3,645 research outputs found

    Novel enhanced modular multilevel converter for high-voltage direct current transmission systems

    Get PDF
    This paper proposes an enhanced modular multilevel converter as an alternative to the conventional half-bridge modular multilevel converter that employs a reduced number of medium-voltage cells, with the aim of improving waveforms quality in its AC and DC sides. Each enhanced modular multilevel converter arm consists of high-voltage and low-voltage chain-links. The enhanced modular multilevel converter uses the high-voltage chain-links based on medium-voltage half-bridge cells to synthesize the fundamental voltage using nearest level modulation. Although the low-voltage chain-links filter out the voltage harmonics from the voltage generated by the high-voltage chain-links, which are rough and stepped approximations of the fundamental voltage, the enhanced modular multilevel converter uses the nested multilevel concept to dramatically increase the number of voltage levels per phase compared to half-bridge modular multilevel converter. The aforementioned improvements are achieved at the cost of a small increase in semiconductor losses. Detailed simulations conducted in EMPT-RV and experimental results confirm the validity of the proposed converter

    Modified half-bridge modular multilevel converter for HVDC systems with DC fault ride-through capability

    Get PDF
    One of the main challenges of voltage source converter based HVDC systems is DC faults. In this paper, two different modified half-bridge modular multilevel converter topologies are proposed. The proposed converters offer a fault tolerant against the most severe pole-to-pole DC faults. The converter comprises three switches or two switches and 4 diodes in each cell, which can result in less cost and losses compared to the full-bridge modular multilevel converter. Converter structure and controls are presented including the converter modulation and capacitors balancing. MATLAB/SIMULINK simulations are carried out to verify converter operation in normal and faulty conditions

    Modulation, efficiency and lifetime of two-level and multilevel converters for a hydropower application

    Get PDF
    Along with the integration of the renewable energy in the electrical grid, the pumped-storage hydropower has gained more and more attention due to its fast response and energy storage ability. To have a higher overall efficiency and more flexibility of the system, variable speed is preferred in the operation of the pumped-storage hydropower applications. The key component for the variable speed pumped-storage hydropower application is the full-size power converter, which is the main study object in this work.Different converter topologies, such as the two-level converter, the neutral point clamped converter, and the modular multilevel converter, have been investigated in this study. The simulation and experimental results verify the feasibility of the studied modulation and control methods for different converter topologies. The nine-level modular multilevel converter needs four times the amount of the power modules compared with the two-level converter, not to mention the extra submodule capacitors and arm inductors in the nine-level modular multilevel converter. However, the nine-level modular multilevel converter shows the best efficiency of 99.37% at nominal power in the loss study, while the classical two-level converter shows an efficiency of 98.44%. At the end, a lifetime study is conducted for power switches inside a modular multilevel converter, and it is found that with the used semiconductors design, i.e., the semiconductors have an RMS current value that of half of its stated maximum value, the lifetime requirement of 30 years can always be fulfilled

    Modular multilevel converter modulation using fundamental switching selective harmonic elimination method.

    Get PDF
    This paper address the issue of low order harmonics in a modular multilevel converter (MMC). Using fundamental switching selective harmonic elimination (SHE), the control angles are calculated from nonlinear equations by Newton-Raphson method. The selective harmonic elimination equations are solved in such a way that the first switching angle is used to control the magnitude of the fundamental voltage and the remaining angles are used to eliminate the lowest odd, non-triplen harmonics components as they dominate the total harmonic distortion of the converter. The concept is validated using a 9-level detailed model of MMC in PSCAD/EMTDC®. The simulation result shows a good agreement with theoretical analysis and in comparison with conventional sinusoidal pulse width modulation (SPWM), the proposed method, eliminates low order harmonics, leading to a low total harmonic distortion

    A hybrid modular multilevel converter with novel three-level cells for DC fault blocking capability

    Get PDF
    A novel hybrid, modular multilevel converter is presented that utilizes a combination of half-bridge and novel three-level cells where the three-level cells utilize a clamp circuit which, under dc side faults, is capable of blocking fault current thereby avoiding overcurrents in the freewheel diodes. This dc fault blocking capability is demonstrated through simulation and is shown to be as good as the modular multilevel converter which utilizes full-bridge cells but with the added benefits of: lower conduction losses; fewer diode and semiconductor switching devices, and; fewer shoot-through modes. The semiconductor count and conduction loss of the proposed converter are reduced to around 66.5% and 72% of that of modular multilevel converter based on the full-bridge cells respectively, yielding lower semiconductor cost and improved efficiency. Dc fault ride-through operation is realized without exposing the semiconductors to significant fault currents and overvoltages due to the full dc fault blocking capability of the converter

    Modular multilevel converter with modified half-bridge submodule and arm filter for dc transmission systems with DC fault blocking capability

    Get PDF
    Although a modular multilevel converter (MMC) is universally accepted as a suitable converter topology for the high voltage dc transmission systems, its dc fault ride performance requires substantial improvement in order to be used in critical infrastructures such as transnational multi-terminal dc (MTDC) networks. Therefore, this paper proposes a modified submodule circuit for modular multilevel converter that offers an improved dc fault ride through performance with reduced semiconductor losses and enhanced control flexibility compared to that achievable with full-bridge submodules. The use of the proposed submodules allows MMC to retain its modularity; with semiconductor loss similar to that of the mixed submodules MMC, but higher than that of the half-bridge submodules. Besides dc fault blocking, the proposed submodule offers the possibility of controlling ac current in-feed during pole-to-pole dc short circuit fault, and this makes such submodule increasingly attractive and useful for continued operation of MTDC networks during dc faults. The aforesaid attributes are validated using simulations performed in MATLAB/SIMULINK, and substantiated experimentally using the proposed submodule topology on a 4-level small-scale MMC prototype

    Design Considerations for a Voltage-Boosting DC-AC Modular Multilevel Converter

    Full text link
    The Modular Multilevel Converter (M2C) is a relatively recent addition to the family of multilevel power converters. This paper describes the topology, dynamic phasor modeling, and operation of a voltage boosting DC-AC Modular Multilevel Converter. A “Semi-Full Bridge” submodule with only two controlled semiconductors and immune to shoot-through faults suitable for such applications is presented. An inherently scalable averaged model using dynamic phasors is also presented, with a control methodology to reduce losses and attenuate unwanted current harmonics in the arms and capacitors. Verification of the model is provided with simulations and an experimental prototype power converter

    Modular multilevel converter losses model for HVdc applications

    Get PDF
    Multi-terminal high voltage dc (HVdc) grids can eventually became a feasible solution to transport energy to remote and/ or distant areas and its exploitation depend, among other things, on the performance of the converter terminals. Therefore, to optimize the power transmission strategy along such a grid, it is necessary to recognize the efficiency of all the converters in all points of operation, namely with the different load conditions. In this vision, the aim of this work is to provide the methodology to model the modular multilevel converter (MMC) efficiency by means of a mathematical expression that can describe, over a broad range of active and reactive power flow combinations, the power losses generated by the semiconductors. According to the presented methodology, a polynomial-based model with a reduced number of coefficients is deducted, in such a way that can be directly used for optimal power flow (OPF) studies. The accuracy of the proposed model is characterized by an absolute relative error, at the worst scenario, approximately equal to 3%.Postprint (author's final draft

    New AC–AC Modular Multilevel Converter Solution for Medium-Voltage Machine-Drive Applications:Modular Multilevel Series Converter

    Get PDF
    Due to its scalability, reliability, high power quality and flexibility, the modular multilevel converter is the standard solution for high-power high-voltage applications in which an AC–DC–AC connection is required such as high-voltage direct-current transmission systems. However, this converter presents some undesired features from both structural and operational perspectives. For example, it presents a high number of components, which results in high costs, size, weight and conduction losses. Moreover, the modular multilevel converter presents problems dealing with DC-side faults, with unbalanced grid conditions, and many internal control loops are required for its proper operation. In variable-frequency operation, the modular multilevel converter presents some serious limitations. The most critical are the high-voltage ripples, in the submodule capacitors, at low frequencies. Thus, many different AC–AC converter solutions, with modular multilevel structure, have been proposed as alternatives for high-power machine-drive applications such as offshore wind turbines, pumped-hydro-storage systems and industrial motor drives. These converters present their own drawbacks mostly related to control complexity, operational limitations, size and weight. This paper introduces an entirely new medium-voltage AC–AC modular multilevel converter solution with many operational and structural advantages in comparison to the modular multilevel converter and other alternative topologies. The proposed converter presents high performance at low frequencies, regarding the amplitude of the voltage ripples in the submodule capacitors, which could make it very suitable for machine-drive applications. In this paper, an analytical description of the voltage ripples in the submodule capacitors is proposed, which proves the high performance of the converter under low-frequency operation. Moreover, the proposed converter presents high performance under unbalanced grid conditions. This important feature is demonstrated through simulation results. The converter solution introduced in this paper has a simple structure, with decoupled phases, which leads to the absence of undesired circulating currents and to a straightforward control, with very few internal control loops for its proper operation, and with simple modulation. Since the converter phases are decoupled, no arm inductors are required, which contributes to the weight and size reduction of the topology. In this paper, a detailed comparison analysis with the modular multilevel converter is presented based on number of components, conduction and switching losses. This analysis concludes that the proposed converter solution presents a reduction in costs and an expressive reduction in size and weight, in comparison to the modular multilevel converter. Thus, it should be a promising solution for high-power machine-drive applications that require compactness and lightness such as offshore wind turbines. In this paper, simulation results are presented explaining the behavior of the proposed converter, proving that it is capable of synthesizing a high-power-quality load voltage, with variable frequency, while exchanging power with the grid. Thus, this topology could be used to control the machine speed in a machine-drive application. Finally, experimental results are provided to validate the topology

    Prospective submodule topologies for MMC-BESS and its control analysis with HBSM

    Get PDF
    Battery energy storage systems and multilevel converters are the most essential constituents of modern medium voltage networks. In this regard, the modular multilevel converter offers numerous advantages over other multilevel converters. The key feature of modular multilevel converter is its capability to integrate small battery packs in a split manner, given the opportunity to submodules to operate at considerably low voltages. In this paper, we focus on study of potential SMs for modular multilevel converter based battery energy storage system while, keeping in view the inconsistency of secondary batteries. Although, selecting a submodule for modular multilevel converter based battery energy storage system, the state of charge control complexity is a key concern, which increases as the voltage levels increase. This study suggests that the half-bridge, clamped single, and full-bridge submodules are the most suitable submodules for modular multilevel converter based battery energy storage system since, they provide simplest state of charge control due to integration of one battery pack along with other advantages among all 24 submodule topologies. Depending on submodules analysis, the modular multilevel converter based battery energy storage system based on half-bridge submodules is investigated by splitting it into AC and DC equivalent circuits to acquire the AC and DC side power controls along with an state of charge control. Subsequently, to validate different control modes, a downscaled laboratory prototype has been developed
    • …
    corecore