325,708 research outputs found

    Breast Cancer Associated Metastasis is Significantly Increased in a Model of Autoimmune Arthritis

    Get PDF
    Chronic inflammation is known to play a role in cancer initiation, promotion,and metastasis. However, the mechanism by which inflammation promotes metastasis is still unclear. We evaluated if chronic inflammation induced by autoimmune arthritis may contribute to increased breast cancer-associated metastasis. We report a three-fold increase in lung metastasis and a significant increase in the incidence of bone metastasis in the pro-arthritic mice compared to control mice. The metastatic breast tumors in turn augment the severity of arthritis resulting in a vicious cycle that increases both bone destruction and metastasis. Enhanced neutrophilic and granulocytic infiltration in lungs and bone of the pro-arthritic mice and subsequent increase in circulating levels of proinflammatory cytokines, such as IL-17, IL-6, VEGF, and TNF-α were the underlying factors contributing to the increased metastasis. The data clearly has important clinical implications for patients diagnosed with metastatic breast cancer

    Characteristics and treatments of large cystic brain metastasis: radiosurgery and stereotactic aspiration.

    Get PDF
    Brain metastasis represents one of the most common causes of intracranial tumors in adults, and the incidence of brain metastasis continues to rise due to the increasing survival of cancer patients. Yet, the development of cystic brain metastasis remains a relatively rare occurrence. In this review, we describe the characteristics of cystic brain metastasis and evaluate the combined use of stereotactic aspiration and radiosurgery in treating large cystic brain metastasis. The results of several studies show that stereotactic radiosurgery produces comparable local tumor control and survival rates as other surgery protocols. When the size of the tumor interferes with radiosurgery, stereotactic aspiration of the metastasis should be considered to reduce the target volume as well as decreasing the chance of radiation induced necrosis and providing symptomatic relief from mass effect. The combined use of stereotactic aspiration and radiosurgery has strong implications in improving patient outcomes

    TGLI1 transcription factor mediates breast cancer brain metastasis via activating metastasis-initiating cancer stem cells and astrocytes in the tumor microenvironment

    Get PDF
    Mechanisms for breast cancer metastasis remain unclear. Whether truncated glioma-associated oncogene homolog 1 (TGLI1), a transcription factor known to promote angiogenesis, migration and invasion, plays any role in metastasis of any tumor type has never been investigated. In this study, results of two mouse models of breast cancer metastasis showed that ectopic expression of TGLI1, but not GLI1, promoted preferential metastasis to the brain. Conversely, selective TGLI1 knockdown using antisense oligonucleotides led to decreased breast cancer brain metastasis (BCBM) in vivo. Immunohistochemical staining showed that TGLI1, but not GLI1, was increased in lymph node metastases compared to matched primary tumors, and that TGLI1 was expressed at higher levels in BCBM specimens compared to primary tumors. TGLI1 activation is associated with a shortened time to develop BCBM and enriched in HER2-enriched and triple-negative breast cancers. Radioresistant BCBM cell lines and specimens expressed higher levels of TGLI1, but not GLI1, than radiosensitive counterparts. Since cancer stem cells (CSCs) are radioresistant and metastasis-initiating cells, we examined TGLI1 for its involvement in breast CSCs and found TGLI1 to transcriptionally activate stemness genes CD44, Nanog, Sox2, and OCT4 leading to CSC renewal, and TGLI1 outcompetes with GLI1 for binding to target promoters. We next examined whether astrocyte-priming underlies TGLI1-mediated brain tropism and found that TGLI1-positive CSCs strongly activated and interacted with astrocytes in vitro and in vivo. These findings demonstrate, for the first time, that TGLI1 mediates breast cancer metastasis to the brain, in part, through promoting metastasis-initiating CSCs and activating astrocytes in BCBM microenvironment

    Renal Cell Carcinoma Presenting as Metastasis to Scrotum and Spermatic Cord

    Get PDF
    Unusual site metastasis as presenting complaint of renal cell carcinoma (RCC) has been reported previously in literature. RCC is a notorious tumor with unpredictable behavior. We present a case of RCC who presented with scrotal mass and on subsequent investigation was found to have metastasis to scrotum and spermatic cord. Both testes were normal with no evidence of metastasis

    Establishment of a patient-derived orthotopic Xenograft (PDOX) model of HER-2-positive cervical cancer expressing the clinical metastatic pattern.

    Get PDF
    Squamous cell carcinoma of the cervix, highly prevalent in the developing world, is often metastatic and treatment resistant with no standard treatment protocol. Our laboratory pioneered the patient-derived orthotopic xenograft (PDOX) nude mouse model with the technique of surgical orthotopic implantation (SOI). Unlike subcutaneous transplant patient-derived xenograft (PDX) models, PDOX models metastasize. Most importantly, the metastasis pattern correlates to the patient. In the present report, we describe the development of a PDOX model of HER-2-positive cervical cancer. Metastasis after SOI in nude mice included peritoneal dissemination, liver metastasis, lung metastasis as well as lymph node metastasis reflecting the metastatic pattern in the donor patient. Metastasis was detected in 4 of 6 nude mice with primary tumors. Primary tumors and metastases in the nude mice had histological structures similar to the original tumor and were stained by an anti-HER-2 antibody in the same pattern as the patient's cancer. The metastatic pattern, histology and HER-2 tumor expression of the patient were thus preserved in the PDOX model. In contrast, subcutaneous transplantation of the patient's cervical tumors resulted in primary growth but not metastasis

    Tumor-targeting Salmonella typhimurium A1-R inhibits human prostate cancer experimental bone metastasis in mouse models.

    Get PDF
    Bone metastasis is a frequent occurrence in prostate cancer patients and often is lethal. Zoledronic acid (ZOL) is often used for bone metastasis with limited efficacy. More effective models and treatment methods are required to improve the outcome of prostate cancer patients. In the present study, the effects of tumor-targeting Salmonella typhimurium A1-R were analyzed in vitro and in vivo on prostate cancer cells and experimental bone metastasis. Both ZOL and S. typhimurium A1-R inhibited the growth of PC-3 cells expressing red fluorescent protien in vitro. To investigate the efficacy of S. typhimurium A1-R on prostate cancer experimental bone metastasis, we established models of both early and advanced stage bone metastasis. The mice were treated with ZOL, S. typhimurium A1-R, and combination therapy of both ZOL and S. typhimurium A1-R. ZOL and S. typhimurium A1-R inhibited the growth of solitary bone metastases. S. typhimurium A1-R treatment significantly decreased bone metastasis and delayed the appearance of PC-3 bone metastases of multiple mouse models. Additionally, S. typhimurium A1-R treatment significantly improved the overall survival of the mice with multiple bone metastases. The results of the present study indicate that S. typhimurium A1-R is useful to prevent and inhibit prostate cancer bone metastasis and has potential for future clinical use in the adjuvant setting

    Satb1 overexpression drives tumor-promoting activities in cancer-associated dendritic cells

    Get PDF
    Special AT-rich sequence-binding protein 1 (Satb1) governs genome-wide transcriptional programs. Using a conditional knockout mouse, we find that Satb1 is required for normal differentiation of conventional dendritic cells (DCs). Furthermore, Satb1 governs the differentiation of inflammatory DCs by regulating major histocompatibility complex class II (MHC II) expression through Notch1 signaling. Mechanistically, Satb1 binds to the Notch1 promoter, activating Notch expression and driving RBPJ occupancy of the H2-Ab1 promoter, which activates MHC II transcription. However, tumor-driven, unremitting expression of Satb1 in activated Zbtb46(+) inflammatory DCs that infiltrate ovarian tumors results in an immunosuppressive phenotype characterized by increased secretion of tumor-promoting Galectin-1 and IL-6. In vivo silencing of Satb1 in tumor-associated DCs reverses their tumorigenic activity and boosts protective immunity. Therefore, dynamic fluctuations in Satb1 expression govern the generation and immunostimulatory activity of steady-state and inflammatory DCs, but continuous Satb1 overexpression in differentiated DCs converts them into tolerogenic/pro-inflammatory cells that contribute to malignant progression.Fil: Tesone, Amelia J.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Rutkowski, Melanie R.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Brencicova, Eva. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Svoronos, Nikolaos. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Perales Puchal, Alfredo. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Stephen, Tom L.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Allegrezza, Michael J.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Payne, Kyle K.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Nguyen, Jenny M.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Wickramasinghe, Jayamanna. The Wistar Institute. Center for Systems and Computational Biology; Estados UnidosFil: Tchou, Julia. University of Pennsylvania; Estados UnidosFil: Borowsky, Mark E.. Christiana Care Health System. Helen F. Graham Cancer Center; Estados UnidosFil: Rabinovich, Gabriel Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Kossenkov, Andrew V.. The Wistar Institute. Center for Systems and Computational Biology; Estados UnidosFil: Conejo Garcia, José R.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados Unido

    Lymphatic endothelium stimulates melanoma metastasis and invasion via MMP14-dependent Notch3 and b1-integrin activation

    Get PDF
    Lymphatic invasion and lymph node metastasis correlate with poor clinical outcome in melanoma. However, the mechanisms of lymphatic dissemination in distant metastasis remain incompletely understood. We show here that exposure of expansively growing human WM852 melanoma cells, but not singly invasive Bowes cells, to lymphatic endothelial cells (LEC) in 3D co-culture facilitates melanoma distant organ metastasis in mice. To dissect the underlying molecular mechanisms, we established LEC co-cultures with different melanoma cells originating from primary tumors or metastases. Notably, the expansively growing metastatic melanoma cells adopted an invasively sprouting phenotype in 3D matrix that was dependent on MMP14, Notch3 and β1-integrin. Unexpectedly, MMP14 was necessary for LEC-induced Notch3 induction and coincident β1-integrin activation. Moreover, MMP14 and Notch3 were required for LEC-mediated metastasis of zebrafish xenografts. This study uncovers a unique mechanism whereby LEC contact promotes melanoma metastasis by inducing a reversible switch from 3D growth to invasively sprouting cell phenotype

    Cellular and molecular mediators of bone metastatic lesions

    Get PDF
    Bone is the preferential site of metastasis for breast and prostate tumor. Cancer cells establish a tight relationship with the host tissue, secreting factors that stimulate or inhibit bone cells, receiving signals generated from the bone remodeling activity, and displaying some features of bone cells. This interplay between tumor and bone cells alters the physiological bone remodeling, leading to the generation of a vicious cycle that promotes bone metastasis growth. To prevent the skeletal-related events (SRE) associated with bone metastasis, approaches to inhibit osteoclast bone resorption are reported. The bisphosphonates and Denosumab are currently used in the treatment of patients affected by bone lesions. They act to prevent or counteract the SRE, including pathologic fractures, spinal cord compression, and pain associated with bone metastasis. However, their primary effects on tumor cells still remain controversial. In this review, a description of the mechanisms leading to the onset of bone metastasis and clinical approaches to treat them are described

    Improved Resection and Outcome of Colon-Cancer Liver Metastasis with Fluorescence-Guided Surgery Using In Situ GFP Labeling with a Telomerase-Dependent Adenovirus in an Orthotopic Mouse Model.

    Get PDF
    Fluorescence-guided surgery (FGS) of cancer is an area of intense development. In the present report, we demonstrate that the telomerase-dependent green fluorescent protein (GFP)-containing adenovirus OBP-401 could label colon-cancer liver metastasis in situ in an orthotopic mouse model enabling successful FGS. OBP-401-GFP-labeled liver metastasis resulted in complete resection with FGS, in contrast, conventional bright-light surgery (BLS) did not result in complete resection of the metastasis. OBP-401-FGS reduced the recurrence rate and prolonged over-all survival compared with BLS. In conclusion, adenovirus OBP-401 is a powerful tool to label liver metastasis in situ with GFP which enables its complete resection, not possible with conventional BLS
    • …
    corecore