386,871 research outputs found
Kinematic Orbits and the Structure of the Internal Space for Systems of Five or More Bodies
The internal space for a molecule, atom, or other n-body system can be
conveniently parameterised by 3n-9 kinematic angles and three kinematic
invariants. For a fixed set of kinematic invariants, the kinematic angles
parameterise a subspace, called a kinematic orbit, of the n-body internal
space. Building on an earlier analysis of the three- and four-body problems, we
derive the form of these kinematic orbits (that is, their topology) for the
general n-body problem. The case n=5 is studied in detail, along with the
previously studied cases n=3,4.Comment: 38 pages, submitted to J. Phys.
Kinematic analysis of complex gear mechanisms
This paper presents a general kinematic analysis method for complex gear mechanisms. This approach involves the null-space of the adjacency matrix associated with the graph of the mechanism weighted by complex coecients. It allows to compute the rotational speed ratios of all the links and the frequency of all the contacts in this mechanism(including roll bearings). This approach is applied to various examples including a two degrees of freedom car differential
Kinematic analysis of the ARID manipulator
The kinematic structure of the ARID manipulator lends itself to simple forward and inverse kinematics analysis. The purpose of this paper is to fully document and verify an existing analysis. The symbolic software package MATHEMATICA was used to produce and verify the equations presented here. In the analysis to follow, the standard Devenit-Hartenberg kinematic parameters of the ARID were employed
Micromechanical analysis of kinematic hardening in natural clay
This paper presents a micromechanical analysis of the macroscopic behaviour of natural clay. A microstructural stress-strain model for clayey material has been developed which considers clay as a collection of clusters. The deformation of a representative volume of the material is generated by mobilizing and compressing all the clusters along their contact planes. Numerical simulations of multistage drained triaxial stress paths on Otaniemi clay have been performed and compared the numerical results to the experimental ones in order to validate the modelling approach. Then, the numerical results obtained at the microscopic level were analysed in order to explain the induced anisotropy observed in the clay behaviour at the macroscopic level. The evolution of the state variables at each contact plane during loading can explain the changes in shape and position in the stress space of the yield surface at the macroscopic level, as well as the rotation of the axes of anisotropy of the material
Kinematic analysis of the 3-RPR parallel manipulator
The aim of this paper is the kinematic study of a 3-RPR planar parallel
manipulator where the three fixed revolute joints are actuated. The direct and
inverse kinematic problem as well as the singular configuration is
characterized. On parallel singular configurations, the motion produce by the
mobile platform can be compared to the Reuleaux straight-line mechanism
Kinematic Foot Types in Youth with Equinovarus Secondary to Hemiplegia
Background Elevated kinematic variability of the foot and ankle segments exists during gait among individuals with equinovarus secondary to hemiplegic cerebral palsy (CP). Clinicians have previously addressed such variability by developing classification schemes to identify subgroups of individuals based on their kinematics. Objective To identify kinematic subgroups among youth with equinovarus secondary to CP using 3-dimensional multi-segment foot and ankle kinematics during locomotion as inputs for principal component analysis (PCA), and K-means cluster analysis. Methods In a single assessment session, multi-segment foot and ankle kinematics using the Milwaukee Foot Model (MFM) were collected in 24 children/adolescents with equinovarus and 20 typically developing children/adolescents. Results PCA was used as a data reduction technique on 40 variables. K-means cluster analysis was performed on the first six principal components (PCs) which accounted for 92% of the variance of the dataset. The PCs described the location and plane of involvement in the foot and ankle. Five distinct kinematic subgroups were identified using K-means clustering. Participants with equinovarus presented with variable involvement ranging from primary hindfoot or forefoot deviations to deformtiy that included both segments in multiple planes. Conclusion This study provides further evidence of the variability in foot characteristics associated with equinovarus secondary to hemiplegic CP. These findings would not have been detected using a single segment foot model. The identification of multiple kinematic subgroups with unique foot and ankle characteristics has the potential to improve treatment since similar patients within a subgroup are likely to benefit from the same intervention(s)
Evaluation of Upper Extremity Movement Characteristics during Standardized Pediatric Functional Assessment with a Kinect®-based Markerless Motion Analysis System
A recently developed and evaluated upper extremity (UE) markerless motion analysis system based on the Microsoft® Kinect® has potential for improving functional assessment of patients with hemiplegic cerebral palsy. 12 typically-developing adolescents ages 12-17 were evaluated using both the Kinect-based system and the Shriners Hospitals for Children Upper Extremity Evaluation (SHUEE), a validated measure of UE motion. The study established population means of UE kinematic parameters for each activity. Statistical correlation analysis was used to identify key kinematic metrics used to develop automatic scoring algorithms. The Kinect motion analysis platform is technically sound and can be applied to standardized task-based UE evaluation while providing enhanced sensitivity in clinical analysis and automation through scoring algorithms
Kinematic Analysis and Trajectory Planning of the Orthoglide 5-axis
The subject of this paper is about the kinematic analysis and the trajectory
planning of the Orthoglide 5-axis. The Orthoglide 5-axis a five degrees of
freedom parallel kinematic machine developed at IRCCyN and is made up of a
hybrid architecture, namely, a three degrees of freedom translational parallel
manip-ulator mounted in series with a two degrees of freedom parallel spherical
wrist. The simpler the kinematic modeling of the Or-thoglide 5-axis, the higher
the maximum frequency of its control loop. Indeed, the control loop of a
parallel kinematic machine should be computed with a high frequency, i.e.,
higher than 1.5 MHz, in order the manipulator to be able to reach high speed
motions with a good accuracy. Accordingly, the direct and inverse kinematic
models of the Orthoglide 5-axis, its inverse kine-matic Jacobian matrix and the
first derivative of the latter with respect to time are expressed in this
paper. It appears that the kinematic model of the manipulator under study can
be written in a quadratic form due to the hybrid architecture of the Orthoglide
5-axis. As illustrative examples, the profiles of the actuated joint angles
(lengths), velocities and accelerations that are used in the control loop of
the robot are traced for two test trajectories.Comment: Appears in International Design Engineering Technical Conferences \&
Computers and Information in Engineering Conference, Aug 2015, Boston, United
States. 201
- …
