Digital Signal Processing for Optical Communications and Coherent LiDAR

Abstract

Internet data traffic within data centre, access and metro networks is experiencing unprecedented growth driven by many data-intensive applications. Significant efforts have been devoted to the design and implementation of low-complexity digital signal processing (DSP) algorithms that are suitable for these short-reach optical links. In this thesis, a novel low-complexity frequency-domain (FD) multiple-input multiple-output (MIMO) equaliser with momentum-based gradient descent algorithm is proposed, capable of mitigating both static and dynamic impairments arising from the optical fibre. The proposed frequency-domain equaliser (FDE) also improves the robustness of the adaptive equaliser against feedback latencies which is the main disadvantage of FD adaptive equalisers under rapid channel variations. The development and maturity of optical fibre communication techniques over the past few decades have also been beneficial to many other fields, especially coherent light detection and ranging (LiDAR) techniques. Many applications of coherent LiDAR are also cost-sensitive, e.g., autonomous vehicles (AVs). Therefore, in this thesis, a low-cost and low-complexity single-photodiode-based coherent LiDAR system is investigated. The receiver sensitivity performance of this receiver architecture is assessed through both simulations and experiments, using two ranging waveforms known as double-sideband (DSB) amplitude-modulated chirp signal and single-sideband (SSB) frequency-modulated continuous-wave (FMCW) signals. Besides, the impact of laser phase noise on the ranging precision when operating within and beyond the laser coherence length is studied. Achievable ranging precision beyond the laser coherence length is quantified

    Similar works