1,111,019 research outputs found

    Localization game on geometric and planar graphs

    Get PDF
    The main topic of this paper is motivated by a localization problem in cellular networks. Given a graph GG we want to localize a walking agent by checking his distance to as few vertices as possible. The model we introduce is based on a pursuit graph game that resembles the famous Cops and Robbers game. It can be considered as a game theoretic variant of the \emph{metric dimension} of a graph. We provide upper bounds on the related graph invariant ζ(G)\zeta (G), defined as the least number of cops needed to localize the robber on a graph GG, for several classes of graphs (trees, bipartite graphs, etc). Our main result is that, surprisingly, there exists planar graphs of treewidth 22 and unbounded ζ(G)\zeta (G). On a positive side, we prove that ζ(G)\zeta (G) is bounded by the pathwidth of GG. We then show that the algorithmic problem of determining ζ(G)\zeta (G) is NP-hard in graphs with diameter at most 22. Finally, we show that at most one cop can approximate (arbitrary close) the location of the robber in the Euclidean plane

    A survey of localization in wireless sensor network

    Get PDF
    Localization is one of the key techniques in wireless sensor network. The location estimation methods can be classified into target/source localization and node self-localization. In target localization, we mainly introduce the energy-based method. Then we investigate the node self-localization methods. Since the widespread adoption of the wireless sensor network, the localization methods are different in various applications. And there are several challenges in some special scenarios. In this paper, we present a comprehensive survey of these challenges: localization in non-line-of-sight, node selection criteria for localization in energy-constrained network, scheduling the sensor node to optimize the tradeoff between localization performance and energy consumption, cooperative node localization, and localization algorithm in heterogeneous network. Finally, we introduce the evaluation criteria for localization in wireless sensor network

    POSTER: Privacy-preserving Indoor Localization

    Full text link
    Upcoming WiFi-based localization systems for indoor environments face a conflict of privacy interests: Server-side localization violates location privacy of the users, while localization on the user's device forces the localization provider to disclose the details of the system, e.g., sophisticated classification models. We show how Secure Two-Party Computation can be used to reconcile privacy interests in a state-of-the-art localization system. Our approach provides strong privacy guarantees for all involved parties, while achieving room-level localization accuracy at reasonable overheads.Comment: Poster Session of the 7th ACM Conference on Security & Privacy in Wireless and Mobile Networks (WiSec'14

    Spray, Embracing Multimodality

    Get PDF
    We present Spray, a localization system that compensates for low accuracy of individual localization measurements by combining measurements from multiple localization modalities
    corecore