213,508 research outputs found

    Learning-Based Adaptation for Personalized Mobility Assistance

    Get PDF
    Mobility assistance is of key importance for people with disabilities to remain autonomous in their preferred environments. In severe cases, assistance can be provided by robotized wheelchairs that can perform complex maneuvers and/or correct the user’s commands. User’s acceptance is of key importance, as some users do not like their commands to be modified. This work presents a solution to improve acceptance. It consists of making the robot learn how the user drives so corrections will not be so noticeable to the user. Case Based Reasoning (CBR) is used to acquire a user’s driving model reactive level. Experiments with volunteers at Fondazione Santa Lucia (FSL) have proven that, indeed, this customized approach at assistance increases acceptance by the user.This work has been partially supported by the Spanish Ministerio de Educacion y Ciencia (MEC), Project TEC2011-29106-C02-01. The authors would like to thank Santa Lucia Hospedale and all volunteers for their kind cooperation and Sauer Medica for providing the power wheelchair

    Learning-based quantum error mitigation

    Full text link
    If NISQ-era quantum computers are to perform useful tasks, they will need to employ powerful error mitigation techniques. Quasi-probability methods can permit perfect error compensation at the cost of additional circuit executions, provided that the nature of the error model is fully understood and sufficiently local both spatially and temporally. Unfortunately these conditions are challenging to satisfy. Here we present a method by which the proper compensation strategy can instead be learned ab initio. Our training process uses multiple variants of the primary circuit where all non-Clifford gates are substituted with gates that are efficient to simulate classically. The process yields a configuration that is near-optimal versus noise in the real system with its non-Clifford gate set. Having presented a range of learning strategies, we demonstrate the power of the technique both with real quantum hardware (IBM devices) and exactly-emulated imperfect quantum computers. The systems suffer a range of noise severities and types, including spatially and temporally correlated variants. In all cases the protocol successfully adapts to the noise and mitigates it to a high degree.Comment: 28 pages, 19 figure

    Transfer Reinforcement Learning Based Negotiating Agent Framework

    Get PDF
    While achieving tremendous success, there is still a major issue standing out in the domain of automated negotiation: it is inefficient for a negotiating agent to learn a strategy from scratch when being faced with an unknown opponent. Transfer learning can alleviate this problem by utilizing the knowledge of previously learned policies to accelerate the current task learning. This work presents a novel Transfer Learning based Negotiating Agent (TLNAgent) framework that allows a negotiating agent to transfer previous knowledge from source strategies optimized by deep reinforcement learning, to boost its performance in new tasks. TLNAgent comprises three key components: the negotiation module, the adaptation module and the transfer module. To be specific, the negotiation module is responsible for interacting with the other agent during negotiation. The adaptation module measures the helpfulness of each source policy based on a fusion of two selection mechanisms. The transfer module is based on lateral connections between source and target networks and accelerates the agent’s training by transferring knowledge from the selected source strategy. Our comprehensive experiments clearly demonstrate that TL is effective in the context of automated negotiation, and TLNAgent outperforms state-of-the-art Automated Negotiating Agents Competition (ANAC) negotiating agents in various domains

    Deep Reinforcement Learning based Patch Selection for Illuminant Estimation

    Get PDF
    Previous deep learning based approaches to illuminant estimation either resized the raw image to lower resolution or randomly cropped image patches for the deep learning model. However, such practices would inevitably lead to information loss or the selection of noisy patches that would affect estimation accuracy. In this paper, we regard patch selection in neural network based illuminant estimation as a controlling problem of selecting image patches that could help remove noisy patches and improve estimation accuracy. To achieve this, we construct a selection network (SeNet) to learn a patch selection policy. Based on data statistics and the learning progression state of the deep illuminant estimation network (DeNet), the SeNet decides which training patches should be input to the DeNet, which in turn gives feedback to the SeNet for it to update its selection policy. To achieve such interactive and intelligent learning, we utilize a reinforcement learning approach termed policy gradient to optimize the SeNet. We show that the proposed learning strategy can enhance the illuminant estimation accuracy, speed up the convergence and improve the stability of the training process of DeNet. We evaluate our method on two public datasets and demonstrate our method outperforms state-of-the-art approaches
    • …
    corecore