23,660 research outputs found

    Correction of "Cloud Removal By Fusing Multi-Source and Multi-Temporal Images"

    Full text link
    Remote sensing images often suffer from cloud cover. Cloud removal is required in many applications of remote sensing images. Multitemporal-based methods are popular and effective to cope with thick clouds. This paper contributes to a summarization and experimental comparation of the existing multitemporal-based methods. Furthermore, we propose a spatiotemporal-fusion with poisson-adjustment method to fuse multi-sensor and multi-temporal images for cloud removal. The experimental results show that the proposed method has potential to address the problem of accuracy reduction of cloud removal in multi-temporal images with significant changes.Comment: This is a correction version of the accepted IGARSS 2017 conference pape

    A Multiple Cascade-Classifier System for a Robust and Partially Unsupervised Updating of Land-Cover Maps

    Get PDF
    A system for a regular updating of land-cover maps is proposed that is based on the use of multitemporal remote-sensing images. Such a system is able to face the updating problem under the realistic but critical constraint that, for the image to be classified (i.e., the most recent of the considered multitemporal data set), no ground truth information is available. The system is composed of an ensemble of partially unsupervised classifiers integrated in a multiple classifier architecture. Each classifier of the ensemble exhibits the following novel peculiarities: i) it is developed in the framework of the cascade-classification approach to exploit the temporal correlation existing between images acquired at different times in the considered area; ii) it is based on a partially unsupervised methodology capable to accomplish the classification process under the aforementioned critical constraint. Both a parametric maximum-likelihood classification approach and a non-parametric radial basis function (RBF) neural-network classification approach are used as basic methods for the development of partially unsupervised cascade classifiers. In addition, in order to generate an effective ensemble of classification algorithms, hybrid maximum-likelihood and RBF neural network cascade classifiers are defined by exploiting the peculiarities of the cascade-classification methodology. The results yielded by the different classifiers are combined by using standard unsupervised combination strategies. This allows the definition of a robust and accurate partially unsupervised classification system capable of analyzing a wide typology of remote-sensing data (e.g., images acquired by passive sensors, SAR images, multisensor and multisource data). Experimental results obtained on a real multitemporal and multisource data set confirm the effectiveness of the proposed system

    A partially unsupervised cascade classifier for the analysis of multitemporal remote-sensing images

    Get PDF
    A partially unsupervised approach to the classification of multitemporal remote-sensing images is presented. Such an approach allows the automatic classification of a remote-sensing image for which training data are not available, drawing on the information derived from an image acquired in the same area at a previous time. In particular, the proposed technique is based on a cascade classifier approach and on a specific formulation of the expectation-maximization (EM) algorithm used for the unsupervised estimation of the statistical parameters of the image to be classified. The results of experiments carried out on a multitemporal data set confirm the validity of the proposed approach

    A robust nonlinear scale space change detection approach for SAR images

    Get PDF
    In this paper, we propose a change detection approach based on nonlinear scale space analysis of change images for robust detection of various changes incurred by natural phenomena and/or human activities in Synthetic Aperture Radar (SAR) images using Maximally Stable Extremal Regions (MSERs). To achieve this, a variant of the log-ratio image of multitemporal images is calculated which is followed by Feature Preserving Despeckling (FPD) to generate nonlinear scale space images exhibiting different trade-offs in terms of speckle reduction and shape detail preservation. MSERs of each scale space image are found and then combined through a decision level fusion strategy, namely "selective scale fusion" (SSF), where contrast and boundary curvature of each MSER are considered. The performance of the proposed method is evaluated using real multitemporal high resolution TerraSAR-X images and synthetically generated multitemporal images composed of shapes with several orientations, sizes, and backscatter amplitude levels representing a variety of possible signatures of change. One of the main outcomes of this approach is that different objects having different sizes and levels of contrast with their surroundings appear as stable regions at different scale space images thus the fusion of results from scale space images yields a good overall performance

    Multitemporal dendrogeomorphological analysis of slope instability in Upper Orcia Valley (Southern Tuscany, Italy)

    Get PDF
    The Upper Orcia Valley (Southern Tuscany, Italy) is a key site for the comprehension of denudation processes typically acting in Mediterranean badlands (calanchi) areas, thanks to the availability of long-lasting erosion monitoring datasets and the rapidity of erosion processes development. These features make the area suitable as an open air laboratory for the study of badlands dynamic and changes in geoheritage due to erosion (i.e. active geomorphosites). Decadal multitemporal investigations on the erosion rates and the geomorphological dynamics of the study area allowed to highlight a decrease in the average water erosion rates during the last 60 years. More in detail, a reduction of bare land and, consequently, of erosion processes effectiveness and a contemporary increasing frequency of mass wasting events were recorded. These trends can be partly related to the land cover changes occurred in the study area from the 1950s onwards, which consist of the significant increase of reforestation practices and important other forms of human impacts on slopes, mainly land levelling for agricultural exploitation. In order to better identify the most significant phases of geomorphological instability occurred in this area during the last decades, an integrated approach based on multitemporal geomorphological mapping and dendrogeomorphology analysis on specimen of Pinus nigra Arn. was used. In detail, trees colonizing a denudation slope located in the surrounding of the Radicofani town (Tuscany, Italy) and characterized by calanchi and shallow mass movements deposits, were analyzed for the 1985-2012 time period. The analysis of the growth anomaly indexes and of compression wood allowed to determine a spatio-temporal differentiation along the slope and respect to an undisturbed reference site. The negative anomaly index results to be more pronounced in the trees located on the investigated slope with respect to the ones sampled in a non-disturbed area. Compression wood characterizes trees on slope sectors mainly affected by runoff and/or mass movements with a different persistence. Erosion rates were finally calculated through dendrogeomorphological analysis on tree roots exposure (0.31-3 cm/y runoff prevailing; 5.86-27.5 cm/y, mass movements prevailing). Dendrogeomorphological results are in accordance with those obtained in the investigated areas with multitemporal photogrammetric and geomorphologic analyses

    Image fusion techniqes for remote sensing applications

    Get PDF
    Image fusion refers to the acquisition, processing and synergistic combination of information provided by various sensors or by the same sensor in many measuring contexts. The aim of this survey paper is to describe three typical applications of data fusion in remote sensing. The first study case considers the problem of the Synthetic Aperture Radar (SAR) Interferometry, where a pair of antennas are used to obtain an elevation map of the observed scene; the second one refers to the fusion of multisensor and multitemporal (Landsat Thematic Mapper and SAR) images of the same site acquired at different times, by using neural networks; the third one presents a processor to fuse multifrequency, multipolarization and mutiresolution SAR images, based on wavelet transform and multiscale Kalman filter. Each study case presents also results achieved by the proposed techniques applied to real data

    Oil spill detection using optical sensors: a multi-temporal approach

    Get PDF
    Oil pollution is one of the most destructive consequences due to human activities in the marine environment. Oil wastes come from many sources and take decades to be disposed of. Satellite based remote sensing systems can be implemented into a surveillance and monitoring network. In this study, a multi-temporal approach to the oil spill detection problem is investigated. Change Detection (CD) analysis was applied to MODIS/Terra and Aqua and OLI/Landsat 8 images of several reported oil spill events, characterized by different geographic location, sea conditions, source and extension of the spill. Toward the development of an automatic detection algorithm, a Change Vector Analysis (CVA) technique was implemented to carry out the comparison between the current image of the area of interest and a dataset of reference image, statistically analyzed to reduce the sea spectral variability between different dates. The proposed approach highlights the optical sensors’ capabilities in detecting oil spills at sea. The effectiveness of different sensors’ resolution towards the detection of spills of different size, and the relevance of the sensors’ revisiting time to track and monitor the evolution of the event is also investigated

    Dynamical spectral unmixing of multitemporal hyperspectral images

    Full text link
    In this paper, we consider the problem of unmixing a time series of hyperspectral images. We propose a dynamical model based on linear mixing processes at each time instant. The spectral signatures and fractional abundances of the pure materials in the scene are seen as latent variables, and assumed to follow a general dynamical structure. Based on a simplified version of this model, we derive an efficient spectral unmixing algorithm to estimate the latent variables by performing alternating minimizations. The performance of the proposed approach is demonstrated on synthetic and real multitemporal hyperspectral images.Comment: 13 pages, 10 figure

    Mapping Chestnut Stands Using Bi-Temporal VHR Data

    Get PDF
    This study analyzes the potential of very high resolution (VHR) remote sensing images and extended morphological profiles for mapping Chestnut stands on Tenerife Island (Canary Islands, Spain). Regarding their relevance for ecosystem services in the region (cultural and provisioning services) the public sector demand up-to-date information on chestnut and a simple straight-forward approach is presented in this study. We used two VHR WorldView images (March and May 2015) to cover different phenological phases. Moreover, we included spatial information in the classification process by extended morphological profiles (EMPs). Random forest is used for the classification process and we analyzed the impact of the bi-temporal information as well as of the spatial information on the classification accuracies. The detailed accuracy assessment clearly reveals the benefit of bi-temporal VHR WorldView images and spatial information, derived by EMPs, in terms of the mapping accuracy. The bi-temporal classification outperforms or at least performs equally well when compared to the classification accuracies achieved by the mono-temporal data. The inclusion of spatial information by EMPs further increases the classification accuracy by 5% and reduces the quantity and allocation disagreements on the final map. Overall the new proposed classification strategy proves useful for mapping chestnut stands in a heterogeneous and complex landscape, such as the municipality of La Orotava, Tenerife

    An Adaptive Semi-Parametric and Context-Based Approach to Unsupervised Change Detection in Multitemporal Remote-Sensing Images

    Get PDF
    In this paper, a novel automatic approach to the unsupervised identification of changes in multitemporal remote-sensing images is proposed. This approach, unlike classical ones, is based on the formulation of the unsupervised change-detection problem in terms of the Bayesian decision theory. In this context, an adaptive semi-parametric technique for the unsupervised estimation of the statistical terms associated with the gray levels of changed and unchanged pixels in a difference image is presented. Such a technique exploits the effectivenesses of two theoretically well-founded estimation procedures: the reduced Parzen estimate (RPE) procedure and the expectation-maximization (EM) algorithm. Then, thanks to the resulting estimates and to a Markov Random Field (MRF) approach used to model the spatial-contextual information contained in the multitemporal images considered, a change detection map is generated. The adaptive semi-parametric nature of the proposed technique allows its application to different kinds of remote-sensing images. Experimental results, obtained on two sets of multitemporal remote-sensing images acquired by two different sensors, confirm the validity of the proposed approach
    corecore