3,646 research outputs found

    mm-Wave channel estimation with accelerated gradient descent algorithms

    Get PDF
    Abstract The availability of millimeter wave (mm-Wave) band in conjunction with massive multiple-input-multiple-output (MIMO) technology is expected to boost the data rates of the fifth-generation (5G) cellular systems. However, in order to achieve high spectral efficiencies, an accurate channel estimate is required, which is a challenging task in massive MIMO. By exploiting the small number of paths that characterize the mm-Wave channel, the estimation problem can be solved by compressed-sensing (CS) techniques. In this paper, we propose a novel CS channel estimation method based on the accelerated gradient descent with adaptive restart (AGDAR) algorithm exploiting a â„“ 1-norm approximation of the sparsity constraint. Moreover, a modified re-weighted compressed-sensing (RCS) technique is considered that iterates AGDAR using a weighted version of the â„“ 1-norm term, where weights are adapted at each iteration. We also discuss the impact of cell sectorization and tracking on the channel estimation algorithm. We compare the proposed solutions with existing channel estimations with an extensive simulation campaign on downlink third-generation partnership project (3GPP) channel models

    Joint multi-contrast Variational Network reconstruction (jVN) with application to rapid 2D and 3D imaging

    Full text link
    Purpose: To improve the image quality of highly accelerated multi-channel MRI data by learning a joint variational network that reconstructs multiple clinical contrasts jointly. Methods: Data from our multi-contrast acquisition was embedded into the variational network architecture where shared anatomical information is exchanged by mixing the input contrasts. Complementary k-space sampling across imaging contrasts and Bunch-Phase/Wave-Encoding were used for data acquisition to improve the reconstruction at high accelerations. At 3T, our joint variational network approach across T1w, T2w and T2-FLAIR-weighted brain scans was tested for retrospective under-sampling at R=6 (2D) and R=4x4 (3D) acceleration. Prospective acceleration was also performed for 3D data where the combined acquisition time for whole brain coverage at 1 mm isotropic resolution across three contrasts was less than three minutes. Results: Across all test datasets, our joint multi-contrast network better preserved fine anatomical details with reduced image-blurring when compared to the corresponding single-contrast reconstructions. Improvement in image quality was also obtained through complementary k-space sampling and Bunch-Phase/Wave-Encoding where the synergistic combination yielded the overall best performance as evidenced by exemplarily slices and quantitative error metrics. Conclusion: By leveraging shared anatomical structures across the jointly reconstructed scans, our joint multi-contrast approach learnt more efficient regularizers which helped to retain natural image appearance and avoid over-smoothing. When synergistically combined with advanced encoding techniques, the performance was further improved, enabling up to R=16-fold acceleration with good image quality. This should help pave the way to very rapid high-resolution brain exams

    Accelerated and Deep Expectation Maximization for One-Bit MIMO-OFDM Detection

    Full text link
    In this paper we study the expectation maximization (EM) technique for one-bit MIMO-OFDM detection (OMOD). Arising from the recent interest in massive MIMO with one-bit analog-to-digital converters, OMOD is a massive-scale problem. EM is an iterative method that can exploit the OFDM structure to process the problem in a per-iteration efficient fashion. In this study we analyze the convergence rate of EM for a class of approximate maximum-likelihood OMOD formulations, or, in a broader sense, a class of problems involving regression from quantized data. We show how the SNR and channel conditions can have an impact on the convergence rate. We do so by making a connection between the EM and the proximal gradient methods in the context of OMOD. This connection also gives us insight to build new accelerated and/or inexact EM schemes. The accelerated scheme has faster convergence in theory, and the inexact scheme provides us with the flexibility to implement EM more efficiently, with convergence guarantee. Furthermore we develop a deep EM algorithm, wherein we take the structure of our inexact EM algorithm and apply deep unfolding to train an efficient structured deep net. Simulation results show that our accelerated exact/inexact EM algorithms run much faster than their standard EM counterparts, and that the deep EM algorithm gives promising detection and runtime performances

    Refraction-corrected ray-based inversion for three-dimensional ultrasound tomography of the breast

    Get PDF
    Ultrasound Tomography has seen a revival of interest in the past decade, especially for breast imaging, due to improvements in both ultrasound and computing hardware. In particular, three-dimensional ultrasound tomography, a fully tomographic method in which the medium to be imaged is surrounded by ultrasound transducers, has become feasible. In this paper, a comprehensive derivation and study of a robust framework for large-scale bent-ray ultrasound tomography in 3D for a hemispherical detector array is presented. Two ray-tracing approaches are derived and compared. More significantly, the problem of linking the rays between emitters and receivers, which is challenging in 3D due to the high number of degrees of freedom for the trajectory of rays, is analysed both as a minimisation and as a root-finding problem. The ray-linking problem is parameterised for a convex detection surface and three robust, accurate, and efficient ray-linking algorithms are formulated and demonstrated. To stabilise these methods, novel adaptive-smoothing approaches are proposed that control the conditioning of the update matrices to ensure accurate linking. The nonlinear UST problem of estimating the sound speed was recast as a series of linearised subproblems, each solved using the above algorithms and within a steepest descent scheme. The whole imaging algorithm was demonstrated to be robust and accurate on realistic data simulated using a full-wave acoustic model and an anatomical breast phantom, and incorporating the errors due to time-of-flight picking that would be present with measured data. This method can used to provide a low-artefact, quantitatively accurate, 3D sound speed maps. In addition to being useful in their own right, such 3D sound speed maps can be used to initialise full-wave inversion methods, or as an input to photoacoustic tomography reconstructions

    'THz Torch' wireless communications links

    Get PDF
    The low-cost 'THz Torch’ technology, which exploits the thermal infrared spectrum (ca. 10 to 100 THz), was recently introduced to provide secure low data rate communications links across short ranges. In this thesis, the channel model for 'THz Torch’ wireless communications links is redeveloped from a thermodynamics perspective. Novel optimization-based channel estimators are also proposed to calibrate parameters in the channel model. Based on these theoretical advances, a cognitive 'THz Torch’ receiver, which combines conventional digital communications with state-of-the-art deep learning techniques, is presented to achieve cognitive synchronization and demodulation. The newly reported 'THz Torch’ wireless link is capable of bypassing the thermal time constant constraints normally associated with both the thermal emitter and sensor, allowing truly asynchronous data transfer with direct electronic modulation. Experimental results obtained in both laboratory environments and field trials demonstrate step-change improvements in channel range, bit rate, bit error rate and demodulation speed. This work represents a paradigm shift in modulation-demodulation with a thermal-based physical layer and offers a practical solution for implementing future ubiquitous secure 'THz Torch’ wireless communications links. The cognitive receiver concept also has wide-ranging implications for future communications and sensor technologies, making them more resilient when operating in harsh environments.Open Acces

    Digital Signal Processing for Optical Communications and Coherent LiDAR

    Get PDF
    Internet data traffic within data centre, access and metro networks is experiencing unprecedented growth driven by many data-intensive applications. Significant efforts have been devoted to the design and implementation of low-complexity digital signal processing (DSP) algorithms that are suitable for these short-reach optical links. In this thesis, a novel low-complexity frequency-domain (FD) multiple-input multiple-output (MIMO) equaliser with momentum-based gradient descent algorithm is proposed, capable of mitigating both static and dynamic impairments arising from the optical fibre. The proposed frequency-domain equaliser (FDE) also improves the robustness of the adaptive equaliser against feedback latencies which is the main disadvantage of FD adaptive equalisers under rapid channel variations. The development and maturity of optical fibre communication techniques over the past few decades have also been beneficial to many other fields, especially coherent light detection and ranging (LiDAR) techniques. Many applications of coherent LiDAR are also cost-sensitive, e.g., autonomous vehicles (AVs). Therefore, in this thesis, a low-cost and low-complexity single-photodiode-based coherent LiDAR system is investigated. The receiver sensitivity performance of this receiver architecture is assessed through both simulations and experiments, using two ranging waveforms known as double-sideband (DSB) amplitude-modulated chirp signal and single-sideband (SSB) frequency-modulated continuous-wave (FMCW) signals. Besides, the impact of laser phase noise on the ranging precision when operating within and beyond the laser coherence length is studied. Achievable ranging precision beyond the laser coherence length is quantified
    • …
    corecore