418,236 research outputs found
Exploring the functional domain and the target of the tetanus toxin light chain in neurohypophysial terminals
The tetanus toxin light chain blocks calcium induced vasopressin release from neurohypophysial nerve terminals. Here we show that histidine residue 233 within the putative zinc binding motif of the tetanus toxin light chain is essential for the inhibition of exocytosis, in the rat. The zinc chelating agent dipicolinic acid as well as captopril, an inhibitor of zinc-dependent peptidases, counteract the effect of the neurotoxin. Synthetic peptides, the sequences of which correspond to motifs present in the cytoplasmic domain of the synaptic vesicle membrane protein synaptobrevin 1 and 2, prevent the effect of the tetanus toxin light chain.
Our results indicate that zinc bound to the zinc binding motif constitutes the active site of the tetanus toxin light chain. Moreover they suggest that cleavage of synaptobrevin by the neurotoxin causes the inhibition of exocytotic release of vasopressin from secretory granules
Structural properties of the linkers connecting the n- and c- terminal domains in the mocr bacterial transcriptional regulators
Peptide inter-domain linkers are peptide segments covalently linking two adjacent domains within a protein. Linkers play a variety of structural and functional roles in naturally occurring proteins. In this work we analyze the sequence properties of the predicted linker regions of the bacterial transcriptional regulators belonging to the recently discovered MocR subfamily of the GntR regulators. Analyses were carried out on the MocR sequences taken from the phyla Actinobacteria, Firmicutes, Alpha-, Beta- and Gammaproteobacteria. The results suggest that MocR linkers display phylum-specific characteristics and unique features different from those already described for other classes of inter-domain linkers. They show an average length significantly higher: 31.8 ± 14.3 residues reaching a maximum of about 150 residues. Compositional propensities displayed general and phylum-specific trends. Pro is dominating in all linkers. Dyad propensity analysis indicate Pro–Pro as the most frequent amino acid pair in all linkers. Physicochemical properties of the linker regions were assessed using amino acid indices relative to different features: in general, MocR linkers are flexible, hydrophilic and display propensity for β-turn or coil conformations. Linker sequences are hypervariable: only similarities between MocR linkers from organisms related at the level of species or genus could be found with sequence searches. The results shed light on the properties of the linker regions of the new MocR subfamily of bacterial regulators and may provide knowledge-based rules for designing artificial linkers with desired properties. © 2016 The Author(s
The first lines of divergence in the Bacteria domain seem to be the hyperthermophilic organisms: a check using an outgroup of sequences from mesophiles in phylogenetic analysis
We have conducted a check by substituting, in a previous phylogenetic analysis, an outgroup of sequences from hyperthermophilic archaea with another of mesophilic sequences of archaea. This should remove a possible compositional bias which might be responsible for the deep position of Thermotogales and Aquificales in the Bacteria domain, as observed in previous analyses. This check brought to light a weak compositional bias which does not seem, however, to entirely explain the deep position occupied by hyperthermophilic bacteria. The present analysis also seems to show that Planctomycetes are one of the deepest lines of divergence in the Bacteria domain, although they do not seem to be the very deepest
Neurospora crassa Light Signal Transduction Is Affected by ROS
In the ascomycete fungus Neurospora crassa blue-violet light controls the expression of genes responsible for differentiation of reproductive structures, synthesis of secondary metabolites, and the circadian oscillator activity. A major photoreceptor in Neurospora cells is WCC, a heterodimeric complex formed by the PAS-domain-containing polypeptides WC-1 and WC-2, the products of genes white collar-1 and white collar-2. The photosignal transduction is started by photochemical activity of an excited FAD molecule noncovalently bound by the LOV domain (a specialized variant of the PAS domain). The presence of zinc fingers (the GATA-recognizing sequences) in both WC-1 and WC-2 proteins suggests that they might function as transcription factors. However, a critical analysis of the phototransduction mechanism considers the existence of residual light responses upon absence of WCC or its homologs in fungi. The data presented
point at endogenous ROS generated by a photon stimulus as an alternative input to pass on light signals to downstream targets
Experiment-friendly kinetic analysis of single molecule data in and out of equilibrium
We present a simple and robust technique to extract kinetic rate models and
thermodynamic quantities from single molecule time traces. SMACKS (Single
Molecule Analysis of Complex Kinetic Sequences) is a maximum likelihood
approach that works equally well for long trajectories as for a set of short
ones. It resolves all statistically relevant rates and also their
uncertainties. This is achieved by optimizing one global kinetic model based on
the complete dataset, while allowing for experimental variations between
individual trajectories. In particular, neither a priori models nor equilibrium
have to be assumed. The power of SMACKS is demonstrated on the kinetics of the
multi-domain protein Hsp90 measured by smFRET (single molecule F\"orster
resonance energy transfer). Experiments in and out of equilibrium are analyzed
and compared to simulations, shedding new light on the role of Hsp90's ATPase
function. SMACKS pushes the boundaries of single molecule kinetics far beyond
current methods.Comment: 11 pages, 8 figure
SNARE based peptide linking as an efficient strategy to retarget botulinum neurotoxin’s enzymatic domain to specific neurons using diverse neuropeptides as targeting domains
Many disease states are caused by miss-regulated neurotransmission. A small fraction of these
diseases can currently be treated with botulinum neurotoxin type A (BoNT/A). BoNT/A is
composed of three functional domains – the light chain (Lc) is a zinc metalloprotease that
cleaves intracellular SNAP25 which inhibits exocytosis, the translocation domain (Td) that
enables the export of the light chain from the endosome to the cytosol, and the receptor binding
domain (Rbd) that binds to extracellular gangliosides and synaptic vesicle glycoproteins while
awaiting internalisation [1]. Current endeavours are directed towards retargeting Bont/A as well
as finding safer methods of preparation and administration. Recently, our laboratory has
developed a SNARE based linking strategy to recombine non-toxic BoNT/A fragments into a
functional protein by simple mixing [2]. This SNARE based linking strategy permits the stepwise
assembly of highly stable macromolecular complexes [2,3]. Onto these three SNARE
peptides, diverse functional groups can be attached to the N- or C- terminus by direct synthesis
and/or by genetic design. To enhance the therapeutic potential of BoNT/A, this method enables
the rapid assembly of a large array of neuropeptide-SNAREs to their cognate LcTd-SNARE. A
substitution of the Rbd with various neuropeptide sequences permits a large throughput
combinatorial assay of LcTd to target new cell types. In this study, we have fused LcTd to 3
different Synaptobrevin sequences; we also use a small protein staple, and 26 different
Syntaxin-neuropeptide fusions (permitting the assay of 78 new chimeric LcTd proteins with
modified targeting domains). These neuropeptides such as, but not exclusively, somatostatin
(SS), vasoactive intestinal peptide,
substance P, opioid peptide analogues,
Gonadotropin releasing hormone,
and Arginine Vasopressin,
which natively function through G
protein coupled receptors (GPCR)
can undergo agonist induced
internalisation upon activation.
The ability of our new constructs,
once endocytosed, to inhibit
neurotransmitter release was tested
on different neuronal cell lines
with immunoblotting of endogenous
SNAP25. This cleavage by
Lc reflects the ultimate readout of
the enzyme’s efficacy, which
incorporates the cell surface
binding, internalisation kinetics, translocation of the Lc to the cytosol, and finally the enzymatic
cleavage of SNAP25. Internalisation of the toxins can also be monitored with confocal
microscopy and FACS by the substitution of the staple peptide for a fluorescent homologue.
Figure 1 shows that whole boNT/A (upper left) can have its Rbd replaced with SNARE
peptides, which will fuse together to form highly stable chimeric proteins with an altered
targeting domain (right). Figure 1 also shows 4 different neuropeptide synthaxins in complex,
resolved on SDS-PAGE gel (bottom left lanes 1-4, boiled 1’-4’).
Fig. 1. SNARE-linked botulinum neurotoxins used for the
retargeting of Bont/A.
29
Understanding the mechanism of recognition of gab2 by the N-SH2 domain of SHP2
Gab2 is a scaffold protein with a crucial role in colocalizing signaling proteins and it is involved in the regulation of several important molecular pathways. SHP2 is a protein phosphatase that binds, through its two SH2 domains, specific consensus sequences presenting a phosphorylated tyrosine located on the disordered tail of Gab2. To shed light on the details of such a fundamental interaction for the physiology of the cell, we present a complete mutational analysis of the kinetics of binding between the N-SH2 domain of SHP2 and a peptide mimicking a specific region of Gab2. By analyzing kinetic data, we determined structural features of the transition state of the N-SH2 domain binding to Gab2, highlighting a remarkable cooperativity of the binding reaction. Furthermore, comparison of these data with ones previously obtained for another SH2 domain suggests the presence of underlying general features characterizing the binding process of SH2 domains. Data are discussed under the light of previous works on SH2 domains
Sequence Motifs in MADS Transcription Factors Responsible for Specificity and Diversification of Protein-Protein Interaction
Protein sequences encompass tertiary structures and contain information about specific molecular interactions, which in turn determine biological functions of proteins. Knowledge about how protein sequences define interaction specificity is largely missing, in particular for paralogous protein families with high sequence similarity, such as the plant MADS domain transcription factor family. In comparison to the situation in mammalian species, this important family of transcription regulators has expanded enormously in plant species and contains over 100 members in the model plant species Arabidopsis thaliana. Here, we provide insight into the mechanisms that determine protein-protein interaction specificity for the Arabidopsis MADS domain transcription factor family, using an integrated computational and experimental approach. Plant MADS proteins have highly similar amino acid sequences, but their dimerization patterns vary substantially. Our computational analysis uncovered small sequence regions that explain observed differences in dimerization patterns with reasonable accuracy. Furthermore, we show the usefulness of the method for prediction of MADS domain transcription factor interaction networks in other plant species. Introduction of mutations in the predicted interaction motifs demonstrated that single amino acid mutations can have a large effect and lead to loss or gain of specific interactions. In addition, various performed bioinformatics analyses shed light on the way evolution has shaped MADS domain transcription factor interaction specificity. Identified protein-protein interaction motifs appeared to be strongly conserved among orthologs, indicating their evolutionary importance. We also provide evidence that mutations in these motifs can be a source for sub- or neo-functionalization. The analyses presented here take us a step forward in understanding protein-protein interactions and the interplay between protein sequences and network evolution
- …