2,178 research outputs found

    kk-block parallel addition versus 11-block parallel addition in non-standard numeration systems

    Full text link
    Parallel addition in integer base is used for speeding up multiplication and division algorithms. kk-block parallel addition has been introduced by Kornerup in 1999: instead of manipulating single digits, one works with blocks of fixed length kk. The aim of this paper is to investigate how such notion influences the relationship between the base and the cardinality of the alphabet allowing parallel addition. In this paper, we mainly focus on a certain class of real bases --- the so-called Parry numbers. We give lower bounds on the cardinality of alphabets of non-negative integer digits allowing block parallel addition. By considering quadratic Pisot bases, we are able to show that these bounds cannot be improved in general and we give explicit parallel algorithms for addition in these cases. We also consider the dd-bonacci base, which satisfies the equation Xd=Xd1+Xd2++X+1X^d = X^{d-1} + X^{d-2} + \cdots + X + 1. If in a base being a dd-bonacci number 11-block parallel addition is possible on the alphabet A\mathcal{A}, then #Ad+1\#\mathcal{A} \geq d+1; on the other hand, there exists a kNk\in\mathbb{N} such that kk-block parallel addition in this base is possible on the alphabet {0,1,2}\{0,1,2\}, which cannot be reduced. In particular, addition in the Tribonacci base is 1414-block parallel on alphabet {0,1,2}\{0,1,2\}.Comment: 21 page

    Parallel and online arithmetics in imaginary quadratic fields

    Get PDF
    Nestandardní číselné systémy jsou určené svou bází p é C, p > 1, a svou abecedou cifer A c C. Zabýváme se polygonálními číselnými systémy s abecedou ve tvaru A„= (0, 1, p,..., p" ), kde P = e ~ . Navíc požadujeme, aby báze i abeceda byly v okruhu celých čísel nějakého imaginárního kva-Non-standard numeration systems are given by their base P é C, P > 1, and their alphabet of digits A c C. We focus on the so-called polygonal numeration systems where the alphabet is of the form A„= (0, 1, P,..., P ') where P = e ~ and both the base and the alphabet are in the ring of algebraic integers of some imaginary quadratic field. Feasibility of several arithmetic operations including parallel addition and on-line division and multiplication is discussed. We characterize the complete polygonal numeration systems in imaginary quadratic fields. The Extending Window Method [20] is used to find the algorithms for parallel addition. Then the decision whether the numeration systems satisfy OL property follows along with computation of preprocessing for on-line division using the implementation from [29]

    MINIMAL NON-INTEGER ALPHABETS ALLOWING PARALLEL ADDITION

    Get PDF
    Parallel addition, i.e., addition with limited carry propagation has been so far studied for complex bases and integer alphabets. We focus on alphabets consisting of integer combinations of powers of the base. We give necessary conditions on the alphabet allowing parallel addition. Under certain assumptions, we prove the same lower bound on the size of the generalized alphabet that is known for alphabets consisting of consecutive integers. We also extend the characterization of bases allowing parallel addition to numeration systems with non-integer alphabets

    Theoretical Informatics and Applications Will be set by the publisher Informatique Théorique et Applications MINIMAL DIGIT SETS FOR PARALLEL ADDITION IN NON-STANDARD NUMERATION SYSTEMS

    Get PDF
    Abstract. We study parallel algorithms for addition of numbers having finite representation in a positional numeration system defined by a base β in C and a finite digit set A of contiguous integers containing 0. For a fixed base β, we focus on the question of the size of the alphabet allowing to perform addition in constant time independently of the length of representation of the summands. We produce lower bounds on the size of such alphabet A. For several types of well studied bases (negative integer, complex numbers −1 + ı, 2ı, and ı √ 2, quadratic Pisot unit, and the non-integer rational base), we give explicit parallel algorithms performing addition in constant time. Moreover we show that digit sets used by these algorithms are the smallest possible

    Book of Abstracts of the Sixth SIAM Workshop on Combinatorial Scientific Computing

    Get PDF
    Book of Abstracts of CSC14 edited by Bora UçarInternational audienceThe Sixth SIAM Workshop on Combinatorial Scientific Computing, CSC14, was organized at the Ecole Normale Supérieure de Lyon, France on 21st to 23rd July, 2014. This two and a half day event marked the sixth in a series that started ten years ago in San Francisco, USA. The CSC14 Workshop's focus was on combinatorial mathematics and algorithms in high performance computing, broadly interpreted. The workshop featured three invited talks, 27 contributed talks and eight poster presentations. All three invited talks were focused on two interesting fields of research specifically: randomized algorithms for numerical linear algebra and network analysis. The contributed talks and the posters targeted modeling, analysis, bisection, clustering, and partitioning of graphs, applied in the context of networks, sparse matrix factorizations, iterative solvers, fast multi-pole methods, automatic differentiation, high-performance computing, and linear programming. The workshop was held at the premises of the LIP laboratory of ENS Lyon and was generously supported by the LABEX MILYON (ANR-10-LABX-0070, Université de Lyon, within the program ''Investissements d'Avenir'' ANR-11-IDEX-0007 operated by the French National Research Agency), and by SIAM

    Algebraic Multigrid for Meshfree Methods

    Get PDF
    This thesis deals with the development of a new Algebraic Multigrid method (AMG) for the solution of linear systems arising from Generalized Finite Difference Methods (GFDM). In particular, we consider the Finite Pointset Method, which is based on GFDM. Being a meshfree method, FPM does not rely on a mesh and can therefore deal with moving geometries and free surfaces is a natural way and it does not require the generation of a mesh before the actual simulation. In industrial use cases the size of the linear systems often becomes large, which means that classical linear solvers often become the bottleneck in terms of simulation run time, because their convergence rate depends on the discretization size. Multigrid methods have proven to be very efficient linear solvers in the domain of mesh-based methods. Their convergence is independent of the discretization size, yielding a run time that only scales linearly with the problem size. AMG methods are a natural candidate for the solution of the linear systems arising in the FPM, as this thesis will show. They need to be tuned to the specific characteristics of GFDM, though. The AMG methods that are developed in this thesis achieve a speed-up of up to 33x compared to the classical linear solvers and therefore allow much more accurate simulations in the future.Diese Dissertation beschäftigt sich mit der Entwicklung einer neuen Algebraischen Mehrgittermethode für die Lösung linearer Gleichungssysteme aus Generalisierten Finite Differenzen Methoden. Im Speziellen betrachten wir die sogenannte Finite Pointset Method, eine gitterfreie Lagrange Methode, welche auf Generalisierten Finite Differenzen Methoden basiert. Die Finite Pointset Method wurde insbesondere für Simulationen von Vorgängen mit freien Oberflächen und bewegten Geometrien entwickelt, bei denen der gitterfreie Charakter der Methode besonders große Vorteile liefert: An den freien Oberflächen und nahe der Geometrie muss zu keinem Zeitpunkt – auch nicht zu Beginn der Simulation – ein Gitter erstellt oder angepasst werden. Dies ist ein großer Vorteil gegenüber klassischen gitterbasierten Methoden. Wie in gitterbasierten Methoden entstehen auch in der Finite Pointset Method und anderen Generalisierten Finite Differenzen Methoden große, dünn besetze lineare Gleichungssysteme. Das Lösen dieser Gleichungssysteme wird bei fein aufgelösten Simulationen, wie sie in der Industrie oft nötig sind, schnell zum zeitlichen Flaschenhals der Gesamtsimulation. Ohne eine geeignete Methode zur Lösung dieser Gleichungssysteme dauern Simulationen oft sehr lange oder sind praktisch nicht durchführbar. Auch kann es vorkommen, dass klassische Lösungsverfahren divergieren und die Simulation damit unmöglich wird. Im Kontext von gitterbasierten Methoden sind Mehrgittermethoden ein etabliertes Werkzeug, um die entstehenden linearen Gleichungssysteme effizient und robust zu lösen. Besonders hervorzuheben ist dabei die lineare Skalierbarkeit dieser Methoden in der Größe der Matrix. Damit eignen sie sich besonders für fein aufgelöste Simulationen. Algebraische Mehrgittermethoden sind natürliche Kandidaten für die Lösung der Gleichungssysteme aus Generalisierten Finite Differenzen Methoden, wie diese Dissertation zeigen wird. Außerdem entwickeln wir eine neue Algebraische Mehrgittermethode, die auf den Einsatz in der Finite Pointset Method zugeschnitten ist und die Besonderheiten dieser Methode beachtet. Dazu zählen die Eigenschaften der einzelnen Matrizen, die wir ebenfalls analysieren werden, und auch die Veränderung der Matrizen über mehrere Zeitschritte hinweg, die im Vergleich mit gitterbasierten Verfahren eine größere Schwierigkeit darstellt. Wir evaluieren unsere neue Methode anhand von akademischen und realen Beispielen, sowohl mit nur einem Prozess als auch mit mehreren (MPI-)Prozessen. Die hier neu entwickelte Algebraische Mehrgittermethode ist um ein Vielfaches schneller als klassische Verfahren zur Lösung linearer Gleichungssysteme und erlaubt damit neue, genauere Simulationen mit gitterfreien Methoden

    INFLUENCE OF FAN OPERATION ON FAN ASSESSMENT NUMERATION SYSTEM (FANS) TEST RESULTS

    Get PDF
    The use of velocity traverses to measure in-situ air flow rate of ventilation fans can be subject to significant errors. The Fan Assessment Numeration System (FANS) was developed by the USD-ARS Southern Poultry Research Laboratory and refined at the University of Kentucky to measure air flow of fans in-situ. The procedures for using the FANS unit to test fans in-situ are not completely standardized. This study evaluated the effect of operating fan positions relative to the FANS unit for ten 1.22 m diameter fans in two types of poultry barns, with fans placed immediately next to each other and 1.6 m apart. Fans were tested with the FANS unit placed near both the intake and discharge sides of the tested fans. Data were analyzed as two Generalized Randomized Complete Block designs (GRCB), with a 2 (FANS inside or outside) x 6 (operating fan combinations) factorial arrangement of treatments. Results showed significant differences as much as 12.6 ± 4.4% between air flow values obtained under conditions of different operating fan combinations. Placing the FANS unit outside provided valid fan test results. A standardized procedure for using the FANS unit to test fans in-situ was elaborated and presented in this work
    corecore