3,668 research outputs found

    Lossy Kernelization

    Get PDF
    In this paper we propose a new framework for analyzing the performance of preprocessing algorithms. Our framework builds on the notion of kernelization from parameterized complexity. However, as opposed to the original notion of kernelization, our definitions combine well with approximation algorithms and heuristics. The key new definition is that of a polynomial size α\alpha-approximate kernel. Loosely speaking, a polynomial size α\alpha-approximate kernel is a polynomial time pre-processing algorithm that takes as input an instance (I,k)(I,k) to a parameterized problem, and outputs another instance (I,k)(I',k') to the same problem, such that I+kkO(1)|I'|+k' \leq k^{O(1)}. Additionally, for every c1c \geq 1, a cc-approximate solution ss' to the pre-processed instance (I,k)(I',k') can be turned in polynomial time into a (cα)(c \cdot \alpha)-approximate solution ss to the original instance (I,k)(I,k). Our main technical contribution are α\alpha-approximate kernels of polynomial size for three problems, namely Connected Vertex Cover, Disjoint Cycle Packing and Disjoint Factors. These problems are known not to admit any polynomial size kernels unless NPcoNP/polyNP \subseteq coNP/poly. Our approximate kernels simultaneously beat both the lower bounds on the (normal) kernel size, and the hardness of approximation lower bounds for all three problems. On the negative side we prove that Longest Path parameterized by the length of the path and Set Cover parameterized by the universe size do not admit even an α\alpha-approximate kernel of polynomial size, for any α1\alpha \geq 1, unless NPcoNP/polyNP \subseteq coNP/poly. In order to prove this lower bound we need to combine in a non-trivial way the techniques used for showing kernelization lower bounds with the methods for showing hardness of approximationComment: 58 pages. Version 2 contain new results: PSAKS for Cycle Packing and approximate kernel lower bounds for Set Cover and Hitting Set parameterized by universe siz

    Parameterized Edge Hamiltonicity

    Full text link
    We study the parameterized complexity of the classical Edge Hamiltonian Path problem and give several fixed-parameter tractability results. First, we settle an open question of Demaine et al. by showing that Edge Hamiltonian Path is FPT parameterized by vertex cover, and that it also admits a cubic kernel. We then show fixed-parameter tractability even for a generalization of the problem to arbitrary hypergraphs, parameterized by the size of a (supplied) hitting set. We also consider the problem parameterized by treewidth or clique-width. Surprisingly, we show that the problem is FPT for both of these standard parameters, in contrast to its vertex version, which is W-hard for clique-width. Our technique, which may be of independent interest, relies on a structural characterization of clique-width in terms of treewidth and complete bipartite subgraphs due to Gurski and Wanke

    Thresholds in Random Motif Graphs

    Get PDF
    We introduce a natural generalization of the Erd\H{o}s-R\'enyi random graph model in which random instances of a fixed motif are added independently. The binomial random motif graph G(H,n,p)G(H,n,p) is the random (multi)graph obtained by adding an instance of a fixed graph HH on each of the copies of HH in the complete graph on nn vertices, independently with probability pp. We establish that every monotone property has a threshold in this model, and determine the thresholds for connectivity, Hamiltonicity, the existence of a perfect matching, and subgraph appearance. Moreover, in the first three cases we give the analogous hitting time results; with high probability, the first graph in the random motif graph process that has minimum degree one (or two) is connected and contains a perfect matching (or Hamiltonian respectively).Comment: 19 page

    Approximation Algorithms for Polynomial-Expansion and Low-Density Graphs

    Full text link
    We study the family of intersection graphs of low density objects in low dimensional Euclidean space. This family is quite general, and includes planar graphs. We prove that such graphs have small separators. Next, we present efficient (1+ε)(1+\varepsilon)-approximation algorithms for these graphs, for Independent Set, Set Cover, and Dominating Set problems, among others. We also prove corresponding hardness of approximation for some of these optimization problems, providing a characterization of their intractability in terms of density

    The Graph Motif problem parameterized by the structure of the input graph

    Full text link
    The Graph Motif problem was introduced in 2006 in the context of biological networks. It consists of deciding whether or not a multiset of colors occurs in a connected subgraph of a vertex-colored graph. Graph Motif has been mostly analyzed from the standpoint of parameterized complexity. The main parameters which came into consideration were the size of the multiset and the number of colors. Though, in the many applications of Graph Motif, the input graph originates from real-life and has structure. Motivated by this prosaic observation, we systematically study its complexity relatively to graph structural parameters. For a wide range of parameters, we give new or improved FPT algorithms, or show that the problem remains intractable. For the FPT cases, we also give some kernelization lower bounds as well as some ETH-based lower bounds on the worst case running time. Interestingly, we establish that Graph Motif is W[1]-hard (while in W[P]) for parameter max leaf number, which is, to the best of our knowledge, the first problem to behave this way.Comment: 24 pages, accepted in DAM, conference version in IPEC 201

    An FPT algorithm and a polynomial kernel for Linear Rankwidth-1 Vertex Deletion

    Get PDF
    Linear rankwidth is a linearized variant of rankwidth, introduced by Oum and Seymour [Approximating clique-width and branch-width. J. Combin. Theory Ser. B, 96(4):514--528, 2006]. Motivated from recent development on graph modification problems regarding classes of graphs of bounded treewidth or pathwidth, we study the Linear Rankwidth-1 Vertex Deletion problem (shortly, LRW1-Vertex Deletion). In the LRW1-Vertex Deletion problem, given an nn-vertex graph GG and a positive integer kk, we want to decide whether there is a set of at most kk vertices whose removal turns GG into a graph of linear rankwidth at most 11 and find such a vertex set if one exists. While the meta-theorem of Courcelle, Makowsky, and Rotics implies that LRW1-Vertex Deletion can be solved in time f(k)n3f(k)\cdot n^3 for some function ff, it is not clear whether this problem allows a running time with a modest exponential function. We first establish that LRW1-Vertex Deletion can be solved in time 8knO(1)8^k\cdot n^{\mathcal{O}(1)}. The major obstacle to this end is how to handle a long induced cycle as an obstruction. To fix this issue, we define necklace graphs and investigate their structural properties. Later, we reduce the polynomial factor by refining the trivial branching step based on a cliquewidth expression of a graph, and obtain an algorithm that runs in time 2O(k)n42^{\mathcal{O}(k)}\cdot n^4. We also prove that the running time cannot be improved to 2o(k)nO(1)2^{o(k)}\cdot n^{\mathcal{O}(1)} under the Exponential Time Hypothesis assumption. Lastly, we show that the LRW1-Vertex Deletion problem admits a polynomial kernel.Comment: 29 pages, 9 figures, An extended abstract appeared in IPEC201

    The Best Mixing Time for Random Walks on Trees

    Full text link
    We characterize the extremal structures for mixing walks on trees that start from the most advantageous vertex. Let G=(V,E)G=(V,E) be a tree with stationary distribution π\pi. For a vertex vVv \in V, let H(v,π)H(v,\pi) denote the expected length of an optimal stopping rule from vv to π\pi. The \emph{best mixing time} for GG is minvVH(v,π)\min_{v \in V} H(v,\pi). We show that among all trees with V=n|V|=n, the best mixing time is minimized uniquely by the star. For even nn, the best mixing time is maximized by the uniquely path. Surprising, for odd nn, the best mixing time is maximized uniquely by a path of length n1n-1 with a single leaf adjacent to one central vertex.Comment: 25 pages, 7 figures, 3 table
    corecore