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ABSTRACT

This paper develops the forward and inverse position kinematics of the ARID
manipulator and also its forward velocity kinematics.
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1. INTRODUCTION

The kinematic structure of the ARID manipulator lends itself to simple forward

and inverse kinematics analysis. The purpose of this paper is to fully document

and verify an existing analysis. The symbolic software package MATHEMATICA

was used to produced and verify the equations presented here. In the analysis to

follow, the standard Devenit-Hartenberg kinematic parameters of the ARID were

employed.

2. ARID FORWARD KINEMATICS

Table 2.1 lists the Devenit-Hartenberg kinematic parameters for the ARID robot.

Table 2.1 • Kinematic Parameters for the ARID Robot

Jolt id 10
dl

0

0

1 p

2 r

3 r

a Joint Limits

4 r 0

01 0

04

al

02 a2 0 ° [4 ° , 112 °]

03 a3 0 ° [102 ° , 148 °]
m.

0 0 °

[Oinches, 718inches]

[,16 ° , -117 °]

Table 2.2 lists the nominal values of the jink lengths and the fixed angle 01. The

distance 1 + a4 computes the tool-end-point along the x-axis of the tool-frame

whose origin is located at the flange.

From the DH-parameters of the ARID robot listed in Table 2.1, the four link

transforms compute to

LI=

I

c 1 -s I 0 a 1 c 1

s 1 c 1 0 a 1 s 1

0 0 1 dl

-0 0 0 1

u

m

L2=

c2

s2

0

-0

-s 2 0 a 2 c 2

c 2 0 a 2 s 2

0 1 0

0 0 1

u

m
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L 3 =

i

c3

s3

o

-0

-s 3 0 a 3 c 3

c 3 0 a 3 s 3

0 1 0

0 0 1

and L 4 =

n

c4

s4

0

-0

roll

-s4 0 0

c 4 0 0

0 1 0

0 0 1-

. (2-1)

Table 2.2 Nominal Values of ARID Kinematic Parameters

Parameter

al

a2

a_

l+a4

Sl

Cl

Theoretical Value

%/66.372 + 48"2'82

I Measured Value

82.3

= 82.0727

45.00 45

35.00 35
=.= i i

48.28
- 0.588259

al

66.37

al

35.75

I Units

inches

inches

inches

inches

- 0.808673

01 36.0335 ° 35.2053 ° Degrees

The forward kinematics transform of the ARID equals

°T 4 =L!L2L3L4

which reduces to

(2-2)

: M..J
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°T 4 =

m

C1234 -S1234 0 a I c I + a 2 c12 + a 3 c123

S1234 C1234 0 al sl + a2 S12 + a3 S123

0 0 1 dl

- 0 0 0 1

(2-3)

If the ARID axes are not parallel, this model will produce erroneous results. A

second paper will address the development of a error-model for the ARID
kinematics.

3. ARID END FRAME JACOBIAN

The Jacobian of the ARID relates the joint-rates _1 = [ ell

frame-velocity V = [v x t.ox ]x of the end-frame,

62 63 64] I: to the

V =J (1' (31)

The Jacobian of the ARID computes to

4,oj4 =

i

0 a 2 s34 -I- a 3 s4 a 3 s 4 0

0 a2 C34 -I- a3 c4 a 3 C4 0

1 0 0 0

0 0 0 0

0 0 0 0

0 1 1 1
m

(3-2)

The leading superscript4 means that this Jacobian is expressed in frame F4

while the 0 indicates the motion is that of the end-frame relative to the base

frame Fo of the ARID.

The Tool-Center-Point
V
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The tool-center-point vector (top), expressed in the end-effector-frame F 4 for

this robot, equals, by definition,

4tcp = [24 inches 0 0 iX = 24 X. (3-3)

Hence, the base-frame expression of the tool-center-point vector equals

The ARID base-frame expression of the tcp position, therefore, equals

°tcp = p + R 4tcp. (3-5)

The ARID base-frame velocity of the tcp, therefore, equals

Vtcp = !_ + co × R 4tcp = R( 4,0V4 "4-4,0co4 X 24 X), (3-6)

where

4,0V4=

In general, the middle expression in
any point fixed in the end-frame F4.

4,0V4

4,0co 4

= 4,0j 4 q. (3-7)

(3-6) can be used to compute the velocity of

4. ARID INVERSE POSE KINEMATICS

Specify the pose of the end-effector frame
homogeneous matrix H,

at the ARID flange by the

x,,._../
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a ._,

" nx bx tx Px-

ny by ty py

nz bz tz p,

-0 0 0 1 -

(4-1)

where p = [Px Py Pz] x is the position of the flange center-point and

nx bx tx ]
R = ny by ty (4-2)

n, b, tz

is the rotation matrix that rotates the base-frame of the robot into a frame

parallel to the tool-frame. Equivalently, R transforms a vector expressed in the

end-effector-frame coordinates into the same vector expressed in the robot base-

frame coordinates. The inverse position kinematics problem is to solve for the

joint variables given H. This means solving the matrix equation

°T 4 = H (4-3)

Solving for the Sum of the Three Revolute Joint Angles

Unless R a rotation about the z-axis, tz= 1, no joint variable set will satisfy

(4-3). Given that tz= l, 0T4[I,I] = H[I,I], °T412,1] = HiEA] implies

Hence,

The known

C1234 = n x and S1234 = ny . (4-4)
?

02 + 03 + ()4 = atan2[ny, nx ] - 01. (4-5)

value of 01 in Table 2.2 provides the additional information to

compute the stun of the last three joint angles.

V
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Solving for the Prismatic Displacement of joint One

The value of the prismatic joint follows immediately from °T 4 [3,4] = H[3,4],

Pz =dl.

Next, we solve for 03.

Solving for the Angle of Joint Three

Define the known, translated position vector _ = _x Py Pz]x ,

Px := Px - ai cl, Py := py -- al sl, and

The equalities °T 4 [1,4] = H[I,41 and °T 4 [2,4] = H[2,4] imply

Px = a3 c123 -I- a 2 c12

py = a 3 s123 + a 2 s12

(4-6)

(4-7)Pz := Pz.

(4-8)

(4-9)

The previous two equations constitute the well-known elbow equations. Squaring
both equations and adding yields the kinematic equation

which has two solutions,

-,-2 ,--.2 2 2
Px + Py-- a2-- a3

c3 = 2 a 2 a 3 ' (4-10)

or, equivalently,

as long as the constraint

(4-11)

(4-12)

03 =  ta.2[ 4 1 - c3 1,

_22!]+ py- a2- a

03 = "t'Cos'l 2 a 2 a 3 '
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_2 ,--2 2 2
Px + Py " a2-- a3

-1 _< 2.a2-a3 <__1, (4-13)

or, equivalently,

--2 ~2
(a2 - a3) 2 _ Px + Py _ (a2 + a3) 2, (4-14)

is satisfied.

Equation (4-14) expresses the geometric constraints that the manipulator cannot

reach out past the sum of its link lengths and no closer than the difference. The

reachable work space, is contained in an envelope consisting of an annular ring

with inner radius of la2 - a31 and outer radius of a2 + a3 • When the end-point is

on the inner radius, cos 03 - -1 and on the outer boundary, cos 03 - 1. On

these boundaries there is only one solution for cos 03 in (4-12). The constraints

on 03 prevents the ARID robot from reaching either the inner or outer

boundaries. No position in the ARID work space violates either conditions. In the

workspace on the orbiter, only the positive solution 03 > 0 is considered.

Solving for the Angle of Joint Two

With joint angle 03 determined, 02 can be computed from (4-8) and (4-9) by

eXpanding the trigonometric terms using the sum of angles formulas and

collecting the s2 and c 2 terms to form the simultaneous equations:

x] = [ -a3"s3a 2 + a3"c 3
y

a,.<a3-s3 J" "
(4-15)

Relation (4-15) is a linear algebraic system of equations in s2 and c2. Solutions

exist to (4-15) provided the determinant of the matrix is non-zero,

-a3.s 3 a 2 + a3.c 3

a 2 + a3"c 3 a3"s 3

N2
= -[a 2 + a_- 2.a2.a3 cos(Tt-03) ] = -[ _2 + Py ] ¢ 0

V
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Thus, as long as the position vector _ of the end-frame has at least one of its
,-2

planar components non-zero, _2x + py e O, the system of equations (4-15) is

invertible,

sinai -I [ a3"s3 -a2 - a3"c31 __] (4-16)=-2 ,-,2 -a2- a3"c3 "ays3 .l"
Px + Py

2 2
One cannot be sure that (4-16) is valid unless, s2 + c2 - I. This constraint can be

proven to be satisfied whenever a solution to 03 exists. Finally, to obtain 02,

compute

02 = atan2 [-ays3.Px + (a 2 + ayc3).py, (a2 + ayc3)'Px + a3.sypy ]. (4-17)

Each value of 03 in (4-17) determines a unique value of 02.. In the ARID robot

only the positive solution for 03 is used, hence, only one value of 02 requires

computing.

ARID Robot Inverse Pose Kinematic Summary

Table 4.1 summarizes the inverse kinematics analysis for the ARID robot. The

first column supplies the equations needed to solve for the joint variables in terms

of the configuration variables and the DH-parameters. The second column states
the natural kinematic constraints which must be satisfied in order for the solution
to be valid. Natural kinematic constraints indicate geometric relationships

between and amongst the DH-parameters and configuration variables that must be
satisfied, independent of joint range limits or link interference. For purposes of
theoretical analysis, therefore, joint variables range over all the real numbers. In

the ARID, for example, the solution dl -- Pz is always theoretically valid, even
though the solution is not realizable when p: exceeds the physical length of the
robot track. The inverse solutions to the ARID manipulator that satisfy the
natural kinematic constraints must be checked to determine if the computed

values of the joint variables fall within the physical joint limits dictated for the
ARID. Those solutions which do satisfy the joint limits are said to be realizable

by the manipulator. Refer to Table 2.2 for joint limits of the ARID robot.
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Table 4.1

Joint Variable Solution

Inverse Solution to the ARID Manipulator

Theoretical Kinematic Constraints forSolution

dl = pz

IF2 ,.-2 2 2 1

+ Py- a 2 - a 3

03 = +COS "1 2"a2 .a3

02 = atan2 [-a3.s3.Px + (a2 + ayc3)-Py,

(a2 + a3"c_).px + a3.s3.py

04 = atan2 [ny, nx] - (01 + 02 + 03)

None

N2 _2
(a2 - a3) 2 -< Px + Py < (a2 + a3) 2

N2
(a2 - a3) 2 <- p~2+ Py _ (a2 + a3) 2

tz= 1

5. CONCLUSION

The nominal ARID forward position and velocity kinematics have been

developed, as well as the forward velocity kinematics. A follow-up paper will

develop a kinematics error-model for calibrating the ARID.
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