2,713 research outputs found

    Repetitively pulsed, wavelength selective laser Patent

    Get PDF
    Repetitively pulsed wavelength selective carbon dioxide lase

    Optically induced free carrier light modulator

    Get PDF
    Signal carrier laser beam is optically modulated by a second laser beam of different frequency acting on a free carrier source to which the signal carrier laser is directed. The second laser beam affects the transmission characteristics of the free carrier source to light from the signal carrier laser, thus modulating it

    Optical Clocks in Space

    Get PDF
    The performance of optical clocks has strongly progressed in recent years, and accuracies and instabilities of 1 part in 10^18 are expected in the near future. The operation of optical clocks in space provides new scientific and technological opportunities. In particular, an earth-orbiting satellite containing an ensemble of optical clocks would allow a precision measurement of the gravitational redshift, navigation with improved precision, mapping of the earth's gravitational potential by relativistic geodesy, and comparisons between ground clocks.Comment: Proc. III International Conference on Particle and Fundamental Physics in Space (SpacePart06), Beijing 19 - 21 April 2006, to appear in Nucl. Phys.

    Narrowband tunable filter based on velocity-selective optical pumping in an atomic vapor

    Full text link
    We demonstrate a tunable, narrow-band filter based on optical-pumping-induced circular dichroism in rubidium vapor. The filter achieves a peak transmission of 14.6%, a linewidth of 80 MHz, and an out-of-band extinction >35 dB. The transmission peak can be tuned within the range of the Doppler linewidth of the D1 line of atomic rubidium at 795 nm. While other atomic filters work at frequencies far from absorption, the presented technique provides light resonant with atomic media, useful for atom-photon interaction experiments. The technique could readily be extended to other alkali atoms.Comment: 3 Pages, 4 figure

    Single-Photon Counting Detector Scalability for High Photon Efficiency Optical Communications Links

    Get PDF
    For high photon-efficiency deep space or low power optical communications links, such as the Orion Artemis-2 Optical Communications System (O2O) project, the received optical signal is attenuated to the extent that single- photon detectors are required. For direct-detection receivers operating at 1.55 m wavelength, single-photon detectors including Geiger-mode InGaAs avalanche photon diodes (APDs), and in particular superconducting nanowire single-photon detectors (SNSPDs) offer the highest sensitivity and fastest detection speeds. However, these photon detectors exhibit a recovery time between registered input pulses, effectively reducing the detection efficiency over the recovery interval, resulting in missed photon detections, reduced count rate, and ultimately limiting the achievable data rate. A method to overcome this limitation is to divide the received optical signal into multiple detectors in parallel. Here we analyze this approach for a receiver designed to receive a high photon efficiency serially concatenated pulse position modulation (SCPPM) input waveform. From measured count rate and efficiency data using commercial SNSPDs, we apply a model from which we determine the effective detection efficiency, or blocking loss, for different input signal rates. We analyze the scalability of adding detectors in parallel for different modulation orders and background levels to achieve desired data rates. Finally we show tradeoffs between the number of detectors and the required received optical power, useful for real link design considerations

    Diffused waveguiding capillary tube with distributed feedback for a gas laser

    Get PDF
    For use in a waveguide gas laser, a capillary tube of glass or ceramic has an inner surface defining a longitudinal capillary opening through which the laser gas flows. At least a portion of the inner surface is corrugated with corrugations or channels with a periodicity Lambda where Lambda = 1/2 Lambda, Lambda being the laser gas wavelength. The tube includes a diffused region extending outwardly from the opening. The diffused region of a depth d on the order of 1 Lambda to 3 Lambda acts as a waveguide for the waves, with the corrugations producing distributed feedback. The evanescent component of the waves traveling in the diffused region interact with the laser gas in the opening, gaining energy, and thereby amplifying the waves travelling in the diffused region, which exit the diffused region, surrounding the opening, as a beam of wavelength Lambda
    corecore