216,726 research outputs found

    Machine learning methods applied to combined Raman and LIBS spectra: Implications for mineral discrimination in planetary missions

    Get PDF
    Producción CientíficaThe combined analysis of geological targets by complementary spectroscopic techniques could enhance the characterization of the mineral phases found on Mars. This is indeed the case with the SuperCam instrument onboard the Perseverance rover. In this framework, the present study seeks to evaluate and compare multiple machine learning techniques for the characterization of carbonate minerals based on Raman-LIBS (Laser-Induced Breakdown Spectroscopy) spectroscopic data. To do so, a Ca-Mg prediction curve was created by mixing hydromagnesite and calcite at different concentration ratios. After their characterization by Raman and LIBS spectroscopy, different multivariable machine learning (Gaussian process regression, support vector machines, ensembles of trees, and artificial neural networks) were used to predict the concentration ratio of each sample from their respective datasets. The results obtained by separately analyzing Raman and LIBS data were then compared to those obtained by combining them. By comparing their performance, this work demonstrates that mineral discrimination based on Gaussian and ensemble methods optimized the combine of Raman-LIBS dataset outperformed those ensured by Raman and LIBS data alone. This demonstrated that the fusion of data combination and machine learning is a promising approach to optimize the analysis of spectroscopic data returned from Mars.Agencia Estatal de Investigación, grant (PID2022-142490OB-C32)Ministerio de Economía y Competitividad (MINECO),Grant/Award Number (RDE2018-102600-T

    Developing Learning Methods of Indonesian as a Foreign Language

    Full text link
    The present study was conducted which aims at developing teaching methods of Indonesian as a foreign language. This study was carried out for two years in the form of Research and Development design to develop accuracy of teaching methods to be employed to teach the Indonesian language. The study was conducted as an important and crucial issue encountered by prospective teachers of Indonesian as a foreign language to face global challenges in which teachers of Indonesian are urgently required to teach effectively. In addition, this study was conducted to prepare the Indonesian teachers to be professional teachers and ready to face the competitive world of work. In the first year, the research was focused on creating a draft of effective learning methods to teach Indonesian as a foreign language. Consequently, this study was started by analyzing the teaching methods that have been used by various language learning institutions. The second year, the study is mainly focused on trying out and validated the learning methods to ensure their effectiveness to teach Indonesian as a foreign language

    Machine learning methods for histopathological image analysis

    Full text link
    Abundant accumulation of digital histopathological images has led to the increased demand for their analysis, such as computer-aided diagnosis using machine learning techniques. However, digital pathological images and related tasks have some issues to be considered. In this mini-review, we introduce the application of digital pathological image analysis using machine learning algorithms, address some problems specific to such analysis, and propose possible solutions.Comment: 23 pages, 4 figure

    Novel deep learning methods for track reconstruction

    Full text link
    For the past year, the HEP.TrkX project has been investigating machine learning solutions to LHC particle track reconstruction problems. A variety of models were studied that drew inspiration from computer vision applications and operated on an image-like representation of tracking detector data. While these approaches have shown some promise, image-based methods face challenges in scaling up to realistic HL-LHC data due to high dimensionality and sparsity. In contrast, models that can operate on the spacepoint representation of track measurements ("hits") can exploit the structure of the data to solve tasks efficiently. In this paper we will show two sets of new deep learning models for reconstructing tracks using space-point data arranged as sequences or connected graphs. In the first set of models, Recurrent Neural Networks (RNNs) are used to extrapolate, build, and evaluate track candidates akin to Kalman Filter algorithms. Such models can express their own uncertainty when trained with an appropriate likelihood loss function. The second set of models use Graph Neural Networks (GNNs) for the tasks of hit classification and segment classification. These models read a graph of connected hits and compute features on the nodes and edges. They adaptively learn which hit connections are important and which are spurious. The models are scaleable with simple architecture and relatively few parameters. Results for all models will be presented on ACTS generic detector simulated data.Comment: CTD 2018 proceeding
    corecore