2,234,681 research outputs found

    Accuracy of magnetic resonance imaging to identify pseudocapsule invasion in renal tumors

    Get PDF
    Purpose: To evaluate accuracy of MRI in detecting renal tumor pseudocapsule (PC) invasion and to propose a classification based on imaging of PC status in patients with renal cell carcinoma. Methods: From January 2017 to June 2018, 58 consecutive patients with localized renal cell carcinoma were prospectively enrolled. MRI was performed preoperatively and PC was classified, according to its features, as follows: MRI-Cap 0 (absence of PC), MRI-Cap 1 (presence of a clearly identifiable PC), MRI-Cap 2 (focally interrupted PC), and MRI-Cap 3 (clearly interrupted and infiltrated PC). A 3D image reconstruction showing MRI-Cap score was provided to both surgeon and pathologist to obtain complete preoperative evaluation and to compare imaging and pathology reports. All patients underwent laparoscopic partial nephrectomy. In surgical specimens, PC was classified according to the renal tumor capsule invasion scoring system (i-Cap). Results: A concordance between MRI-Cap and i-Cap was found in 50/58 (86%) cases. ρ coefficient for each MRI-cap and iCap categories was: MRI-Cap 0: 0.89 (p < 0.0001), MRI-Cap1: 0.75 (p < 0.0001), MRI-Cap 2: 0.76 (p < 0.0001), and MRI-Cap3: 0.87 (p < 0.0001). Sensitivity, specificity, positive predictive value, negative predictive value, and AUC were: MRI-Cap 0: Se 97.87% Spec 83.3%, PPV 95.8%, NPV 90.9%, and AUC 90.9; MRI-Cap 1: Se 77% Spec 95.5%, PPV 83.3%, NPV 93.5%, and AUC 0.86; MRI-Cap 2- iCap 2: Se 88% Spec 90%, PPV 79%, NPV 95%, and AUC 0.89; MRI-Cap 3: Se 94% Spec 95%, PPV 88%, NPV 97%, and AUC 0.94. Conclusions: MRI-Cap classification is accurate in evaluating renal tumor PC features. PC features can provide an imaging-guided landmark to figure out where a minimal margin could be preferable during nephron-sparing surgery

    A Technology Aware Magnetic QCA NCL-HDL Architecture

    Get PDF
    Magnetic Quantum Dot Cellular Automata (MQCA) have been recently proposed as an attractive implementation of QCA as a possible CMOS technology substitute. Marking a difference with respect to previous contributions, in this work we show that it is possible to develop and describe complex MQCA computational blocks strongly linking technology and having in mind a feasible realization. Thus, we propose a practicable clock structure for MQCA baptised "snake-clock", we stick to this while developing a system level Hardware Description Language (HDL) based description of an architectural block, and we suggest a delay insensitive Null Convention Logic (NCL) implementation for the magnetic case so that the "layout=timing" problem can be solved. Furthermore we include in our model aspects critically related to technology and real production, that is timing, power and layout, and we present the preliminary steps of our experiments, the results of which will be included in the architecture descriptio

    Floquet Energies and Quantum Hall Effect in a Periodic Potential

    Full text link
    The Quantum Hall Effect for free electrons in external periodic field is discussed without using the linear response approximation. We find that the Hall conductivity is related in a simple way to Floquet energies (associated to the Schroedinger equation in the co-moving frame). By this relation one can analyze the dependence of the Hall conductivity from the electric field. Sub-bands can be introduced by the time average of the expectation value of the Hamiltonian on the Floquet states. Moreover we prove previous results in form of sum rules as, for instance: the topological character of the Hall conductivity (being an integer multiple of e^2/h), the Diofantine equation which constrains the Hall conductivity by the rational number which measures the flux of the magnetic field through the periodicity cell. The Schroedinger equation fixes in a natural way the phase of the wave function over the reduced Brillouin zone: thus the topological invariant providing the Hall conductivity can be evaluated numerically without ambiguity.Comment: LaTex (revtex), 18 pages, 10 figures in .eps using epsf.sty. Changes in eq. (3.2). References adde

    Transcranial magnetic stimulation as a new tool to control pain perception.

    Get PDF
    Treatment for chronic pain is frequently unsuccessful or characterized by side-effects. The high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) has been suggested in the management of refractory chronic pain. Various studies have shown that HF-rTMS sessions of long-duration applied at primary motor cortex induce pain relief through mechanisms of plastic changes. Efficacy of rTMS mostly depends on stimulation parameters, but this aspect requires better characterization. A rationale to target other cortical areas exists. Current data are promising, but a careful analysis of stimulation settings and maintenance treatment design are need

    H-magnetic resonance spectroscopy. diagnostic tool in recurrent headache in systemic lupus erythematosus. a case report

    Get PDF
    We describe serial MR-spectroscopy studies in a patient with systemic lupus erythematosus and headache. We used MR-spectroscopy to monitor disease activity during periods with and without headache. MR-spectroscopy investigates metabolic alterations and was used to explore the pathophysiological mechanism involved in the complications of systemic lupus erythematosus. Our patient underwent serial conventional MRI and MR-spectroscopy at times of controlled and uncontrolled headache, with or without visual aura. MR-spectroscopy showed an increase in the choline/creatine ratio in thalamus and posterior white matter only during periods of uncontrolled headache with visual aura. Conventional MRI scans were normal at all times. MR-spectroscopy should be used in the diagnosis and follow-up of headache in patients with systemic lupus erythematosus

    Validation of the magnetic energy vs. helicity scaling in solar magnetic structures

    Get PDF
    We assess the validity of the free magnetic energy - relative magnetic helicity diagram for solar magnetic structures. We used two different methods of calculating the free magnetic energy and the relative magnetic helicity budgets: a classical, volume-calculation nonlinear force-free (NLFF) method applied to finite coronal magnetic structures and a surface-calculation NLFF derivation that relies on a single photospheric or chromospheric vector magnetogram. Both methods were applied to two different data sets, namely synthetic active-region cases obtained by three-dimensional magneto-hydrodynamic (MHD) simulations and observed active-region cases, which include both eruptive and noneruptive magnetic structures. The derived energy--helicity diagram shows a consistent monotonic scaling between relative helicity and free energy with a scaling index 0.84±\pm0.05 for both data sets and calculation methods. It also confirms the segregation between noneruptive and eruptive active regions and the existence of thresholds in both free energy and relative helicity for active regions to enter eruptive territory. We consider the previously reported energy-helicity diagram of solar magnetic structures as adequately validated and envision a significant role of the uncovered scaling in future studies of solar magnetism

    Magnetic frustration and spontaneous rotational symmetry breaking in PdCrO2

    Get PDF
    In the triangular layered magnet PdCrO2 the intralayer magnetic interactions are strong, however the lattice structure frustrates interlayer interactions. In spite of this, long-range, 120∘^\circ antiferromagnetic order condenses at TN=38T_N = 38~K. We show here through neutron scattering measurements under in-plane uniaxial stress and in-plane magnetic field that this occurs through a spontaneous lifting of the three-fold rotational symmetry of the nonmagnetic lattice, which relieves the interlayer frustration. We also show through resistivity measurements that uniaxial stress can suppress thermal magnetic disorder within the antiferromagnetic phase.Comment: 9 pages, 9 figure

    Neural Network Control of a Laboratory Magnetic Levitator

    Get PDF
    Magnetic levitation (maglev) systems are nowadays employed in applications ranging from non-contact bearings and vibration isolation of sensitive machinery to high-speed passenger trains. In this chapter a mathematical model of a laboratory maglev system was derived using the Lagrangian approach. A linear pole-placement controller was designed on the basis of specifications on peak overshoot and settling time. A 3-layer feed-forward Artificial Neural Network (ANN) controller comprising 3-input nodes, a 5-neuron hidden layer, and 1-neuron output layer was trained using the linear state feedback controller with a random reference signal. Simulations to investigate the robustness of the ANN control scheme with respect to parameter variations, reference step input magnitude variations, and sinusoidal input tracking were carried out using SIMULINK. The obtained simulation results show that the ANN controller is robust with respect to good positioning accuracy

    Magnetic Resonance Imaging with Diffuse Weighted Imaging and Computed Tomography with Intravenous Contrast in Staging of Disseminated Ovarian, Stomach, Colorectal Cancer

    Full text link
    The aim of the research. Development and implementation of new methods for pre-operative staging of advanced ovarian, gastric and colorectal cancer to improve patient selection for cytoreductive surgery and increase its radicality.Materials and methods. Data from 120 patients with advanced ovarian cancer, 28 with advanced gastric cancer and 119 with advanced colorectal cancer were analyzed. Preoperative detection of the incidence of peritoneal carcinoma and the possibility of surgery in radical or cytoreductive volume performed by CT with intravenous contrast (72 patients with ovarian cancer, 17 patients with gastric cancer, and 69 patients with colorectal cancer), and MR T1 and T2, contrast-enhanced T1, and diffuse-weighted sequences (48 patients with ovarian cancer, 11 patients with gastric cancer, and 50 patients with colorectal cancer). Subsequently, preoperative and intraoperative assessment of the prevalence of the tumour process with peritoneal carcinoma index (PCI) by Sugarbaker was performed.Results. A statistically significant increase in the informativeness of the preoperative assessment of the incidence of tumour process in peritoneum and the presence of distant metastases using DWI / MRI compared with CT with intravenous contrast was determined. Patients from all groups were categorized according to the completeness index of cytoreduction achieved by preoperative staging and patient selection using DWI / MRI and CT. The use of DWI / MRI allowed to significantly reduce the number of suboptimal and non-optimal cytoreductive interventions.Conclusions. DWI / MRI has made it possible to significantly improve the preoperative incidence of advanced ovarian, gastric, and colorectal cancer compared to CT, predict the radicality of future surgery, and detect inoperable cases
    • 

    corecore