infra-red to Tera-Hertz.Comment: 6 pages, 4 figures, publishe

    Large tunable photonic band gaps in nanostructured doped semiconductors

    Get PDF
    A plasmonic nanostructure conceived with periodic layers of a doped semiconductor and passive semiconductor is shown to generate spontaneously surface plasmon polaritons thanks to its periodic nature. The nanostructure is demonstrated to behave as an effective material modeled by a simple dielectric function of ionic-crystal type, and possesses a fully tunable photonic band gap, with widths exceeding 50%, in the region extending from mid-infra-red to Tera-Hertz.Comment: 6 pages, 4 figures, publishe

    Wave function engineering in quantum dot-ring nanostructures

    Get PDF
    Modern nanotechnology allows producing, depending on application, various quantum nanostructures with the desired properties. These properties are strongly influenced by the confinement potential which can be modified, e.g., by electrical gating. In this paper we analyze a nanostructure composed of a quantum dot surrounded by a quantum ring. We show that depending on the details of the confining potential the electron wave functions can be located in different parts of the structure. Since the properties of such a nanostructure strongly depend on the distribution of the wave functions, varying the applied gate voltage one can easily control them. In particular, we illustrate the high controllability of the nanostructure by demonstrating how its coherent, optical, and conducting properties can be drastically changed by a small modification of the confining potential.Comment: 8 pages, 10 figures, 2 tables, revte

    Quantum dot dephasing by edge states

    Full text link
    We calculate the dephasing rate of an electron state in a pinched quantum dot, due to Coulomb interactions between the electron in the dot and electrons in a nearby voltage biased ballistic nanostructure. The dephasing is caused by nonequilibrium time fluctuations of the electron density in the nanostructure, which create random electric fields in the dot. As a result, the electron level in the dot fluctuates in time, and the coherent part of the resonant transmission through the dot is suppressed

    Spin-engineered quantum dots

    Full text link
    Spatially nonhomogeneously spin polarized nuclei are proposed as a new mechanism to monitor electron states in a nanostructure, or as a means to createn and, if necessary, reshape such nanostructures in the course of the experiment. We found that a polarization of nulear spins may lift the spin polarization of the electron states in a nanostructure and, if sufficiently strong, leads to a polarization of the electron spins. Polarized nuclear spins may form an energy landscape capable of binding electrons with energy up to several meV and the localization radius > > 100\AA.Comment: 9 pages, 1 figure, submitted to Physica E, Augist 31, 200
    corecore