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a b s t r a c t

This paper presents a micromechanical analysis of the macroscopic
behaviour of natural clay. A microstructural stress–strain model for
clayey material has been developed which considers clay as a col-
lection of clusters. The deformation of a representative volume of
the material is generated by mobilizing and compressing all the
clusters along their contact planes. Numerical simulations of mul-
tistage drained triaxial stress paths on Otaniemi clay have been
performed and compared the numerical results to the experimen-
tal ones in order to validate the modelling approach. Then, the
numerical results obtained at the microscopic level were analysed
in order to explain the induced anisotropy observed in the clay
behaviour at the macroscopic level. The evolution of the state vari-
ables at each contact plane during loading can explain the changes
in shape and position in the stress space of the yield surface at the
macroscopic level, as well as the rotation of the axes of anisotropy
of the material.

1. Introduction

Natural soft clays often exhibit a significant degree of anisotropy, which is developed during their
geological formation as in deposition, sedimentation, consolidation or by any subsequent straining
(see, e.g., Tavenas and Lereoueil, 1977; Muir Wood, 1990; Burland, 1990; Diaz Rodriguez et al., 1992).



In order to take into account the anisotropic mechanical behaviour of clay, a number of elastic–plastic
stress–strain models have been developed, such as the models by Nova (1985), Dafalias (1986), Whittle
and Kavvadas (1994), Pestana and Whittle (1999), Wheeler et al. (2003), Dafalias et al. (2006), etc.
Hashiguchi and Mase (2007) developed a model employing a rotational kinematic hardening function
for modelling the anisotropy of cemented sand. Yang et al. (2006) proposed a middle surface model using
three pseudo-yield surfaces. A kinematic hardening rule was applied to the second pseudo-yield surface
for modelling the anisotropic behaviour of sand. More recently, various kinematic hardening rules have
been, respectively, investigated for frozen soils, unsaturated soils, and granular media by Lai et al. (2008),
Muraleetharan et al.(2008), and Tsutsumi and Kaneko (2008). The key feature of these models is to adopt
an asymmetrical yield surface for the modelling of inherent anisotropy due to the geological formation
process, and to incorporate a kinematic hardening law for the modelling of induced anisotropy, in which
the kinematic hardening law describes how the yield surface moves and changes its shape with the
applied stresses. Both the initial yield surface and the kinematic hardening law of these models have
been constructed phenomenologically from experimental results. Due to the complex nature of soil
behaviour, it is difficult to construct a kinematic hardening law that is simple, effective, and at the same
time, capable of capturing correctly the salient features of soil behaviour.

Besides the kinematic hardening approach, a potentially attractive way of modelling anisotropic
material is the microstructural approach, in which the stress–strain relationship of a representative ele-
ment is obtained by mobilizing contact planes of various orientations. The concept goes back to Taylor
and Budiansky in their models for polycrystalline material (e.g., Batdorf and Budianski, 1949). Similar
approaches can also be found in the models of rock and soils (e.g., Calladine, 1971; multilaminate models
by Pande and Sharma, 1982; Cudny and Vermeer, 2004), in the models of concrete (e.g., micro-plane
model by Bazant et al., 1995), and in the models of granular materials and sands (e.g., Chang and Liao,
1990; Chang and Gao, 1995; Chang and Hicher, 2005; Nicot and Darve, 2007).

The proposed approach can better model anisotropic material due to the following two reasons: (1)
the state variables (local stress and strain) are naturally different in the contact planes according to
their orientations related to the applied load. Since contact stiffness and contact strength are stress-
dependent, this would lead to different properties for each plane. Thus, the applied stress would create
anisotropy for the material in a natural manner; (2) the evolution of the state variables (local stress
and strain) is attained directly from the applied stress on each contact plane. There is no need to define
a yield surface and a kinematic hardening rule in order to follow the evolution of the anisotropy.

In this paper, the development of a microstructure based elasto-plastic constitutive model is first
presented. The model is then used to predict multistage drained triaxial stress path tests on Otaniemi
clay. A numerical microstructural investigation is also carried out, which is intended to explain the
induced anisotropy through the behaviour on contact planes. Finally, the microstructural model is
used to construct the yield surface and to explain macro kinematic hardening of yield surface, i.e.,
how the yield surface expands, rotates, and changes its shape due to different stress paths.

2. Constitutive model

A clay particle is usually platy in shape. The size for a platy particle generally ranges from 0.01 to
1 lm depending on the clay type (e.g., montmorillonite, illite or kaolinite). Clay particles attract each
other due to surface forces among particles such as chemical, electrostatic, van der Waals forces, etc.
These forces pull together the particles to form particle-clusters. The size of the clusters continues to
grow until the clusters are large enough so that the cluster weight, due to gravitation, becomes signif-
icantly larger than the inter-particle surface forces. At this stage, the cluster looses its potential to
attract further clay particles, and the size of clusters stops to grow. The ultimate cluster size depends
on the clay particle type, the liquid inside the pores, and its sedimentation history.

From the photos of clay material under scanning electron microscopes, clusters formed by platy
clay particles can be identified as rotund shape, although the microfabric within a cluster may be
either a flocculate or dispersed type structure (Hicher et al., 2000).

At the size of clusters, long range forces such as electrostatic and van der Waals forces are negligi-
ble, and clusters interact with each other mainly through mechanical forces. Thus, clay material,



considered as a collection of clusters, can be modelled by analogy to granular material. This explains
why sand and clay have similar qualitative behaviour even though each material consists of different
constituents (Biarez and Hicher, 1994).

The present model is extended from the sand model developed by Chang and Hicher (2005). In this
model, clay is envisioned as an aggregate of clusters. The deformation of a representative volume of
the material is generated by mobilizing and compressing all clusters. Thus, the stress–strain relationship
can be derived as an average of the deformation behaviour of local contact planes in all orientations. For
contact planes in the ath orientation, the local forces f a

j and the local movements da
i can be denoted as

follows: f a
j ¼ ff a

n ; f
a
s ; f

a
t g and da

i ¼ fd
a
n; d

a
s ; d

a
t g, where the subscripts n, s, and t represent the components

in the three directions of the local coordinate system as shown in Fig. 1. The direction outward normal
to the plane is denoted as n; the other two orthogonal directions, s and t, are tangential to the plane.

2.1. Density state of clay

One of the important elements to consider in modelling clay behaviour is the critical state concept.
At critical state, the clay material remains at constant volume while it is subjected to a continuous dis-
tortion. The void ratio corresponding to this state is termed critical void ec, which is a function of the
effective mean stress p = (rx + ry + rz)/3 (all stress terms used in the part of constitutive model refer to
effective stress). The relationship has traditionally been written as follows:

ec ¼ ec0 � k ln
p

pcr0

� �
ð1Þ

The two parameters (ec0,pcr0) represent a reference point on the critical state line. For convenience, the
value of pcr0 is taken to be 1 kPa. The critical state line can be defined by two parameters ec0 and k.
Using the critical state concept, the density state of an assembly under a given mean effective stress
is defined as the ratio e/ec, where e is the void ratio of the assembly and ec the critical void ratio at the
same given stress state.

The relationship between void ratio and isotropic stress in semi-log scale (e–logp) is assumed to be
linear. However, some investigators prefer to use a linear relationship between logev –logp for clay
with large deformation (Hashiguchi, 2008).

2.2. Inter-cluster behaviour

Since contact forces and applied stresses have different units, it is troublesome to compare their
magnitudes. Thus, local stresses and local strains are introduced for convenience. We define a local
stress sa

i and a local strain ca
i , which are directly related to the local force f a

j and the local movement
da

i at each contact, given by

Fig. 1. Local coordinate at inter-particle contact.



sa
i ¼

Nla

3V
f a
i ; ca

i ¼ da
i =la ð2Þ

where la is the length of the branch vector, which joins the centroids of two contacting clusters. V is
the volume of the representative element. N is the total number of contacts. The form of the local
stress is derived from the static hypothesis given by Liao et al. (1997)

_f a
j ¼ _rijAiklak ð3Þ

where Aik is the inverse of fabric tensor Aik ¼ 1
V

PN
a¼1lai lak

h i�1
For the case of an isotropic fabric, it can be

derived that Aik = 3V/(Nl2)dik, where dik is the Kronecker delta. In this case, Eq. (3) implies
rjina

j ¼ Nla=ð3VÞf a
i . Therefore, the local stress defined in Eq. (2) is equal in magnitude to the traction

resolved from the applied stress on the contact plane (i.e., sa
i ¼ rjina

j ) for an isotropic packing struc-
ture. It is to be noted that the local stress sa

i is not the true stress on the physical contact area between
the two clusters. It should be rather viewed as a normalized form of the contact force.

In the local coordinate system, the local stress and local strain are, respectively, denoted as
f sa

n sa
s sa

t g and f ca
n ca

s ca
t g. For convenience, we use the notation ra ¼ sa

n for local normal stress
and the notation ea ¼ ca

n for local normal strain in the following sections.

2.2.1. Elastic part
The inter-cluster behaviour can be characterized as the relationship between local stress and local

strain, given by

sa
i ¼ �ka

ijc
a
j ð4Þ

in which the stiffness tensor can be related to the contact normal stiffness, �ka
n , and shear stiffness, �ka

r ,

�ka
ij ¼ �ka

nna
i na

j þ �ka
r ðsa

i sa
j þ tai ta

j Þ ð5Þ

The inter-cluster stiffness can be expressed as the form adopted for sand grains by Chang et al.
(1989), given by

�ka
n ¼ �ka

n0
ra

pref

 !n

; �ka
r ¼ krR

�ka
n ¼ krR

�ka
n0

ra

pref

 !n

ð6Þ

where ra is the local stress in normal direction, pref is the standard reference pressure taken as 1 kPa,
and krR is the ratio of shear to normal stiffness. �ka

n0; krR and n are material constants. The value of n is
found to be 0.33 for two elastic spheres according to Hertz–Mindlin’s formulation (1969). Based on
experimental measurements of elastic modulus under different confining stress, the value of n has
been found to be 0.5–1.0 for clay.

2.2.2. Plastic part
2.2.2.1. Shear sliding. Plastic sliding often occurs along the tangential direction of the contact plane
with an upward or downward movement (i.e., dilation or contraction). The dilatancy equation used
here is modified from the equation adopted for sand by Chang and Hicher (2005), given by

dep

dcp
¼ b

s
r
� tan /l

� � s
r

� �a
1� e

ec

� �
ð7Þ

The modified equation allows more flexibility in modelling the performance of different material behav-
iour. In this equation, a, b, and /l are inter-cluster property constants; ec is the critical void ratio for the clay.
When the void ratio e is equal to the critical void ratio, zero dilation holds. It is noted that the state variables e
and ec of the clay are at a macro-scale of the cluster assembly, which is used to regulate the dilation of indi-
vidual inter-cluster contacts. It is reasonable to consider the micro variable as a function of the macro-state,
because the inter-cluster behaviour is indeed influenced by the density state of the specimen.

In Eq. (7), /l is the inter-cluster friction angle, which in value is very close to the internal friction
angle measured at critical state. The values of a, and b can be calibrated from experimental measure-
ments of triaxial tests, which will be shown in the later section on numerical simulation.



Note that the shear stress s and the rate of plastic shear strain dcp in Eq. (7) are defined as

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

s þ s2
t

q
and dcp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdcp

s Þ2 þ ðdcp
t Þ

2
q

ð8Þ

The yield function is assumed to be of Mohr–Coulomb type, given by

F1ðs;r;j1Þ ¼ s� rj1ðcpÞ ¼ 0 ð9Þ

where j1(cp) is an isotropic hardening/softening parameter. The hardening parameter is defined by a
hyperbolic function in the j1–cp plane, which involves two material constants: /p and �kp.

j1 ¼
�kp tan /pcp

r tan /p þ �kpcp
ð10Þ

When plastic deformation increases, j1 approaches asymptotically tan /p. For a given value of r,
the initial slope of the hyperbolic curve is �kp=r. Under a loading condition, the shear plastic flow in
the direction tangential to the contact plane is determined by a normality rule applied to the yield
function. However, the plastic flow in the direction normal to the contact plane is governed by the
stress-dilatancy equation in Eq. (7). Therefore, the flow rule is non-associated.

The value of �kp is found to be linearly proportional to �kn so that

�ka
p ¼ kpR

�ka
n ¼ kpR

�ka
n0

ra

pref

 !n

ð11Þ

The ratio kpR is a material parameter.
The internal friction angle /l is a constant for a given material. However, the peak friction angle, /p,

on a contact plane is dependent on the density state of neighbouring clusters, which can be related to
the void ratio e by

tan /p ¼
ec

e

� �m
tan /l ð12Þ

where m is a material constant (Biarez and Hicher, 1994).
In a loose structure, clusters can rotate more freely, preventing the inter-cluster shear force from

fully mobilizing the sliding resistance. The peak frictional angle /p is smaller than /l. On the other
hand, a dense structure provides a higher degree of interlocking, which requires more effort to mobi-
lize the clusters in contact. In this case, the peak frictional angle /p is greater than /l. When the dense
structure starts to dilate, the degree of interlocking relaxes. As a consequence, the peak frictional angle
is reduced, which results in a strain-softening phenomenon.

2.2.2.2. Normal compression. In order to describe the compressible behaviour between two clay clus-
ters, a second yield function is hence added. The second yield function is assumed to be as follows:

F2ðr;j2Þ ¼ r� j2ðepÞ for r > rp ð13Þ

where the local normal stress r and local normal strain ep are defined in Eq. (3). In analogy to the
macro volume compression behaviour, we express the hardening function j2(ep) in a semi-logarithmic
form given by

j2 ¼ rp10ep=cp or ep ¼ cp log
j2

rp
ð14Þ

where cp is the compression index for the compression curve plotted in the ep–logr plane. When the
compression r is less than rp, the plastic strain produced by the second yield function is null. Thus, rp

in Eq. (12) corresponds to the pre-consolidation stress in soil mechanics.

2.2.3. Elasto-plastic relationship
With the basic elements of inter-cluster behaviour discussed above, the final incremental local

stress–strain relation of the inter-cluster contact can be derived, including both elastic and plastic
behaviour, given by



_sa
i ¼ �kap

ij
_ca

j ð15Þ

Since detailed derivation of the elasto-plastic stiffness tensor is standard, it will not be given here.

2.3. Stress–strain relationship

2.3.1. Macro–micro relationship
The stress–strain relationship for an assembly of clay clusters can be determined from integrating

the inter-cluster behaviour at all contacts. During the integration process, a relationship is required to
link the macro and micro variables.

In a micromechanical expression, following the Love–Weber formula, the stress increment _rij can
be obtained by adding the diatic product of the contact force and the branch vectors for all contacts
(Christofferson et al., 1981; Rothenburg and Selvadurai, 1981). In terms of local stress, it is

_rij ¼
1
V

XN

a¼1

f a
j lai ¼

3
N

XN

a¼1

sa
j na

i ð16Þ

In terms of the local stress on the ath contact plane defined in Eq. (2), the static hypothesis of Eq. (3)
becomes

_sa
j ¼ _rijB

a
ikna

k ð17Þ

where the tensor Ba
ik in Eq. (17) is defined as Ba

ik ¼ N=ð3VÞAikðlaÞ2:
Using the principle of energy balance, which states that the work done in a representative volume

element is equal to the work done on all inter-cluster planes within the element,

rij _uj;i ¼
1
V

XN

a¼1

f a
j

_da
j ¼

3
N

XN

a¼1

sa
j

_ca
j ; ð18Þ

Substituting the local stress in Eq. (17) into Eq. (18), the relationship between the strain of assem-
bly and inter-cluster strain is obtained

_uj;i ¼
3
N

XN

a¼1

_ca
j na

k Ba
ik ð19Þ

where _cj is the local strain between two contact clusters, nk the unit vector of the branch joining the cen-
tres of two contact clusters, and N the total number of contacts, over which the summation is carried out.

Using Eqs. (15), (19), and (17), the following relationship between stress and strain can be
obtained:

_ui;j ¼ Cijmp _rmp ð20Þ
where

Cijmp ¼
3
N

XN

a¼1

ð�kep
jp Þ
�1na

k na
nBa

ikBa
mn ð21Þ

The summation in Eq. (21) can be expressed by a closed-form solution for some limited conditions
such as the elastic modulus of randomly packed equal-size particles (Chang and Gao, 1995). However,
in an elastic–plastic behaviour, due to the nonlinear nature of the local constitutive equation, a numer-
ical calculation with an iterative process is necessary to carry out the summation in Eq. (21) (see
Chang and Hicher, 2005).

2.4. Summary of parameters

The material parameters are summarised as follows:

(1) Microstructural descriptions (two parameters)
- Contact number per unit volume, N/V and mean cluster size, d



(2) Inter-cluster properties (nine parameters)
- Inter-cluster elastic constants: �kn0; krR, and n;
- Inter-cluster friction angle: /l and m;
- Inter-cluster plastic compression index and plastic shear stiffness ratio: cp and kpR;
- Dilation constants: a and b

(3) Density state of the assembly (three parameters)
- Critical state for the soil: k and ec0

- Reference void ratio, e0, on the isotropic compression line at p = 0.001 MPa.

The size of a clay cluster d can be estimated from an electron microscopic scanning photograph. The
value of N/V is not easy to obtain directly from the clay experiments. According to the experimental
data by Oda (1977) for three mixtures of spheres, the contact number per unit volume can be approx-
imately related to the void ratio by

N
V
¼ 12

pd3ð1þ eÞe
ð22Þ

Here we use this equation as a first-order approximation to estimate N/V for clay by treating d as
the mean size of the clay clusters. It is noted that the value of contact number per unit volume changes
with void ratio. The evolution is accounted for during the deformation process.

The mean size d of the clay clusters is assumed to be 4 lm according to the observations from Scan-
ning Electronic Microscope (SEM) results on kaolinite (Hicher et al., 2000). The exponent n is generally
between 0.7 and 1.0 for clay, and a typical value of exponent m is 1. From an isotropic compression
test, four parameters can be determined; namely, e0, k, �ka

n0, and cp. The void ratio e0 and k can be mea-
sured directly from the compression line. The values of �ka

n0 and cp can be calibrated from the slopes of
the compression and rebound curves. The other parameters /l, kpR, krR, a, b, and ec0 can be obtained
from drained triaxial tests (as shown later).

3. Test simulation and analysis

3.1. Review of experimental results

The anisotropic behaviour of a natural clay, Otaniemi clay in southern Finland, is presented herein
with reference to experimental results based on the work of Wheeler et al. (2003) and Karstunen and
Koskinen (2004). Otaniemi clay is classified as a high-plasticity clay with the following mineralogical
compositions: quartz 23%, feldspar 46%, illite 15%, chlorite 10%, and kaolinite 5%, determined at ETH
Zurich by Messerklinger et al. (2003). The tests on Otaniemi clay were all performed on samples taken
at depths of 3.4–4.7 m. Some physical properties of Otaniemi clay at this depth are presented in Table
1. Wheeler et al. (2003) indicated that there is a noticeable natural variation within this 1.2 m thick
clay layer.

To investigate the induced anisotropic behaviour and the resulting kinematic hardening of the yield
surface, 26 drained triaxial tests with different effective stress paths were selected (20 of them can be
found in Wheeler et al., 2003). All tests were conducted using conventional triaxial cells with devia-
toric force applied by dead weight loading for both compression and extension. Stress increments
were generally applied at daily intervals with the increment size depending on the requirements of
the individual test stage. Each test consists of two loading stages (see Fig. 2):

(1) At the first loading stage, the specimen is loaded in a drained condition at a constant value of g1

to a final stress state (p01; q1), and then unloaded with g1 unchanged (where g = q/p0, q = r1 � r3,
and p0 ¼ ðr01 þ 2r03Þ=3 for triaxial condition, with positive and negative g representing compres-
sion and extension tests, respectively).



(2) At the second loading stage, the specimen is again loaded in a drained condition at a different
constant value of g2 to another final stress state (p02; q2). All tests were classified in three series
of tests (see Table 2, Wheeler et al., 2003):

� Series A: The samples were first loaded at various values of g1 (ranging from �0.65 to 1.08) to a
given stress state, and then each sample was loaded at a suitable alternative value of g2 varying
from 0.09 to 0.74.

� Series B: The samples were first loaded at g1 = 0.75 to p01 ¼ 40 kPa, and then each sample was
loaded at a different value of g2 varying from �0.52 to 0.51. The clay is subjected in situ to a value
of g about 0.75.

� Series C: The samples were first loaded at g1 = 0.11 to p01 ¼ 45 kPa, and then at the second stage,
each of the samples was loaded at values of g2 varying from �0.58 to 0.83.

For Series B and C, the specimens were consolidated up to 40–45 kPa at the end of the first loading
stage. The stress is higher than the in situ overburden pressure, which helps to reduce the sample’s
non-homogeneities due to the sampling process.

3.2. Calibration of model parameters

To calibrate the model parameters, we selected two experimental tests: (1) isotropic consolidation
test (CID2241 listed in Table 2), and (2) an anisotropic consolidation test followed by an undrained
triaxial compression (CAUC2239). The calibrated list of parameters is given in Table 3a. The parame-
ters are calibrated based on the following process.

Parameter k = 0.46 was determined from the slope of the experimental consolidation curve (see
Fig. 3a). The inter-cluster friction angle /l is determined from the slope of the critical state line in
p0–q plane. A value of /l = 30� was determined from an undrained triaxial test (see Fig. 3b). A typical
value of m = 1 is used. The value of pcr0 and ec0 can be determined from the state (stress and void ratio)

p'

q

loading with 1

unloading with 1

reloading with 2

Series A: 1 = [-0.65, 1.08]

2 = [0.09, 0.74]

Series B: 1 = 0.75

2 = [-0.52, 0.51]

Series C: 1 = 0.11

2 = [-0.58, 0.83]

Fig. 2. Schematic description for test Series A, B, and C.

Table 1
Physical properties of Otaniemi clay of depth 3.4–4.7 m (after Wheeler et al., 2003).

Index property Value

Water content, w (%) 85–130
Liquid limit, wl (%) 80–111
Plastic limit, wp (%) 26–29
Plasticity index, Ip 54–82
Percentage of particles <0.002 mm, C1% 65–83
Organic content, Hm (%) 0–0.7
Specific gravity, Gs 2.76–2.80
Undrained shear strength, cu (kPa) 6–9
Sensitivity, St 7–14

1420



corresponding to the critical state. The values of pref and e0 can be determined by an isotropic line,
where pref is 1 kPa with the point (pref,e0) appearing on the isotropic line (see Fig. 3a). Fig. 3c shows
a slight influence of krR and kpR on simulating the isotropic consolidation test which means krR and
kpR are not sensitive for IC test. Other parameters can be obtained by curve fitting, as shown in
Fig. 3d–i, as follows:

(1) Inter-cluster elastic constants: �kn0; krR and n;

The exponent n = 1 was considered which provides a linear j-line (unloading–reloading
curve in e–logp0 of the consolidation test). The value of �kn0 was determined from the j-line, as shown
in Fig. 3d. krR was determined from the ev–e1 (volumetric strain versus axial strain) curve of the iso-
tropic consolidation test (see Fig. 3e).

(1) Inter-cluster normal hardening rule: cp and r0p0;

Table 2
Drained triaxial tests on Otaniemi clay.

Test number Depth (m) w (%) ei First loading Second loading

g1 p01 ðkPaÞ q1 ðkPaÞ g2 p02 ðkPaÞ q2 (kPa)

Series A CAD2260 4.03–4.14 97.8 2.73 1.08 33 32.4 0.1 150 15.3
CAD2463 3.47–3.59 119 3.43 1 37 37 0.3 100 30.3
CAD2464 3.64–3.76 114.9 3.26 0.89 38 33.8 0.33 101 33.8
CAD2261 4.03–4.14 92.5 2.62 0.79 37 29.2 0.1 150 15.4
CAD2530 4.03–4.14 101.4 3.1 0.6 40 20.32 0.32 71 22.5
CAD2251 4.20–4.31 90 2.51 0.6 40 24.1 0.09 150 14.1
CAD2280 4.37–4.48 93.6 2.54 0.51 50 25.4 0.1 120 12.5
CAE2586 3.62–3.73 112.4 3.23 0.43 44 �18.8 0.51 96 49.2
CAD2276 4.56–4.68 79.4 2.59 0.26 48 12.4 0.11 150 15.9
CAD2514 4.23–4.34 85.4 2.98 0.21 36 7.5 0.74 60 44.5
CAE2496 4.20–4.31 93.5 2.54 �0.34 31 �10.5 0.1 66 6.7
CAE2544 4.37–4.48 88.1 2.98 �0.6 33 �19.8 0.51 66 33.7
CAE2513 4.03–4.14 104.7 2.91 �0.65 29 �18.8 0.61 60 36.8
CID2241 4.02–4.14 105 2.81 0 151 0 0.11 201 22.5
CID2515 4.40–4.51 92 2.2 0 60 0 0.6 100 60
CID2291 4.37–4.48 100.4 2.86 0 37 0 0.1 116 12
CID2403 3.62–3.73 114 3.3 0 42 0 0.42 99 42

Series B CAD2443 4.23–4.34 89.1 2.56 0.75 40 30 0.51 100 51
CAD2425 4.06–4.17 101.5 3.01 0.22 97 21
CAE2529 4.37–4.48 84.1 2.50 �0.26 78 �20
CAE2522 4.12–4.23 101.1 2.74 �0.52 60 �31

Series C CAD2424 4.03–4.14 108.5 3.10 0.83 60 50
CAD2423 4.20–4.31 94.4 2.61 0.58 99 57
CAD2422 4.05–4.17 102.8 2.93 0.11 45 5 0.11 100 36
CAE2561 3.95–4.06 101.1 2.93 �0.45 87 �39
CAE2550 4.32–4.43 90.8 2.63 �0.58 84 �49

Table 3
Values of model parameters for Otaniemi clay.

Parameters Global parameters Inter-particle parameters

e0 k ec0 r0p0 ðMPaÞ Cp /0l (�) �kn0 ðMPaÞ krR kpR

a. CID2241 3.95 0.460 3.64 0.02 0.064 30 300 0.5 0.2
b. CID2291 4.36 0.595 3.91 0.021 0.08 30 380 0.5 0.2
c. CID2403 5.34 0.764 4.78 0.023 0.089 30 500 0.5 0.2
d. CID2515 3.43 0.437 3.12 0.03 0.068 30 290 0.5 0.2

Average 4.27 0.564 3.86 0.0235 0.075 30 368 0.5 0.2



The value of cp was determined by keeping the isotropic consolidation line parallel to the critical
state line (see Fig. 3f). The initial value of the pre-consolidation pressure r0p0 due to the clay deposition
history was determined, as shown in Fig. 3f.

(1) Inter-cluster shear hardening rule: kpR;

The value of kpR was determined from the q–e1 curve of an undrained compression test at small
strain, as shown in Fig. 3g.

(1) Dilation constants a and b were determined from an undrained compression test (see Fig. 3h
and i); from this curve, combined values of a and b can be chosen by curve fitting. Parameters
a and b governing the amount of volumetric dilation have a significant influence on the peak
strength of the q–e1 curve. Fig. 3h shows that different effective stress paths, with a similar
shape of the yield curve, can be described by different values of a and b.
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Due to the large variation in the characteristics of the samples, three additional isotropic consoli-
dation tests were selected to determine the model parameters by using the same procedure of calibra-
tion. All determined parameters and the averaged parameters are summarised in Table 3. The average
parameters were used to simulate isotropic consolidation test and compared with all data from the
four experimental results in Fig. 4b. The average parameters were also used to simulate the undrained
triaxial compression tests and compared with experimental results as shown in Fig. 4c. The same set of
parameters is also used to simulate drained triaxial compression tests for both normal and over con-
solidated Otaniemi clay as shown in Fig. 4d and e. Unfortunately, the experimental results on drained
triaxial compression tests from Otaniemi clay at this field site are not available for comparison with
the model simulation. However, the simulation appears to capture the main features of the drained
triaxial compression behaviour for general clay. Thereby, the average values of the parameters seem
to be suitable for representing the average properties of tested samples from Otaniemi clay.

3.3. Test simulation and microstructural analysis

In this section, three different cases of consolidation tests, namely g1 = g0, g2 < g1, and g2 > g1

were analysed by means of the micromechanical approach, where g0, g1, and g2 correspond to,
respectively, the clay deposition, the first, and the second stages of loading. These tests are selected
from Table 2.

The simulation of each test begins with a consolidation loading with g0 = 0.75, which corresponds
to the K0 condition in the field. Along this stress path, the specimen is loaded to p0 = 15.7 kPa and
q = 11.75 kPa, which is equivalent to an effective overburden stress 23.5 kPa at 4 m depth below
ground. This process is used to simulate clay deposition in the field, as shown in the upper part of
Fig. 5a, marked by points a, b, c. The corresponding points on a e–logp0 curve are shown in Fig. 5b.
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Then, the specimen is unloaded to a very small stress value, along the path of g = 0.75. This is a sim-
ulation of the sampling process, in which the sample is extracted from 4 m depth to the ground sur-
face, as the rebound curve shown in Fig. 5a and b, marked by c, d. Point 1 corresponds to the state of
the specimen to be used in the laboratory for the first stage loading test.

The first stage loading is then simulated. The specimen is loaded with a constant g1 to a pressure
greater than the point of p0 = 15.7 kPa and q = 11.75 kPa, as shown in Fig. 5a and b, marked by 1, 2, 3,
and 4. The specimen is again unloaded to a very small value, along the path of g1. The rebound curve is
marked by points 4 and 40.

Subsequently, the second stage loading is performed. The specimen is loaded with a constant g2 to
a pressure greater than that of point 4 (i.e., the ending point of the first loading stage), as shown in Fig.
5a and b, marked by points 5, 6, 7, 8, and 9. At this point, the simulation is completed.

For each test, the simulation results of e–logp0 curves are compared with the experimental data to
evaluate the suitability of the model. The apparent yield points obtained from the experiments are
also compared with those obtained from the predicted curves.

In addition, the local stress–strain behaviour at contact planes of various orientations is also plotted for
analyses. The detailed plots for contact planes of various orientations will be described in a later section.

3.3.1. Case 1: g1 = g0

Four consolidation tests (Series B in Table 2) along the K0-consolidated stress path (g1 = g0 = 0.75)
were simulated. After the clay deposit simulation along g0 = 0.75, the first and second loading stages
were then simulated. In this case we focus only on the results of the first loading stage, which are plot-
ted in Fig. 6 and compared with experimental results. Good agreement between the experimental data
and the simulation was achieved for the ev–logp0 curves. The apparent yield point can be obtained
from a linear plot of ev–p0 curve using a bilinear construction method as suggested by Mitchell
(1970) and Karstunen and Koskinen (2008). The ev–p0 plot is shown in Fig. 6b for both model simula-
tion and experimental results. The yield points determined from both model simulation and experi-
mental results are very close for this case.

The model simulation for the behaviour on the contact planes are also plotted to show the relations
between the representative element and the different contact planes. Since the loading is symmetric
around the z-axis, the orientation of a given contact plane can be defined by an inclined angle h which
is between the branch vector and the z-axis of the local coordinate system, as shown in Fig. 5a. The
angles h selected are 0�, 18�, 28�, 45�, 55�, 72�, and 90� (h = 0� corresponds to a horizontal plane), as
shown in the x–z plane (Fig. 5c).

Fig. 7 shows the local stress–strain relationships for the contact planes in the selected orientations.
The local stress paths are plotted in the s–r plane, as shown in Fig. 7a, for both the clay deposition
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stage and the first loading stage. The local stress paths are different from one contact plane to another,
under the load applied to the specimen. The shear component becomes more significant when the
plane is more inclined. The maximum slope is near the planes oriented at 55�. No shear component
is generated for the horizontal and vertical plane contacts (0� and 90�). For the selected planes, the
slope of the local stress path increases from plane orientation 0� to 55� and decreases from 55� to 90�.

In the local normal stress–strain curves (see Fig. 7b), contact planes of all orientations yield simul-
taneously when the load p applied to the specimen reaches its yield point (i.e., 15.7 kPa as shown in
Fig. 6a and b). The elastic limits decrease from plane orientation 0� to 90�. These elastic limits were
created due to the previous load applied to the specimen during the clay deposition. In the local shear
strain versus normal strain curves (see Fig. 7c), the amount of shear strain agrees with the slope of the
local stress path, i.e., the larger slope leads to a larger shear strain.

In Fig. 8, the distribution of local stresses and strains versus plane orientations (in rose diagram) are
plotted for the ending step c for the clay deposit stage and the selected steps 1, 2, 3, and 4 for the first
loading stage (see Fig. 5a and b).

It is noted that the normal stress r and shear stress s distributions due to the clay deposition show
a difference in all orientations, thus creating induced anisotropy of this material. This may lead to an
irrecoverable microstructure alteration, thus producing and the inherent anisotropy.

The distributions expand in size from step 1 to 4 while keeping the same shape (see Fig. 8a and b).
Originally, the distribution of normal stress r is a point representing zero stresses in all directions. At
the end of the clay deposition (step c in Fig. 5a and b), the distribution expands to the location of the
bold line plotted in Fig. 8a. This location represents the pre-consolidation pressures of all contact
planes. During the sampling (c, d in Fig. 5a and b), the distribution shrinks to the point of origin as
an unloading process. Then, it expands again during the first loading stage. At step 3, the distribution
reaches the bold line. It is noted that, during steps 1, 2, and 3, all contact planes are elastic until the
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distribution reaches the bold line. Then, all contact planes reach their pre-consolidation pressures
simultaneously, and all planes begin to behave plastically, which can also be seen in Fig. 7b. At this
point, the sample behaviour displays a sharp change in direction in the ev–logp0 as shown in Fig. 6a,
representing the apparent yield point of the soil sample.

Fig. 8c shows the stress ratio at contact in all orientations. The elastic limits have not been
exceeded in the first loading stage. Hence, small shear strains are expected.

Fig. 8d shows the distribution of normal strain, which implies slight differences in strains occurring
for different plane orientations as shown in Fig. 7b. From step 3 to 4, the strain increases much higher
than from step 2 to 3 due to the plastic strain occurring after the stresses reach the elastic limit. As for
the distribution of shear strain in Fig. 8e, the shear strain from steps 3 to 4 does not show much dif-
ference in magnitude change from step 2 to 3, because the shear stresses are still in the elastic range.

3.3.2. Case 2: g2 < g1

Three selected consolidation tests (Series B in Table 2) after an identical g1 = 0.75, g2 takes three
different paths, 0.51, 0.26, and �0.52 as shown in Fig. 9. Simulation for each test includes sequentially
the clay deposition g0 = 0.75, the first stage loading g1 = 0.75 and the second stage loading g2. Since
g1 = g0 = 0.75 has already been presented in case 1, we focus here on the behaviour during the second
loading stage. General agreement between the experimental data and simulations was achieved for
the ev–logp0 curves, as shown in Fig. 10a. Unlike case 1, the curve does not follow a bilinear pattern;
instead, a smooth transition zone was found on the ev–logp0 plane at the location of the pre-consoli-
dation stress (see Fig. 10a). The apparent yield point can be determined from the plots by using a bilin-
ear construction method, as indicated in the previous case (see Fig. 10c and d). Although the yield
points determined from simulation are in good agreement with the experiments, the curves from
experiments show a wider scatter which can be attributed to the variability of the sample is initial
void ratio while the prediction was made based on an averaged set of parameters.
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Fig. 8. Schematic plot for induced anisotropy for g = 0.75.
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Among the three tests, g2 = �0.52 was selected in order to study the response on the contact
planes. Fig. 11 shows the local stress–strain relationships for the contact planes in the selected orien-
tations. The local stress paths are plotted in the s–r plane as shown in Fig. 11a for both the first and
the second loading stage. The highest slope of the local stress paths is obtained for planes oriented at
55� for the first loading stage and is for planes oriented at 45� for the second loading stage. For the
second loading stage, the slope of the local stress path increases from plane orientation 0� to 45�
and decreases from 45� to 90�.

In the local normal stress–strain curves (see Fig. 11b), only planes with orientation from 45� to 90�
yielded. The planes with orientations from 0� to 45� did not yield even at the end of the second loading
stage. Fig. 11c shows the local shear strain versus normal strain curves, the magnitude of local shear
strain is greater for the stress paths with higher slopes on the r–s plane.

Fig. 12 shows the distribution of local stresses and strains in rose diagrams for the ending step 4 of
the first loading stage and the selected steps 5, 6, 7, 8, and 9 for the second loading stage (see Fig. 5a
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and b). It is noted that step 4 gives the pre-stresses on each contact plane at the end of first stage
loading.

The distribution of normal stress at the end of the first loading stage (step 4) has a long axis in the
vertical direction. During the sampling (4–40 in Fig. 5a and b), the distribution shrinks to the point of
origin as an unloading process. Then, it expands again during the second loading stage from step 5 to
9, but with a different shape that has the long axis in the horizontal direction (see Fig. 12a). The change
in shape of the distribution is due to the load pattern, changing from compression to extension (from
g1 = 0.75 to g2 = �0.52).

At step 6 of the second stage, the distribution reaches the bold line only for planes with near-hor-
izontal orientations. Only these planes, after reaching their pre-consolidation pressures, begin to
behave plastically. At steps 7, 8, and 9 the number of planes that reached their pre-consolidation stress
(i.e., went beyond the bold line) continues to increase. At step 9, there are still nearly half of the planes
which behave elastically, which is consistent with Fig. 11b which shows that all the contact planes
with less than 45� orientation did not yield. Thus, the soil has a smooth transition zone when it begins
to yield in the curve ev–logp0, as shown in Fig. 10a, making it more difficult to define the apparent yield
point based solely on globally applied stresses. It demonstrates that in this case, the first contact plane
yields long before the apparent yield point determined from the bilinear construction, while many
contact planes are still in the elastic state after the apparent yield point.

This case also shows that, due to a change of the loading path direction, the shape of the normal
stress distribution can rotate around its principal axis, which indicates that the induced anisotropy
involves not only the degree of anisotropy but also the axis of anisotropy.

Fig. 12b shows the distribution of shear stress and Fig. 12c shows the distribution of shear to nor-
mal stress ratio s/r, which governs the shear deformation. The distributions show that after the sec-
ond loading stage, there are a small number of contact planes (below 45� orientation) which exceed
the elastic limits created by the first loading stage.

Fig. 12d shows the distribution of local normal strains which indicates very small strains for con-
tact planes having an orientation below 45�. For orientations greater than 45�, however, the planes
display large normal strains due to their exceeding of the local elastic limit at early steps during this
loading stage. Fig. 12e shows the shear strain distribution for the steps 6, 7, 8, and 9 of the second
loading stage. The magnitude of shear strains is relatively small because most of the contacts are still
in the elastic range at step 9.

3.3.3. Case 3: g2 > g1

Three selected consolidation tests (Series C in Table 2) are considered in this case. After an identical
first loading path g1 = 0.11, three different second loading paths occurred are followed g2 = 0.36, 0.58,
and 0.83 as shown in Fig. 13. Simulation for each test includes, sequentially, the clay deposition
g0 = 0.75, the first stage loading g1 = 0.11 and the second stage loading g2. Particular attention was
given to the second loading stage. Fig. 14a shows the ev–logp0 curves, and Fig. 14b the ev–ed plane.
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Fig. 12. Schematic plot for induced anisotropy for g2 = �0.52.



Similar to case 2, an obviously smooth transformation zone was found on the ev–logp0 plane, when the
pre-consolidation stress was located. The apparent yield points determined from plots using a bilinear
construction method are shown in the ev–p0 plane in Fig. 14c and d.

Among the three tests, g2 = 0.83 was selected for studying the contact planes. Fig. 15 shows the
local stress–strain relationships for the contact planes in the selected orientations. In Fig. 15a, the
s–r curves are plotted for both the first and the second loading stages. The slopes of the s–r curves
for the second loading stage (g2 = 0.83) are much higher than those for the first loading stage
(g1 = 0.11).

In the local normal stress–strain curves, at the second loading stage (Fig. 15b), the elastic limits
were reached for all planes except for the plane oriented at 90�. The magnitude of the normal stress
decreases with the orientation angle caused by the stress distribution. In the local shear strain versus
normal strain curves (Fig. 15c), the magnitude of local shear strain is greater for stress paths with
higher slopes in the r–s plane. It is also noticeable that the shear strain in this case is larger than
in the previous two cases.

Fig. 16 shows the distribution of local stress and strain in rose diagrams for step 4 of the first load-
ing stage and the selected steps 5, 6, 7, 8, and 9 for the second loading stage (Fig. 5a and b). The bold
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Fig. 13. Schematic plot of drained constant g tests for g2 > g1.
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line shows the stresses at step 4 at the end of the first loading stage, which also represents the elastic
limits for the second loading stage.

Corresponding to the near isotropic consolidation of the first loading stage (g1 = 0.11), the bold line
has a shape close to a circle with its long axis in the vertical direction. The distribution of the second
loading stage (g2 = 0.83), however, has a shape much elongated in the vertical direction (Fig. 16a).
When distribution starts to expand from origin during the second loading stage, it reaches the bold
line (elastic limits) at first for planes with near-vertical orientations at step 6. At steps 7, 8, and 9,
the distribution expands further beyond the bold line. At the end of step 9, all planes yield, except
for the planes with orientations near 90�, which is consistent with Fig. 15b showing that all contacts
yield except for the one with a 90� orientation. The yielding process is also stretched over several load
steps, thus the soil has a smooth transition zone when it begins to yield in the ev–logp0, as shown in
Fig. 14a. It can be concluded that for the case of changing stress paths (stress path with various suc-
cessive slopes g), the yielding condition does not occur simultaneously for all contact planes. There-
fore, determining the yielding point from the test results at the macroscopic level becomes more
difficult. This case also confirms that loading with reorientation of the stress path induces a change
in the degree of anisotropy as well as in the direction of the anisotropy axis.

The fact that yielding condition does not occur simultaneously for all contact planes is a fundamen-
tal phenomenon for granular material. In fact, the result can be used to explain the incrementally non-
linear character of the material. As pointed out by many authors (Hill, 1965, 1966, 1967; Zienkiewicz
and Pande, 1977; Bazant and Gambarova, 1984; Darve and Nicot, 2005), the mechanical state (elastic
or plastic regime) of each contact depends on both the direction of the macroscopic loading and the
orientation of the contact considered. As a consequence, the overall response corresponds to the
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Fig. 16. Schematic plot for induced anisotropy for g2 = 0.83.
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contribution of the individual response of all the contact directions. A very complex, nonlinear and
anisotropic behaviour is therefore obtained.

Fig. 16b shows the distribution of shear stress and Fig. 16c shows the distribution of shear to nor-
mal stress ratio s/r. The distributions show that after the second loading stage, all planes exceed their
shear elastic limits.

Fig. 16d shows the distribution of local normal strains which indicates very small strains for con-
tact planes with near-horizontal orientation. Contact planes with near-vertical orientations, however,
display large normal strains due to their stresses beyond the initial elastic limits. Fig. 16e shows the
shear strain distribution for steps 6, 7, 8, and 9 of the second loading stage. The magnitude of shear
strains is relatively larger than in the previous two cases (see Fig. 15c) because the shear elastic limit
is exceeded in contact planes of all orientations.

3.4. Investigating the macro apparent yield curve

As described in the previous section, the yield point is only an approximate description of the stress
state, which serves as the elastic/plastic boundary for the material. Since the material cannot change
its behaviour from elastic to plastic abruptly (i.e., contact planes are likely to yield in a sequential pro-
cess), the yield point can be only approximately defined. The method used for determining the
approximate yield point is a bilinear construction. In this section, the same method is used to con-
struct the yield curve in a stress plane, as well as its kinematic rule based on the simulation of triaxial
drained tests with different g-stress paths for the Otaniemi natural clay.

3.4.1. Initial apparent yield curve
In order to investigate the apparent yield curve of Otaniemi natural clay under clay deposition,

drained tests of all series were simulated using the calibrated model parameters. Figs. 17 and 18 show
the comparison between experimental results and model predictions for the full range of test stages
for Series A and B–C, respectively. A general agreement was achieved for all test simulations compared
to experiments. The under-prediction of volumetric strains during the first loading stage at high val-
ues of g (e.g., CAD2260, CAD2464, CAD2261), as noted by Wheeler et al. (2003), can be attributed to
the breakage of bonds among the clay clusters, which is not considered in the present microstructural
model.

The apparent pre-consolidation pressures were measured by the bilinear method for all stress
paths of the first loading stage. The initial apparent yield curve of Otaniemi natural clay in the nor-
mally consolidated region was then obtained, as shown in Fig. 19a. Considering the sample variability,
the experimental data are scattered around the predicted results. The yield curve constructed from the
results of the numerical simulations is approximately an elliptical shaped curve with a highest value
of the mean effective stress lying approximately on the line g = 0.75.

3.4.2. Kinematic hardening of the macro apparent yield curve
As investigated in the previous section, a change of stress history (g2 – g1) would redistribute the

local stresses and strains, resulting in a change of the anisotropy axes. In a conventional plasticity
model, the change of the anisotropic axes would be reflected by a change of the yield surface shape,
and would require a kinematic hardening rule to model such behaviour.

Drained tests with different g stress histories were simulated to construct the kinematic hardening
of the yield curve. The g value of the first loading stage varies from 0.98 to �0.34, using tests of Series
B for g1 = 0.75 along natural deposition stress path, CAD2260 for g1 = 0.98, Series C for g1 = 0.11,
CID2515 for g1 = 0 and CAE2496 for g1 = �0.34. All tests were simulated by the microstructural model,
as shown in Figs. 17 and 18. General agreement was achieved for the experimental and numerical
results.

Fig. 19b–f shows the apparent yield surfaces for different consolidation histories described by
the microstructural model. All yield curves have different shapes, which are approximately of ellip-
tical type with a highest value of the mean effective stress lying approximately on the line of the
g1 stress path. In Fig. 19b, the stress path of the first loading stage is the same as that of the clay
deposition (i.e., g1 = g0 = 0.75). For this case, the yield surface moves and expands while keeping



the same shape. Fig. 19c–f shows cases with g1 – g0. After the stress path g1 is applied, the yield
surface has not only moved but also changed its shape. The change in shape depends on the value
of g1. The data plotted in Fig. 19b–f, corresponding to the final yield surface, are obtained from the
second loading stage in the test series. The constructed yield surfaces are compared to experimen-
tal results, when available, as shown in Fig. 19a–f. Considering the soil variability, the comparison
shows a reasonably good agreement. The micromechanical approach seems capable of describing
adequately the kinematic hardening of a yield curve in the stress space.

4. Summary and conclusion

A microstructural model for clay based on the approach proposed by Chang and Hicher (2005)
has been used to simulate the multistage drained constant – g tests on Otaniemi clay. The pur-
pose of this study was to investigate the induced anisotropy due to various combinations of
stress paths. It was attempted to link the mechanisms at inter-cluster contacts to the apparent
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yield surface and its kinematic hardening in the stress space. Three different cases have been
studied:

(1) For the case g1 = g0, the e–logp0 curve for the first loading stage is bilinear and the yield point is
obviously situated at the intersection point of the two lines. When the applied stress reaches the
pre-consolidation stress, all contact planes reach their pre-consolidation pressures simulta-
neously, and therefore they all begin to behave plastically.

(2) For the cases g2 < g1 and g2 > g1, the e–logp0 curve for the second loading stage is no longer
bilinear, instead there is a smooth transition zone. In this case, the apparent yield point is deter-
mined by the bilinear construction method proposed by Mitchell (1970). When the applied
stress reaches the pre-consolidation stress, not all contact planes reach their pre-consolidation
pressures simultaneously. The number of yield contacts increases with applied load but some
contacts are likely to remain elastic. The cause of this phenomenon is easily detected from
the evolution of the local stress distribution for contacts of various orientations.

It can be concluded that for the case of stress paths with various successive directions, the yielding
condition does not occur simultaneously for all contact planes. Therefore, the definition of yield
becomes vague for the traditional plasticity theory, where the yield point occurs at a given applied
stress.

It can also be concluded that, due to a change of loading path, the principal axis of the contact stress
distribution can rotate, which indicates that the induced anisotropy includes not only the degree of
anisotropy but also the principal axes of anisotropy.

Under the microstructural approach, the evolution of the state variables (local stress and strain) in
the planes of all orientations is tracked. This leads to an account of anisotropy on stress-dependent
properties, and can produce naturally the anisotropic behaviour without specifying a kinematic hard-
ening yield surface in the stress space.

Given the good agreement between the numerical simulation and the experimental results, the
micromechanical approach seems capable of modelling adequately the induced anisotropic behaviour
of Otaniemi clay.
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