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Abstract: Gab2 is a sca↵old protein with a crucial role in colocalizing signaling proteins and it is
involved in the regulation of several important molecular pathways. SHP2 is a protein phosphatase
that binds, through its two SH2 domains, specific consensus sequences presenting a phosphorylated
tyrosine located on the disordered tail of Gab2. To shed light on the details of such a fundamental
interaction for the physiology of the cell, we present a complete mutational analysis of the kinetics
of binding between the N-SH2 domain of SHP2 and a peptide mimicking a specific region of
Gab2. By analyzing kinetic data, we determined structural features of the transition state of the
N-SH2 domain binding to Gab2, highlighting a remarkable cooperativity of the binding reaction.
Furthermore, comparison of these data with ones previously obtained for another SH2 domain
suggests the presence of underlying general features characterizing the binding process of SH2
domains. Data are discussed under the light of previous works on SH2 domains.
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1. Introduction

It is general knowledge that the complexity of an organism is not directly correlated with the size
of its genome and the number of its genes. Evolution is more often the result of the arising of novel
intracellular interactions, rather than the acquisition of new genes and, consequently, of completely new
proteins. Thus, with the increase in complexity of eukaryotic organisms during evolution, intracellular
milieu has become progressively more intricate and increasingly finely regulated. Thousands of proteins
simultaneously recognizing di↵erent ligands are at the basis of the most fundamental physiological
pathways that regulate cellular life. Frequently, the interactions between proteins are mediated by
specific classes of domains that usually recognize a determined consensus sequence [1–5]. To avoid
the misregulation of cell physiology, di↵erent protein–protein interaction domains evolved to ensure
specificity and proper a�nity for their natural ligand(s) [6].

Understanding the mechanism of how interactions between proteins occur is of fundamental
importance to comprehend the basis of the regulation of the molecular pathways in which they are
involved. Many protein–protein interactions are based on the recognition of short binding regions,
called Short Linear Motifs, mediated by globular domain families, such as SH2, SH3 and PDZ
domains [1–5]. Domains belonging to the same families are characterized by sharing a conserved
topology and, consequently, binding specificity. In fact, recognition of ligands occurs at the level of
well-established consensus sequences, conserved in the domain families, rather than strings of specific
amino acids. Under this light, the evidences of complicated mechanisms of binding characterized by
the presence of fine allosteric networks are not surprising [7–10]. Long allosteric networks regulate the
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a�nity and specificity for ligand(s) by a harmonized involvement of di↵erent regions of the globular
domain, in the absence of major structural rearrangements [11,12].

Sca↵old proteins play a fundamental role in the spatial and temporal regulation of several
molecular pathways by sequestering signaling proteins in specific subcellular compartments. To do
so, they typically present multiple modular interaction motifs mediating the assembly of di↵erent
signaling machineries [13]. Gab2 is a sca↵old protein that is structurally composed by a Pleckstrin
Homology (PH) domain, that anchors the protein to the plasma membrane of the cell, and a C-terminal
long disordered region presenting several binding sites for signaling proteins [14,15]. Many of these
interacting motifs undergo phosphorylation of specific tyrosine residues [16–18], so that they can be
recognized by signaling proteins containing SH2 domains, such as Grb2, PI3K and SHP2.

SHP2 is a phosphatase protein that regulates several important physiological pathways [19].
From a structural perspective, it is composed of two adjacent SH2 domains (N-SH2 and C-SH2) followed
by a PTP (Protein-Tyrosine Phosphatase) domain which retains catalytic phosphatase activity [20].
SH2 domains are a class of domains of about 100 amino acids that mediate protein–protein interactions
in a wide range of multidomain proteins (REF). Their topology is conserved and is characterized by the
presence of a �-sheet, composed of three to five anti-parallel �-strands, flanked by two ↵-helices [21,22].
SH2 domains have the biological role to recognize consensus sequences characterized by the presence
of a phosphorylated tyrosine (pY) together with a series of additional residues at the C-terminus of the
pY [23,24]. The two SH2 domains of SHP2 mediate the interaction of the phosphatase with di↵erent
partners in the intracellular environment. Interestingly, the N-SH2 domain possesses a regulatory
role in the activity of the PTP domain by acting as a conformational switch [20]. In the inactive form
of SHP2, the catalytic active site of the PTP domain is physically blocked by the N-SH2 domain.
When the latter recognizes and binds a ligand, it undergoes a major conformational change removing
the autoinhibition and triggering the activation of the phosphatase activity [20].

Comparison of the binding reactions of domains sharing the same topology but a di↵erent primary
structure with their natural ligands is an e↵ective tool to depict subtle and elusive processes acting
in the binding event. In this paper, we provide a complete characterization, through a combination
of mutagenesis and kinetics, of the binding reaction occurring between the N-SH2 domain of SHP2
and a peptide mimicking a specific disordered region of Gab2 and ranging from residue 608 to 620.
The analysis of kinetic data allowed us to determine structural features of the transition state of
the N-SH2 domain binding to Gab2, revealing a remarkable cooperativity of the binding reaction.
In analogy to protein folding studies, where the comparison of folding reactions between proteins
sharing the same topology but di↵erent sequences has been demonstrated to be a powerful methodology
to depict the determinants of folding mechanisms [25], we resorted to comparing results with the ones
recently obtained for the binding of the N-SH2 domain of PI3K with Gab2 [10]. Interestingly, our data
indicate that the two SH2 domains present similar mechanisms of binding with di↵erent specific
portions of Gab2 which may possibly represent a general feature characterizing the SH2 domains class.
Results are discussed under the light of previous works on SH2 domains.

2. Materials and Methods

2.1. Expression and Purification of the N-SH2 Site-Directed Variants of SHP2

N-SH2 wild-type and all the site-directed mutants were expressed and purified as described
previously [26]. Site-directed mutagenesis was performed using the QuikChange mutagenesis kit
(Stratagene) according to the manufacturer’s instructions.
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2.2. Stopped-Flow Kinetic Binding and Displacement Experiments

Kinetic binding experiments were performed on a single-mixing SX-18 stopped-flow instrument
(Applied Photophysics) in pseudo-first order conditions, by mixing a constant concentration (1 µM) of
Gab2608–620 dansylated on its N-terminus versus increasing concentrations of N-SH2, ranging from 2 to
12 µM, in bu↵er TrisHCl 50 mM, NaCl 300 mM, pH 7.2, at 10 �C. The excitation wavelength was 280 nm,
and fluorescence was collected using a 455 nm cut-o↵ filter. At least five independent acquisitions
were collected and averaged for each experiment. The resulting averages were all satisfactorily fitted
with a single exponential equation.

Displacement kinetic experiments were performed by mixing a preincubated complex of N-SH2
and dansylated Gab2608–620 at a 1:1 stoichiometric ratio versus a high excess of non-dansylated
Gab2608–620. Experiments were performed in the same conditions as the binding experiments.
Displacement traces were fitted with a single exponential equation.

3. Results and Discussion

3.1. Mutational Analysis of the Kinetics of Binding between the N-SH2 of SHP2 and Gab2

A powerful methodology to infer the details of a binding reaction is to perturb the system by
mutating single residues and monitoring the e↵ect of mutations on the microscopic association and
dissociation rate constants. Thus, by following the same rationale used for the N-SH2 folding-value
analysis [27], we resorted to producing 23 conservative site-directed variants of the N-SH2 domain
of SHP2 and we monitored the binding reaction with a peptide mimicking a specific region of Gab2,
ranging from residue 608 to 620 (Gab2608–620 NTERM-STGSVDYLALDFQ-CTERM). In analogy to our
previous work [26], the binding reaction was followed spectroscopically by monitoring the change in
the FRET (Fluorescence Resonance Energy Transfer) signal upon binding, by taking advantage of the
tryptophan residue naturally occurring in the N-SH2 domain in position 6 as a donor group and a
dansyl group covalently linked to the N-terminus of Gab2608–620 as the acceptor group. Time-resolved
binding experiments were performed with a stopped-flow apparatus in pseudo-first order conditions,
by rapidly mixing dansylated Gab2608–620 at a constant concentration of 1 µM versus increasing
concentrations of the N-SH2 domain ranging from 2 to 12 µM, in bu↵er TrisHCl 50 mM, NaCl 300 mM,
pH 7.2 at 10 �C. In total, 300 mM NaCl was added to the bu↵er in order to slow down the binding
reaction and avoid the possible destabilizing mutations that would have resulted in binding kinetics too
fast to be explored by a stopped-flow methodology [26]. All the binding traces were satisfactorily fitted
with a single exponential equation. The dependences of the observed rate constants, kobs, obtained
at di↵erent concentrations of the site-directed variants of N-SH2 (Figure 1) followed bimolecular
kinetics. Given the pseudo-first order approximation, the microscopic association rate constant of the
binding reaction (kon) was calculated as the slope of the fitting line, and the microscopic dissociation
rate constant (ko↵) could be indirectly calculated as the y-axis intercept of the line. Although the
extrapolation of ko↵ is in theory correct, the high experimental error often arising from this procedure
demands a di↵erent approach. In analogy to classical experiments on hemoglobin [28], we performed
displacement kinetic experiments by challenging a preincubated complex of the N-SH2 domain with
dansyl-Gab2608–620 in a stoichiometric ratio of 1:1 at a fixed concentration of 1 µM versus a high excess
of non-dansylated Gab2608–620, i.e., a species with the same a�nity for N-SH2 but di↵erent optical
properties in respect to dansyl-Gab2608–620. Displacement traces were fitted with a single exponential
equation, and, in agreement with the theory, they were found to be insensitive to the concentration of
the displacer. Association and dissociation rate constants, together with a�nities and thermodynamic
parameters, obtained for all the site-directed variants of N-SH2 are reported in Table 1.
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Figure 1. Dependences of the observed rate constants obtained at different concentrations of wild-
type (black dots) and site-directed variants (gray dots) of N-SH2 through pseudo-first order binding 
kinetics. Lines represent the best fit to a linear function. 

  

Figure 1. Dependences of the observed rate constants obtained at di↵erent concentrations of wild-type
(black dots) and site-directed variants (gray dots) of N-SH2 through pseudo-first order binding kinetics.
Lines represent the best fit to a linear function.
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Table 1. Kinetic and thermodynamic parameters obtained from the analysis of pseudo-first order
binding kinetics between site-directed variants of N-SH2 and Gab2608–620.

kon (µM�1 s�1) ko↵ (s�1) KD (nM)

Activation Free Energy

DDG#

(kcal mol�1)

Equilibrium Free Energy

DDGeq

(kcal mol�1)

WT 19.0 ± 0.5 1.85 ± 0.01 100 ± 5
I11V 22.2 ± 1.5 1.81 ± 0.01 80 ± 6 �0.09 ± 0.02 �0.10 ± 0.01
T12S 21.2 ± 1.4 1.73 ± 0.01 80 ± 6 �0.06 ± 0.01 �0.10 ± 0.02
V14A 17.9 ± 0.6 2.81 ± 0.01 160 ± 5 0.03 ± 0.01 0.27 ± 0.03
L19A 13.8 ± 0.5 2.39 ± 0.01 170 ± 6 0.18 ± 0.02 0.32 ± 0.03
T22S 19.2 ± 0.8 1.93 ± 0.01 100 ± 4 �0.01 ± 0.01 0.02 ± 0.01
V25A 20.2 ± 0.9 2.04 ± 0.07 100 ± 6 �0.04 ± 0.01 0.02 ± 0.01
A31G 23.5 ± 1.1 1.62 ± 0.01 70 ± 3 �0.12 ± 0.02 �0.19 ± 0.02
T42S 28.6 ± 1.1 0.14 ± 0.01 5.0 ± 0.5 �0.23 ± 0.02 �1.69 ± 0.10
V45A 14.1 ± 0.7 3.23 ± 0.01 230 ± 11 0.17 ± 0.10 0.48 ± 0.05
A50G 23.0 ± 1.0 1.63 ± 0.07 70 ± 4 �0.11 ± 0.01 �0.18 ± 0.02
T52S 18.7 ± 1.0 0.20 ± 0.01 10 ± 1 0.01 ± 0.01 �1.24 ± 0.10
I54V 17.0 ± 0.5 2.53 ± 0.20 150 ± 13 0.06 ± 0.03 0.24 ± 0.02
I56V 26.0 ± 1.1 0.68 ± 0.01 30 ± 1 �0.18 ± 0.02 �0.74 ± 0.07
T59S 19.1 ± 0.9 2.30 ± 0.01 120 ± 6 0.00 ± 0.01 0.12 ± 0.01
L65A 14.8 ± 1.5 12.70 ± 0.10 860 ± 90 0.14 ± 0.05 1.22 ± 0.10
A72G 14.7 ± 0.9 2.39 ± 0.01 170 ± 10 0.14 ± 0.02 0.29 ± 0.03
T73S 19.7 ± 0.8 2.09 ± 0.02 110 ± 4 �0.02 ± 0.01 0.05 ± 0.01
L74A 15.6 ± 1.9 3.23 ± 0.01 210 ± 25 0.11 ± 0.05 0.43 ± 0.04
A75G 20.7 ± 2.1 2.35 ± 0.02 110 ± 10 �0.05 ± 0.02 0.09 ± 0.01
V78A 14.5 ± 1.7 2.73 ± 0.40 190 ± 35 0.15 ± 0.04 0.37 ± 0.03
L88A 14.0 ± 0.9 10.30 ± 0.05 730 ± 50 0.17 ± 0.05 1.13 ± 0.10
V95A 18.9 ± 1.7 2.44 ± 0.01 130 ± 12 0.00 ± 0.02 0.16 ± 0.01
I96V 20.5 ± 0.8 2.06 ± 0.01 100 ± 4 �0.04 ± 0.02 0.02 ± 0.01

3.2. N-SH2 SHP2: Gab2 Complex Is Stabilized by Weak Interactions

It is of interest to analyze the kinetic parameters associated to T42S, T52S, I56V, L65A and L88A
mutations. Inspection of KD values (calculated as KD = ko↵/kon) for these variants show that T42S
(KD = 5.0 ± 0.5 nM), T52S (KD = 10 ± 1 nM) and I56V (KD = 30 ± 1 nM) cause a sensible increase
of the a�nity for Gab2608–620 compared to the wild-type (KD = 100 ± 5 nM). On the other hand,
L65A (KD = 860 ± 90 nM) and L88A (KD = 730 ± 50 nM) mutations cause a remarkable decrease in
a�nity. Interestingly, these e↵ects on a�nity are ascribable to an increase/decrease of the microscopic
dissociation rate constant upon mutation, whilst kon values appear to be less a↵ected. An analysis of
the structural distribution of T42, T52, I56, L65 and L88 residues reveals that they are all physically
located in the binding pocket of the N-SH2 (Figure 2). Recently we characterized the e↵ect of the
T42S mutation (together with the Noonan Syndrome causing a mutation of T42A) on the binding
kinetics between N-SH2 and Gab2608–620 [29]. A structural analysis performed by homology modelling
suggested that the polar -OH group of the side chain of T42 may have the role to partially shield the
negative charge of phospho-tyrosine, thus a↵ecting the rate of release of the ligand without a↵ecting
the negative charge of the phospho-tyrosine to be in direct contact with positively charged side chains
in the binding pocket. Analogously, T52S, I56V, L65A and L88A mutations do not influence the
recognition of the negative charge of the phospho-tyrosine and may (de)stabilize the rate of release of
the ligand through breakage/formation of weak hydrophobic and polar interactions.
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Figure 2. Three dimensional structure of the N-SH2 domain of SHP2 (in gray) in complex with Gab1
(in orange (Gab1 sequence: NTERM-GDKQVEYLDLDLD-CTERM [PDB:4QSY])). Residues T42, T52, I56,
L65 and L88 of N-SH2 are shown in green to highlight their physical location in respect to the binding
pocket of the domain.

3.3. Does a Conserved Mechanism of Binding Characterize the SH2 Domain Family?

Linear Free Energy Relationship (LFER) analysis is a powerful methodology, originally used
in organic chemistry to analyze reactions involving the formation of covalent bonds, that can be
used also to describe reactions involving the formation of several noncovalent interactions, such
as protein folding and protein–protein interactions. Kinetic data reported in Table 1 allowed us to
perform a Linear Free Energy Relationship (LFER) analysis of the binding reaction between N-SH2 and
Gab2608–620, by relating the changes in activation free energy (DDG#) to the changes in equilibrium
free energy (DDGeq) of the reaction. The slope of the correlation, classically denoted as ↵, represents
the transition state position along the reaction coordinate. The LFER plot of the binding reaction
between the N-SH2 of SHP2 and Gab2 is reported in Figure 3a. A linear fit of the entire set of data was
performed, returning a value of ↵ = 0.14 ± 0.03. Despite the relatively low error arising from the fit,
inspection of Figure 3a reveals that data appear to be poorly fitted. In particular, it is evident that five
points corresponding to the N-SH2 variants T42S, T52S, I56V, L65A and L88A appear to be scattered
and clearly deviate from the fitting line to a lower slope. By excluding the variants T42S, T52S, I56V,
L65A and L88A from the analysis, the LFER reported a di↵erent ↵ value of 0.44 ± 0.03. Importantly,
the changes in activation and equilibrium free energy of binding show no correlation with the change
in thermodynamic stability (DDGD-N) of the N-SH2 variants of SHP2 (data taken from [10] (Figure 3c)).
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Figure 3. Panel A: Linear Free Energy Relationship (LFER) plots obtained from the analysis of kinetic
data for the binding of N-SH2 domain with Gab2608–620. Broken line represents the best fit to a linear
equation for all the points on the plot. Continuous line represents the best fit to a linear equation by
excluding T42S, T52S, I56V, L65A and L88A points (details in the text). Panel B: Comparison of the
LFER plots obtained for the N-SH2 domain of PI3K (gray line) and the N-SH2 domain of SHP2 (black
line). It is evident that the two linear functions display identical slopes. Panel C: Plot displaying the
activation free energy (DDG# (black dots)) and equilibrium free energy (DDGeq (gray dots)) values for
all the site-directed variants of N-SH2 from Table 1 as a function of their thermodynamic stability (data
taken from [27]).

Analogously to protein folding studies [30], the linearity of the LFER plot represents a hallmark of
the cooperativity of the reaction; that is, the binding of the ligand is mediated by the entire globule and
not only by residues occurring in the binding pocket. These mechanisms of interaction characterize
di↵erent domain families, with the presence of allosteric networks finely regulating the a�nity for
ligands displaying di↵erent sequences, thus determining selectivity in the intracellular environment [8].
A powerful methodology to infer the details of the binding properties of a domain is to compare its
mechanism of binding with domains sharing the same topology but displaying di↵erent sequences.
Thus, it is of interest to compare the LFER analysis obtained for the N-SH2 domain of SHP2 with the
one that we recently performed on the N-SH2 domain of PI3K [10]. By superimposing the LFER plots
obtained for the two domains for the binding reaction with a di↵erent portion of the protein Gab2,
they can be fitted with linear equation displaying identical slopes (Figure 3b).

The remarkable similarity of the LFER plots of the N-SH2 domain of SHP2 and the N-SH2 domain
of PI3K reveals a similar mechanism of interaction, although the two domains display di↵erent a�nities
for their natural ligands [10,26]. With the exception of the SH2 domains tuning their selectivity through
major structural rearrangements [31–33], cooperative interactions mediated by the entire domain can be
at the basis of the ability of SH2 domains to adapt to ligands displaying di↵erent residues flanking the
phospho-tyrosine with di↵erent specificity and a�nity [34]. Further structural characterizations and
double-mutant cycles kinetic experiments are demanded to quantitatively characterize the allosteric
networks regulating the binding mechanism of SH2 domains.

4. Conclusions

Because of their abundance in the proteome and the importance in mediating and regulating
fundamental molecular pathways, SH2 domains represent an important subject of study. However,
the mechanisms of interaction with their natural ligands have been characterized only for a few SH2
domains. By performing an extensive mutational analysis and monitoring the e↵ects of mutations on
the binding reaction with Gab2, we showed that the N-SH2 domain of SHP2 presents a cooperative
mechanism of binding involving the entire domain. The remarkable similarity of the thermodynamics
of the reaction with the N-SH2 domain from PI3K suggests this mechanism may represent a common
feature of SH2 domains. Further investigations will provide more information and possibly confirm
this eventuality.
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