1,088 research outputs found

    Fuzzy rule based multiwavelet ECG signal denoising

    Get PDF
    Since different multiwavelets, pre- and post-filters have different impulse responses and frequency responses, different multiwavelets, pre- and post-filters should be selected and applied at different noise levels for signal denoising if signals are corrupted by additive white Gaussian noises. In this paper, some fuzzy rules are formulated for integrating different multiwavelets, pre- and post-filters together so that expert knowledge on employing different multiwavelets, pre- and post-filters at different noise levels on denoising performances is exploited. When an ECG signal is received, the noise level is first estimated. Then, based on the estimated noise level and our proposed fuzzy rules, different multiwavelets, pre- and post-filters are integrated together. A hard thresholding is applied on the multiwavelet coefficients. According to extensive numerical computer simulations, our proposed fuzzy rule based multiwavelet denoising algorithm outperforms traditional multiwavelet denoising algorithms by 30%

    Some equations relating multiwavelets and multiscaling functions

    Get PDF
    The local trace function introduced in \cite{Dut} is used to derive equations that relate multiwavelets and multiscaling functions in the context of a generalized multiresolution analysis, without appealing to filters. A construction of normalized tight frame wavelets is given. Particular instances of the construction include normalized tight frame and orthonormal wavelet sets

    Single-trial multiwavelet coherence in application to neurophysiological time series

    Get PDF
    A method of single-trial coherence analysis is presented, through the application of continuous muldwavelets. Multiwavelets allow the construction of spectra and bivariate statistics such as coherence within single trials. Spectral estimates are made consistent through optimal time-frequency localization and smoothing. The use of multiwavelets is considered along with an alternative single-trial method prevalent in the literature, with the focus being on statistical, interpretive and computational aspects. The multiwavelet approach is shown to possess many desirable properties, including optimal conditioning, statistical descriptions and computational efficiency. The methods. are then applied to bivariate surrogate and neurophysiological data for calibration and comparative study. Neurophysiological data were recorded intracellularly from two spinal motoneurones innervating the posterior,biceps muscle during fictive locomotion in the decerebrated cat

    Denoising by multiwavelet singularity detection

    Get PDF
    Wavelet denoising by singularity detection was proposed as an algorithm that combines Mallat and Donoho’s denoising approaches. With wavelet transform modulus sum, we can avoid the error and ambiguities of tracing the modulus maxima across scales and the complicated and computationally demanding reconstruction process. We can also avoid the visual artifacts produced by shrinkage. In this paper, we investigate a multiwavelet denoising algorithm based on a modified singularity detection approach. Improved signal denoising results are obtained in comparison to the single wavelet case
    corecore