137,474 research outputs found

    Representation Learning for Scale-free Networks

    Full text link
    Network embedding aims to learn the low-dimensional representations of vertexes in a network, while structure and inherent properties of the network is preserved. Existing network embedding works primarily focus on preserving the microscopic structure, such as the first- and second-order proximity of vertexes, while the macroscopic scale-free property is largely ignored. Scale-free property depicts the fact that vertex degrees follow a heavy-tailed distribution (i.e., only a few vertexes have high degrees) and is a critical property of real-world networks, such as social networks. In this paper, we study the problem of learning representations for scale-free networks. We first theoretically analyze the difficulty of embedding and reconstructing a scale-free network in the Euclidean space, by converting our problem to the sphere packing problem. Then, we propose the "degree penalty" principle for designing scale-free property preserving network embedding algorithm: punishing the proximity between high-degree vertexes. We introduce two implementations of our principle by utilizing the spectral techniques and a skip-gram model respectively. Extensive experiments on six datasets show that our algorithms are able to not only reconstruct heavy-tailed distributed degree distribution, but also outperform state-of-the-art embedding models in various network mining tasks, such as vertex classification and link prediction.Comment: 8 figures; accepted by AAAI 201

    Masking Strategies for Image Manifolds

    Full text link
    We consider the problem of selecting an optimal mask for an image manifold, i.e., choosing a subset of the pixels of the image that preserves the manifold's geometric structure present in the original data. Such masking implements a form of compressive sensing through emerging imaging sensor platforms for which the power expense grows with the number of pixels acquired. Our goal is for the manifold learned from masked images to resemble its full image counterpart as closely as possible. More precisely, we show that one can indeed accurately learn an image manifold without having to consider a large majority of the image pixels. In doing so, we consider two masking methods that preserve the local and global geometric structure of the manifold, respectively. In each case, the process of finding the optimal masking pattern can be cast as a binary integer program, which is computationally expensive but can be approximated by a fast greedy algorithm. Numerical experiments show that the relevant manifold structure is preserved through the data-dependent masking process, even for modest mask sizes

    Contact complete integrability

    Full text link
    Complete integrability in a symplectic setting means the existence of a Lagrangian foliation leaf-wise preserved by the dynamics. In the paper we describe complete integrability in a contact set-up as a more subtle structure: a flag of two foliations, Legendrian and co-Legendrian, and a holonomy-invariant transverse measure of the former in the latter. This turns out to be equivalent to the existence of a canonical RRn1\R\ltimes \R^{n-1} structure on the leaves of the co-Legendrian foliation. Further, the above structure implies the existence of nn contact fields preserving a special contact 1-form, thus providing the geometric framework and establishing equivalence with previously known definitions of contact integrability. We also show that contact completely integrable systems are solvable in quadratures. We present an example of contact complete integrability: the billiard system inside an ellipsoid in pseudo-Euclidean space, restricted to the space of oriented null geodesics. We describe a surprising acceleration mechanism for closed light-like billiard trajectories

    Integrable Background Geometries

    Full text link
    This work has its origins in an attempt to describe systematically the integrable geometries and gauge theories in dimensions one to four related to twistor theory. In each such dimension, there is a nondegenerate integrable geometric structure, governed by a nonlinear integrable differential equation, and each solution of this equation determines a background geometry on which, for any Lie group GG, an integrable gauge theory is defined. In four dimensions, the geometry is selfdual conformal geometry and the gauge theory is selfdual Yang-Mills theory, while the lower-dimensional structures are nondegenerate (i.e., non-null) reductions of this. Any solution of the gauge theory on a kk-dimensional geometry, such that the gauge group HH acts transitively on an \ell-manifold, determines a (k+)(k+\ell)-dimensional geometry (k+4k+\ell\leqslant4) fibering over the kk-dimensional geometry with HH as a structure group. In the case of an \ell-dimensional group HH acting on itself by the regular representation, all (k+)(k+\ell)-dimensional geometries with symmetry group HH are locally obtained in this way. This framework unifies and extends known results about dimensional reductions of selfdual conformal geometry and the selfdual Yang-Mills equation, and provides a rich supply of constructive methods. In one dimension, generalized Nahm equations provide a uniform description of four pole isomonodromic deformation problems, and may be related to the SU(){\rm SU}(\infty) Toda and dKP equations via a hodograph transformation. In two dimensions, the Diff(S1){\rm Diff}(S^1) Hitchin equation is shown to be equivalent to the hyperCR Einstein-Weyl equation, while the SDiff(Σ2){\rm SDiff}(\Sigma^2) Hitchin equation leads to a Euclidean analogue of Plebanski's heavenly equations.Comment: for Progress in Twistor Theory, SIGM
    corecore