27,682 research outputs found

    Human urinary mutagenicity after wood smoke exposure during traditional temazcal use.

    Get PDF
    In Central America, the traditional temazcales or wood-fired steam baths, commonly used by many Native American populations, are often heated by wood fires with little ventilation, and this use results in high wood smoke exposure. Urinary mutagenicity has been previously employed as a non-invasive biomarker of human exposure to combustion emissions. This study examined the urinary mutagenicity in 19 indigenous Mayan families from the highlands of Guatemala who regularly use temazcales (N = 32), as well as control (unexposed) individuals from the same population (N = 9). Urine samples collected before and after temazcal exposure were enzymatically deconjugated and extracted using solid-phase extraction. The creatinine-adjusted mutagenic potency of urine extracts was assessed using the plate-incorporation version of the Salmonella mutagenicity assay with strain YG1041 in the presence of exogenous metabolic activation. The post-exposure mutagenic potency of urine extracts were, on average, 1.7-fold higher than pre-exposure samples (P < 0.005) and also significantly more mutagenic than the control samples (P < 0.05). Exhaled carbon monoxide (CO) was ~10 times higher following temazcal use (P < 0.0001), and both CO level and time spent in temazcal were positively associated with urinary mutagenic potency (i.e. P < 0.0001 and P = 0.01, respectively). Thus, the wood smoke exposure associated with temazcal use contributes to increased excretion of conjugated mutagenic metabolites. Moreover, urinary mutagenic potency is correlated with other metrics of exposure (i.e. exhaled CO, duration of exposure). Since urinary mutagenicity is a biomarker associated with genetic damage, temazcal use may therefore be expected to contribute to an increased risk of DNA damage and mutation, effects associated with the initiation of cancer

    Heterogeneous reactions of particulate matter-bound PAHs and NPAHs with NO3/N2O5, OH radicals, and O3 under simulated long-range atmospheric transport conditions: reactivity and mutagenicity.

    Get PDF
    The heterogeneous reactions of ambient particulate matter (PM)-bound polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs (NPAHs) with NO3/N2O5, OH radicals, and O3 were studied in a laboratory photochemical chamber. Ambient PM2.5 and PM10 samples were collected from Beijing, China, and Riverside, California, and exposed under simulated atmospheric long-range transport conditions for O3 and OH and NO3 radicals. Changes in the masses of 23 PAHs and 20 NPAHs, as well as the direct and indirect-acting mutagenicity of the PM (determined using the Salmonella mutagenicity assay with TA98 strain), were measured prior to and after exposure to NO3/N2O5, OH radicals, and O3. In general, O3 exposure resulted in the highest relative degradation of PM-bound PAHs with more than four rings (benzo[a]pyrene was degraded equally well by O3 and NO3/N2O5). However, NPAHs were most effectively formed during the Beijing PM exposure to NO3/N2O5. In ambient air, 2-nitrofluoranthene (2-NF) is formed from the gas-phase NO3 radical- and OH radical-initiated reactions of fluoranthene, and 2-nitropyrene (2-NP) is formed from the gas-phase OH radical-initiated reaction of pyrene. There was no formation of 2-NF or 2-NP in any of the heterogeneous exposures, suggesting that gas-phase formation of NPAHs did not play an important role during chamber exposures. Exposure of Beijing PM to NO3/N2O5 resulted in an increase in direct-acting mutagenic activity which was associated with the formation of mutagenic NPAHs. No NPAH formation was observed in any of the exposures of the Riverside PM. This was likely due to the accumulation of atmospheric degradation products from gas-phase reactions of volatile species onto the surface of PM collected in Riverside prior to exposure in the chamber, thus decreasing the availability of PAHs for reaction

    Mutagenicity assessment of aerosols in emissions from wood combustion

    Get PDF
    Mestrado em Estudos AmbientaisPolycyclic aromatic hydrocarbon (PAH) extracts of PM2.5 collected from combustion of seven wood species and briquettes were tested for mutagenic activities using Ames test with Salmonella typhimurium TA98 and TA100. The woods werePinuspinaster (maritime pine), Eucalyptus globulus (eucalypt), Quercussuber (cork oak), Acacia longifolia (golden wattle), Quercusfaginea (Portuguese oak), Oleaeuropea (olive), and Quercus ilex rotundifolia (Holm oak). Burning experiments were done using woodstove and fireplace, hot start and cold start. A mutagenic/weak mutagenic response was recorded for all species except golden wattle. The extracts with indirect acting mutagenicity were mainly obtained from fireplace and cold start conditions. The strong mutagenic extracts were not correlated with high emission factors of carcinogenic PAHs. Several samples were weak mutagens at low concentration of PAHs. The negative result recorded for the golden wattle extracts is positive since after confirmation, this species can be recommended for domestic use.(FCT) - PTDC/AMB/65706/2006 (BIOEMI

    Atmospheric chemistry of gas-phase polycyclic aromatic hydrocarbons: formation of atmospheric mutagens.

    Get PDF
    The atmospheric chemistry of the 2- to 4-ring polycyclic aromatic hydrocarbons (PAH), which exist mainly in the gas phase in the atmosphere, is discussed. The dominant loss process for the gas-phase PAH is by reaction with the hydroxyl radical, resulting in calculated lifetimes in the atmosphere of generally less than one day. The hydroxyl (OH) radical-initiated reactions and nitrate (NO3) radical-initiated reactions often lead to the formation of mutagenic nitro-PAH and other nitropolycyclic aromatic compounds, including nitrodibenzopyranones. These atmospheric reactions have a significant effect on ambient mutagenic activity, indicating that health risk assessments of combustion emissions should include atmospheric transformation products

    Genotoxicity assessment of piperitenone oxide: an in vitro and in silico evaluation

    Get PDF
    Piperitenone oxide, a natural flavouring agent also known as rotundifolone, has been studied for the genotoxicity assessment by an integrated in vitro and in silico experimental approach, including the bacterial reverse mutation assay, the micronucleus test, the comet assay and the computational prediction by Toxtree and VEGA tools. Under our experimental conditions, the monoterpene showed to induce both point mutations (i.e. frameshift, base-substitution and/or oxidative damage) and DNA damage (i.e. clastogenic or aneuploidic damage, or single-strand breaks). Computational prediction for piperitenone oxide agreed with the toxicological data, and highlighted the presence of the epoxide function and the α,β-unsaturated carbonyl as possible structural alerts for DNA damage. However, improving the toxicological libraries for natural occurring compounds is required in order to favour the applicability of in silico models to the toxicological predictions. Further in vivo evaluations are strictly needed in order to evaluate the role of the bioavailability of the substance and the metabolic fate on its genotoxicity profile. To the best of our knowledge, these data represent the first evaluation of the genotoxicity for this flavour compound and suggest the need of further studies to assess the safety of piperitenone oxide as either flavour or fragrance chemicals
    corecore