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ABSTRACT 

 
Wavelet denoising by singularity detection was 
proposed as an algorithm that combines Mallat and 
Donoho’s denoising approaches. With wavelet 
transform modulus sum, we can avoid the error and 
ambiguities of tracing the modulus maxima across 
scales and the complicated and computationally 
demanding reconstruction process. We can also avoid 
the visual artifacts produced by shrinkage. In this 
paper, we investigate a multiwavelet denoising 
algorithm based on a modified singularity detection 
approach. Improved signal denoising results are 
obtained in comparison to the single wavelet case. 
 

1. INTRODUCTION 
 
Multiwavelets have been proposed as a generalization 
of the traditional scalar wavelet, with multiresolution 
analysis of multiplicity r . It has been proposed that 
multiwavelet bases should be better than wavelet bases 
for wavelet applications [1]. It is because there are 
limitations for the single wavelet decomposition. First 
of all, it cannot offer simultaneous orthogonality, 
symmetry and compact support together with higher 
regularity (or approximation order greater than one) 
[2]. Among the single wavelets only the Haar wavelet 
fulfils the above properties, but it is discontinuous in 
the spatial domain. Multiwavelet systems based on two 
scaling functions and two wavelet functions allow these 
properties simultaneously. Therefore, the design of 
multiwavelet filters is more flexible. 
Multiwavelet transform has been applied to 
compression and denoising applications in the past few 
years. Experimental results [3-6] have shown that 
multiwavelets generally outperform single wavelets in 
denoising using thresholding. It is well known that the 
success of multiwavelets in denoising applications often 
depends on shorter supports and higher vanishing 
moments of the multifilters. The number of high 
amplitude wavelet coefficients created by a brutal 
transition like an edge is proportional to the width of 
the supports of the filters. For a more accurate 
localization of singularities, the number of high 
amplitude wavelet coefficients produced should be as 
small as possible. So the supports of the filters should 
be as short as possible. Moreover, the more the 

vanishing moments, the smaller the coefficients can be 
produced over smooth regions at fine scales. Therefore, 
the multiwavelet coefficients that belong to the noise 
component can be more easily distinguished at fine 
scales. The support size increases proportionally to the 
number of vanishing moments, and multiwavelets can 
provide a better trade-off of this. 
As a result, we extend the denoising algorithm using 
singularity detection from single wavelet transform to 
multiwavelet transform. We perform the magnitude 
sums over the ‘cone of influence’ and estimate the 
regularity from their interscale ratios. It is because this 
was proven to be a better approach to detect singularity 
in the single wavelet transform [7,8]. Intuitively, the 
shorter filter supports lead to a shorter ‘cone of 
influence’ and better frequency localization. We also 
investigate the interscale difference, which is 
complementary to the interscale ratio. Compared to the 
single wavelet case [7,8], improved results for 
singularity detection can be achieved, and this is 
illustrated in the signal denoising results in this paper. 
The organization of this paper is as the following. First 
of all, we review the preprocessing and the construction 
of discrete multiwavelet transform. We then have an 
understanding of estimating Lipschitz regularity by the 
multiwavelet transform with preprocessing. We 
determine the ‘cone of influence’ and the magnitude 
sum of the undecimated discrete multiwavelet 
transform coefficients. Next we describe the denoising 
algorithm using the multiwavelet singularity detection 
technique, which is based on thresholding of the 
multiwavelet coefficients according to their interscale 
ratio and difference. Finally we present the results and 
conclusion. 
 

2. PREPROCESSING 
 
Preprocessing (or prefiltering) is usually performed 
before the multiwavelet decomposition. Prefiltering 
does not exist in the single wavelet transform. It can be 
thought of as the vectorization of an input signal to 
produce a certain discrete-time vector-valued signal for 
the discrete vector-valued wavelet transform. After the 
multiwavelet reconstruction, postfiltering is applied to 
give a one-stream recovered signal. Prefiltering often 
produce correlated coefficients which contain 
information of the regularity of the input signal. 
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Multifiltering captures this information and further 
characterizes it with its vector-valued transform. 
For the singularity detection in the signal denoising 
application, we experimented two sets of prefilters, the 
Xia’s prefilter [9] and Plonka’s prefilter [10]. These 
prefilters are designed with the constraint that their 
combination with the multiscaling and multiwavelet 
filters will have lowpass and highpass properties. Xia’s 
prefilter is orthogonal which is energy preserving, but it 
is first order only. Plonka’s prefilter is symmetric and 
second order. It is synthesized with perfect 
reconstruction filters having linear phase. The prefilter 
coefficient matrices are shown in the Appendix. 
 

3. CONSTRUCTION OF DISCRETE 
MULTIWAVELET TRANSFORM 

 
To construct a one-dimensional compactly supported 
multiwavelet transform, we begin with two vector 
functions, the orthonormal multiscaling and 
multiwavelet vector functions which satisfy the 
following refinement equations, 
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For the analysis bank, we have the decomposition 
algorithm     

 
n

j
nkn

j
k cHc 2

1 2 , 

      
 

n
j

nkn
j

k cGd 2
1 2 . 

For the synthesis bank, we have the reconstruction 
algorithm        




 
n

j
n

T
nk

j
n

T
nk

j
k dGcHc 1

2
1

22 . 

In this paper, we present the denoising results obtained 
from using the GHM multifilters [11]. GHM 
multifilters have many nice properties. The translates of 
the multiscaling and multiwavelet functions are 
orthogonal. The multiscaling and multiwavelet 
functions are quite smooth and they have enough 
vanishing moments to produce small transform 
coefficients at fine scales. The scaling functions have 
short support [0,1] and [0,2] while [0,3] is expected for 
scalar case with scaling function satisfying a two-scale 
equation with 4 coefficient matrices. They are also of 
second order approximation, which can represent 
constant and linear functions by a linear combination of 
their translates. They are smoother and have slightly 
shorter supports than CL multifilters [12]. The 
multifilter coefficient matrices are shown in the 
Appendix. 
 
4. ESTIMATION OF LIPSCHITZ REGULARITY 

 
From [13], wavelet methods for measuring Lipschitz 
regularity was introduced. Regularity is measured by 
looking at the asymptotic decays of wavelet transform 
coefficients instead of Fourier transform coefficients. 
This is possible because wavelets can simultaneously 
localize signals in time and frequency. The property of 
localization in time enables us to estimate local 
regularity, whereas the localization in frequency 
enables the measurement. 
Multiwavelets are generated by several scaling 
functions. Preprocessing is necessary when applying 
discrete multiwavelet filterbank to scalar signals. The 
combined filter responses may not provide localization 
in frequency domain. It can be shown that with an 
appropiate designed prefilter and postfilter, one can 



estimate the Lipschitz regularity from multiwavelet 
coefficients. 

Multiwavelet Transform Magnitude Sum 
There are many disadvantages of estimating the local 
Lipschitz exponents of a signal by tracing the evolution 
of its wavelet transform modulus maxima [7,8]. 
Therefore, for the multiwavelets case, we estimate the 
Lipschitz regularity from the interscale evolution of the 
magnitude sum over the ‘cone of influence’. We then 
perform signal denoising by thresholding the 
multiwavelet coefficients according to the interscale 
ratios and differences of the magnitude sums. The 
‘cone of influence’ and the magnitude sum for the 
multiwavelet transform are determined as the 
following. 

Cone of Influence (COI) 
The COI represents the support length of the wavelet 
filter. The support length is different at different scales. 
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Then from the interscale ratio of the magnitude sum, 
we can characterize and estimate the Lipschitz 
regularity of a signal. 
 

5. DENOISING ALGORITHM 
 
The denoising algorithm is simple and easy to be 
implemented. The basic procedures are listed as the 
following: 
1. Perform the discrete multiwavelet transform (5 levels 

of decomposition) after prefiltering the noisy test 
signal. 

2. Determine the COI for all scales and compute the 
magnitude sum of the transformed coefficients over 
the COI for all positions. 

3. Compute the interscale ratio of the magnitude sum at 
each position. Retain those multiwavelet coefficients 
with interscale ratios higher than 2. 

4. Reconstruct the signal from the selected multiwavelet 
coefficients using the inverse discrete multiwavelet 
transform and postfiltering. 

Here are some remarks for the denoising algorithm: 
1. As it is observed by the authors in [8] that WTMS of 

some small irregular signals with Lipschitz 
exponents between 1  and 0  will also increase as 
the scale increases. This enables them to falsely 
fulfill the interscale ratio thresholding criterion. So 
the interscale difference thresholding criterion was 
also employed. 

2. Two approaches of retaining coefficients were 
experimented (step 3). They are (i) retaining the 
coefficients within the COI; (ii) retaining only the 
coefficients at the positions in the COI which are 
determined by the maxima of the wavelet transform 
of an impulse. 

3. The suitable threshold values for the interscale ratio 
is 2  and for the interscale difference is 1.0  for 
retaining the coefficients within the COI. While they 
are 2  and 01.0  respectively for retaining the 
impulse maximal coefficients in the COI. 

4. Both of the approaches use a joint selection, that is to 
consider the magnitude sum of the square sum of the 
magnitude of the two coefficient components. 

 
6. RESULTS 

 
As a preliminary work, we experimented the above 
denoising algorithm with a length-256 1-d noisy signal 
using the Xia’s prefilter and the GHM multifilters. The 
original signal contains various features such as steps, 
regular slopes, steep slopes and irregular structures. 
White Gaussian noise with noise variance equal to 0.1 
is added to the original signal to produce a noisy signal 
with MSE equal to 0.0085 (Figure 1(a)). 30.63% 
reduction in MSE was obtained (the MSE decreases 
from 0.007387 to 0.005124) by the previous denoising 
algorithm using the single wavelet singularity detection 
[7]. In our experiment, 34.1% reduction in MSE is 
obtained (the MSE decreases from 0.0085 to 0.0056) by 
the denoising algorithm using the multiwavelet 
singularity detection. The reconstructed denoised signal 
is shown in Figure 1(b). 
We also experimented the same original signal 
corrupted by the white Gaussian noise with noise 
variance equal to 0.05 and impulsive noise to produce a 
noisy signal with a MSE equal to 0.0343 (Figure 2(a)). 
We used the Plonka’s prefilter and the GHM 
multifilters for the multiwavelet decomposition. 
77.96% reduction in MSE was obtained (the MSE 
decreases from 0.036909 to 0.008133) by the previous 
denoising algorithm using the single wavelet 
singularity detection [8]. In our experiment, 81.04% 
reduction in MSE is obtained (the MSE decreases from 
0.0343 to 0.0065) by the denoising algorithm using the 
multiwavelet singularity detection. The reconstructed 
denoised signal is shown in Figure 2(b). 



We found that retaining those coefficients within the 
COI is particularly effective for denoising the white 
Gaussian noise, while retaining those maxima 
coefficients (remark 2) in the COI is particularly 
effective for denoising the white Gaussian noise and 
impulsive noise. Moreover, it was found that 
performing selection in a joint manner (remark 4) is 
better than in an individual manner. 
 

7. CONCLUSION 
 
In this paper, we extended the singularity detection 
from the single wavelet transform to the multiwavelet 
transform. We developed the multiwavelet singularity 
detection and illustrated it with the signal denoising 
results. From the preliminary denoising results of a 1-d 
white Gaussian noise and impulsive noise corrupted 
signals, we verified the advantageous properties of the 
multiwavelet transform over the single wavelet 
transform for singularity detection. We account that the 
shorter supports of the multifilters contribute to the 
improvement of the singularity detection, as the size of 
the ‘cone of influence’ becomes smaller and so the 
overlappings of the non-isolated transformed 
singularities become less. The vanishing moments of 
the multifilters are also enough to have better signal 
approximation, and a higher extent of noise attenuation 
upon thresholding can be obtained. We conclude that 
signal denoising using the multiwavelet singularity 
detection technique is better than using the single 
wavelet singularity detection one. 
 

APPENDIX 
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GHM multifilters: 













203402
522103

0H  










214029
0103

1H  












2034029

00
2H  












0402
00

3H  














2023201

203402
0G  








 


0209
214029

1G  














2023209

2034029
2G  











0201
0402

3G  

 
ACKNOWLEDGEMENT 

 
The work obtained in this paper was supported by a 
research grant (project number G-YD26) from the 
Hong Kong Polytechnic University, and by the Centre 

for Multimedia Signal Processing, The Hong Kong 
Polytechnic University. 
 

REFERENCES 
 

 [1] G. Strang and V. Strela, “Short Wavelets and Matrix 
Dilation Equations,” IEEE Trans. on Sig. Proc., Vol. 43, 
pp. 108-115, Jan. 1995. 

 [2] I. Daubechies, Ten Lectures on Wavelets, SIAM, 
Philadelphia, 1992. 

 [3] V. Strela, P.N. Heller, G. Strang, P. Topiwala and C. 
Heil, “The Application of Multiwavelet Filterbanks to 
Image Processing,” IEEE Trans. on Sig. Proc., Vol. 8, pp. 
548-563, Apr. 1999. 

 [4] T. R. Downie and B. W. Silverman, “The Discrete 
Multiple Wavelet Transform and Thresholding Methods,” 
IEEE Trans. on Sig. Proc., Vol. 46, pp. 2558-2561, Sep. 
1998. 

 [5] W. Ling, “Orthogonal Multiwavelets Transform for Image 
Denoising,” Proc. 5th Int. Conf. on Sig. Proc. (WCCC-
ICSP), Vol. 2, pp. 987-991, 2000.  

 [6] E. Bala and A. Ertuzun, “Applications of multiwavelet 
techniques for image denoising ,” Proc. Int. Conf. on Img. 
Proc., Vol. 3, pp. 581-584, 2002.  

 [7] T.-C. Hsung and D. P.-K. Lun, “Denoising by singularity 
rejection,” Proc. of Int. Symp. on Circuits and Systems, 
Vol. 1, pp. 205-208, 1997. 

 [8] T.-C. Hsung, D. P.-K. Lun and W.-C. Siu, “Denoising by 
Singularity Detection,” IEEE Trans. on Sig. Proc., Vol. 
47, pp. 3139-3144, Nov. 1999. 

 [9] X.-G. Xia, “A New Prefilter Design for Discrete 
Multiwavelet Transforms,” IEEE Trans. on Sig. Proc., 
Vol. 46, pp. 1558-1570, Jun. 1998. 

[10] G. Plonka, “Approximation properties of multiscaling 
functions: A Fourier approach,” Rostocker Mathematische 
Kolloquium, Vol. 49, pp. 115-126, 1995. 

[11] J. S. Geronimo, D. P. Hardin and P. R. Massopust, 
“Fractal Functions and Wavelet Expansions Based on 
Several Scaling Functions,” J. of Approximation Theory, 
Vol. 78, pp. 373-401, 1994. 

[12] C. K. Chui and J. Lian, “A Study of Orthonormal Multi-
wavelets,” Applied Numerical Mathematics, Vol. 20, pp. 
273-298, 1996. 

Figure 1 (a) The noisy signal (white Gaussian noise 
only) (b) the denoised signal by the denoising 
algorithm using multiwavelet singularity detection. 

(a) MSE=0.0085 

(b) MSE=0.0056 

Figure 2 (a) The noisy signal (white Gaussian noise and 
impulsive noise) (b) the denoised signal by the 

denoising algorithm using multiwavelet singularity 
detection. 

(a) MSE=0.0343 

(b) MSE=0.0065 



[13] S. Mallat and W. L. Hwang, "Singularity detection and 
processing with wavelets", IEEE Trans on Info. Theory, 
Vol. 38, pp. 617-643, Mar. 1992. 


