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MINIMAL DIGIT SETS FOR PARALLEL ADDITION IN

NON-STANDARD NUMERATION SYSTEMS

Christiane Frougny1, Edita Pelantová2 and Milena

Svobodová2

Abstract. We study parallel algorithms for addition of numbers having
finite representation in a positional numeration system defined by a base
β in C and a finite digit set A of contiguous integers containing 0. For a
fixed base β, we focus on the question of the size of the alphabet allowing
to perform addition in constant time independently of the length of
representation of the summands. We produce lower bounds on the size
of such alphabet A. For several types of well studied bases (negative

integer, complex numbers −1 + ı, 2ı, and ı
√

2, quadratic Pisot unit,
and the non-integer rational base), we give explicit parallel algorithms
performing addition in constant time. Moreover we show that digit sets
used by these algorithms are the smallest possible.
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1. Introduction

Since the beginnings of computer science, the fact that addition of two numbers
has a worst case linear time complexity has been considered as an important draw-
back, see in particular the seminal paper of Burks, Goldstine and Von Neumann [5].
In 1961, Avizienis gave a parallel algorithm to add two numbers: numbers are rep-
resented in base 10 with digits from the set {−6,−5, . . . , 5, 6}, which allows no carry
propagation [3]. Note that already Cauchy in 1840 considered the representation
of numbers in base 10 and digit set {−5, . . . , 5}, and remarked that carries have
little propagation, due to the fact that positive and negative digits are mutually
cancelling in the addition process, [6].

Since the Avizienis paper, parallel addition has received a lot of attention, be-
cause it is the core of some fast multiplication and division algorithms, see for in-
stance [8]. General conditions on the digit set allowing parallel addition in positive
integer base can be found in [23] and [19].

A positional numeration system is given by a base and by a set of digits. The
base β is a real or complex number such that |β| > 1, and the digit set A is a finite
alphabet of real or complex digits. Non-standard numeration systems — where the
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base β is not a positive integer — have been extensively studied. When β is a real
number > 1, this is the well known theory of the so-called β-expansions due to
Rényi [26] and Parry [24]. Special attention has been paid to complex bases, which
allow to represent any complex number by a single sequence (finite or infinite) of
natural digits, without separating the real and the imaginary part. For instance, in
the Penney numeration system every complex number can be expressed with base
−1+ ı and digit set {0, 1}, [25]. The Knuth [18] numeration system is defined by the
base 2ı with digit set {0, . . . , 3}. Another complex numeration system with digit

set {0, 1} is based on ı
√

2, see [22].

For designing a parallel algorithm for addition, some redundancy is necessary. In
the Avizienis or Cauchy numeration systems, numbers may have several representa-
tions. In order to have parallel addition on a given digit set, there must be enough
redundancy, see [21] and [19]. Both the Avizienis and the Cauchy digit sets allow
parallel addition, but the Avizienis digit set is not minimal for parallel addition, as
the Cauchy digit set is.

When studying the question on which digit sets it is possible to do addition in
parallel for a given base β, we restrict ourselves to the case that the digit set is an
alphabet of contiguous integer digits containing 0. This assumption already implies
that the base β is an algebraic number. In a previous paper [12], we have shown
that it is possible to find an alphabet of integer digits on which addition can be
performed in parallel when β is an algebraic number with no algebraic conjugates
of modulus 1. This digit set is not minimal in general, but the algorithm is quite
simple, it is a kind of generalization of the Avizienis algorithm.

In this work we focus on the problem of finding an alphabet of digits allowing
parallel addition that is minimal in size. The paper is organized as follows:

We first give lower bounds on the cardinality of the minimal alphabet allowing
parallel addition. When β is a real positive algebraic number, the bound is ⌈β⌉.
When β is an algebraic integer with minimal polynomial f(X), the lower bound is
equal to |f(1)|. This bound can be refined to |f(1)| + 2 when β is a real positive
algebraic integer.

Addition on an alphabet A can be seen as a digit set conversion between alpha-
bets A + A and A. In Section 4, we show that the problem of parallel addition
on A can be reduced to problems of parallel digit set conversion between alphabets
of cardinality smaller than the one of A + A, Proposition 4.2. We also give some
method allowing to link parallel addition on several alphabets of the same cardi-
nality, namely to transform an algorithm for parallel addition on one alphabet into
algorithms performing parallel addition on other alphabets.

We then examine some popular numeration systems, and show that our bounds
are attained. When β is an integer > 2, our bound comes to β+ 1, and it is known
that parallel addition is feasible on any alphabet of this size, which is minimal,
see [23] for instance.

In the case that the base is a negative integer, β = −b, b > 2, the lower bound
we obtain is again equal to b + 1. We show that parallel addition is possible not
only on the alphabet {0, . . . , b}, but in fact on any alphabet (of contiguous integers
containing 0) of cardinality b+ 1.

We then consider the more general case where the base has the form β = k
√
b,

b ∈ Z, |b| > 2, and k ∈ N, k > 1. We show that parallel addition is possible on
every alphabet (of contiguous integers containing 0) of cardinality b + 1. If b > 2,

then this cardinality is minimal (assuming that the expression of β = k
√
b is written

in the minimal form). We use this result on several examples: The complex base
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β = −1 + ı satisfies β4 = −4, and the minimal alphabet for parallel addition must
have 5 digits, in fact it can be any alphabet (of contiguous integers containing 0) of
cardinality 5. With similar reasoning, also for the Knuth numeration system, with
base β = 2ı, parallel addition is doable on any alphabet (of contiguous integers

containing 0) of cardinality 5. Analogously, in base β = ı
√

2 parallel addition is
doable on any alphabet (of contiguous integers containing 0) of cardinality 3.

We then consider β-expansions, where β is a quadratic Pisot unit, i.e. the largest
root of a polynomial of the form X2−aX+1, with a ∈ N, a > 3, or of a polynomial
of the form X2 − aX − 1, with a ∈ N, a > 1. Such numeration systems have been
extensively studied, since they enjoy a lot of nice properties. In particular, by a
greedy algorithm, any positive integer has a finite β-expansion, and it is known that
the set of finite β-expansions is closed under addition [4]. In the case β2 = aβ − 1,
any positive real number has a β-expansion on the alphabet {0, . . . , a−1}. We show
that every alphabet (of contiguous integers containing 0) of cardinality a is sufficient
to achieve parallel addition, so the lower bound |f(1)| + 2 is reached. In the case
β2 = aβ+1, any positive real number has a β-expansion on the alphabet {0, . . . , a}.
We show that parallel addition is possible on any alphabet (of contiguous integers
containing 0) of cardinality a + 2, which also achieves our lower bound |f(1)| + 2.
In both cases, we provide explicitly the parallel algorithms.

One case where the base is not an algebraic integer, but an algebraic number,
is the rational number ±a/b, with a > b > 2. When β = a/b our bound is equal
to ⌈a/b⌉, which is not good enough, since we show that the minimal alphabet has
cardinality a+ b. We prove that parallel addition is doable on {0, . . . , a+ b− 1}, on
the opposite alphabet {−a− b+ 1, . . . , 0}, and on any alphabet of cardinality a+ b
containing {−b, . . . , 0, . . . , b}. In the negative case, β = −a/b, our results do not
provide a lower bound. We show that the minimal alphabet has cardinality a+ b,
and any alphabet of such cardinality allows parallel addition.

The question of determining the size of minimal alphabet for parallel addition in
other numeration systems remains open.

2. Preliminaries

2.1. Numeration systems

For a detailed presentation on these topics, the reader may consult [13]. A po-
sitional numeration system (β,A) within the complex field C is defined by a base
β, which is a complex number such that |β| > 1, and a digit set A usually called
alphabet, which is a subset of C. In what follows, A is finite and contains 0. If a
complex number x can be expressed in the form

∑
j6n xjβ

j with coefficients xj in

A, we call the sequence (xj)j6n a (β,A)-representation of x.

The problem of representability in a complex base is far from being completely
characterized, see the survey [13]. However, when the base is a real number, the
domain has been extensively studied. The most elaborated case is the one of repre-
sentations of real numbers in a non-integer base β > 1, the so-called greedy expan-
sions, introduced by Rényi [26]. Denote by T a transformation T : [0, 1) → [0, 1)
given by the prescription

T (x) = βx−D(x), where D(x) = ⌊βx⌋.

Then

x =
D(x)

β
+
T (x)

β
for any x ∈ [0, 1).
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Since T (x) ∈ [0, 1) as well, we can repeat this process infinitely many times, and
thereby obtain a representation of x ∈ [0, 1) in the form

x =
D(x)

β
+
D(T (x))

β2
+
D(T 2(x))

β3
+
D(T 3(x))

β4
+ · · · (1)

This representation is called the Rényi expansion or greedy expansion of x and
denoted 〈x〉β . Since the coefficients are D(x) = ⌊βx⌋ and x ∈ [0, 1), the alphabet of
the Rényi expansion is Cβ = {0, 1, . . . , ⌈β⌉−1}. We will refer to this alphabet as the
canonical alphabet for β > 1. A sequence (xj)j>1 such that 〈x〉β = 0•x1x2x3 · · · for
some x ∈ [0, 1) is called β-admissible. If this sequence has only finitely many non-
zero entries, we say that x has a finite Rényi expansion in the base β. Let us stress
that not all strings in the alphabet Cβ are β-admissible. For characterization of
β-admissible sequences see [24]. If the base β is not an integer, then some numbers
have more than one representation on the canonical alphabet Cβ . It is important
to mention that the Rényi expansion 〈x〉β is lexicographically the greatest among
all representations (x)β over Cβ .

In order to find a representation of a number x > 1, we can use the Rényi
transformation T as well: At first we find a minimal k ∈ N such that y = xβ−k ∈
[0, 1), then we determine 〈y〉β = 0•y1y2y3 · · · and finally we put 〈x〉β = y1y2 · · · yk •
yk+1yk+2 · · · . If the base β is an integer, say β = 10, then the Rényi expansion is
the usual decimal expansion. The Rényi expansion of a negative real number x is
defined as −〈|x|〉β , which means that one additional bit for the sign ± is necessary.
In the Rényi expansion of numbers (analogously to the decimal expansion), the
algorithms for addition and subtraction differ.

Since the Rényi transformation T uses the alphabet Cβ, we can represent any
positive real number x in this alphabet as an infinite word xnxn−1 · · ·x0•x−1x−2 · · · .
The numbers represented by finite prefixes of this word tend to number x.

Let us now consider an integer m satisfyingm < 0 < m+⌈β⌉−1, and an alphabet
Am = {m, . . . , 0, . . . ,m+ ⌈β⌉ − 1} of cardinality ⌈β⌉. Let

Jm =
[

m
β−1 ,

m
β−1 + 1

)
.

We describe a transformation Tm : Jm → Jm which enables to assign to any real
number x a (β,Am)-representation. Put

Tm(x) = βx−Dm(x), where Dm(x) =
⌊
βx− m

β−1

⌋
.

Since Tm(x)− m
β−1 = βx− m

β−1−
⌊
βx− m

β−1

⌋
∈ [0, 1), we have Tm(x) ∈

[
m

β−1 ,
m

β−1+1
)

for any x in Jm, and therefore Tm maps the interval Jm into Jm. Moreover, any x
from the interval Jm satisfies

βx − m
β−1 < β

(
m

β−1 + 1
)
− m

β−1 = m+ β and βx− m
β−1 >

mβ

β−1 − m
β−1 = m,

and thus m 6
⌊
βx − m

β−1

⌋
6 m + ⌈β⌉ − 1, i.e. the digit Dm(x) belongs to Am.

Therefore, each x in Jm can be written as in (1). Since for any x in R there exists a
power n in N such that x

βn is in Jm, all real numbers have a (β,Am)-representation.

This already implies that the set of numbers having finite (β,A)-representation is
dense in R.

Let us mention that, if we consider an alphabet A such that A = −A, we can
exploit instead of Tm a symmetrized version of the Rényi algorithm introduced by
Akiyama and Scheicher in [2]. They use the transformation S : [− 1

2 ,
1
2 ) → [− 1

2 ,
1
2 )
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given by the prescription

S(x) = βx −D(x), where D(x) = ⌊βx+ 1
2⌋.

This expansion has again the form (1), but the digit set is changed into

A = Z ∩ (−β+1
2 , β+1

2 ).

Since the alphabet is symmetrical around 0, it has an odd number of elements. In
general, it can be bigger than the canonical alphabet Cβ , but not too much, because
⌈β⌉ + 1 > #A > ⌈β⌉ = #Cβ . On the other hand, the Akiyama-Scheicher repre-
sentation has an important advantage: the representation of −x can be obtained
from the representation of x by replacing the digit a by the digit −a. Therefore,
an algorithm for subtraction can exploit an algorithm for addition, and clearly, no
additional bit for indicating the sign is needed.

A more general construction including our Tm is discussed in [17].

In the case of base β being a rational number of the form a/b, with a > b > 1,
a and b co-prime, the greedy algorithm gives a representation on the alphabet
{0, . . . , ⌈a/b⌉ − 1}, but another algorithm — a modification of the Euclidean divi-
sion algorithm — gives any natural integer a unique and finite expansion on the
alphabet {0, . . . , a− 1}, see [11] and [1]. For instance, if β = 3/2, the expansion of
the number 4 is 21.

Also the negative bases have been investigated. Already in 1885, negative inte-
ger base was described by Grünwald, see [14]. When β is a real number, (−β)-
expansions have been introduced in [16]. Negative rational bases of the form
β = −a/b, with a > b > 1, a and b co-primes, have been studied in [11]. Any
integer can be given a unique and finite expansion on the alphabet {0, . . . , a − 1}
by a modification of the Euclidean division algorithm, so this system is a canonical
numeration system, see [13] for properties and results.

2.2. Parallel addition

We consider addition and subtraction in the set of real or complex numbers from
an algorithmic point of view. Similarly to the classical algorithms for arithmetical
operations, we work only on the set of numbers with finite representation, i.e. on
the set

FinA(β) =
{ ∑

j∈I

xjβ
j | I ⊂ Z, I finite, xj ∈ A

}
. (2)

Such a finite sequence (xj)j∈I of elements of A is identified with a bi-infinite string
(xj)j∈Z in AZ, wherein only a finite number of digits xj have non-zero value. The
index zero in bi-infinite strings is indicated by •. So if x belongs to FinA(β), we
write

(x)β,A = ω0xnxn−1 · · ·x1x0 • x−1x−2 · · ·x−s0
ω

with x =
∑j=n

j=−s xjβ
j .

Let x, y ∈ FinA(β), with (y)β,A = ω0ynyn−1 · · · y1y0 • y−1y−2 · · · y−s0
ω. Adding

x and y means to rewrite the (β,A + A)-representation

ω0(xn + yn) · · · (x1 + y1)(x0 + y0) • (x−1 + y−1) · · · (x−s + y−s)0
ω

of the number x+ y into a (β,A)-representation of x+ y.
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A necessary condition for existence of an algorithm rewriting finite (β,A + A)-
representations into finite (β,A)-representations is that the set FinA(β) is closed
under addition, i.e.

FinA(β) + FinA(β) ⊂ FinA(β). (3)

Let us point out that we are not specifically discussing in this paper whether or not
the inclusion (3) is satisfied by a numeration system (β,A); however, the numera-
tion systems studied in that paper satisfy this inclusion.

As we have already announced, we are interested in parallel algorithms for addi-
tion. Let us mathematically formalize parallelism. Firstly, we recall the notion of a
local function, which comes from symbolic dynamics (see [20]) and is often called a
sliding block code.

Definition 2.1. A function ϕ : AZ → BZ is said to be p-local if there exist two
non-negative integers r and t satisfying p = r + t + 1, and a function Φ : Ap → B
such that, for any u = (uj)j∈Z ∈ AZ and its image v = ϕ(u) = (vj)j∈Z ∈ BZ, we
have vj = Φ(uj+t · · ·uj−r)

1 for every j in Z.

This means that the image of u by ϕ is obtained through a sliding window of
length p. The parameter r is called the memory and the parameter t is called the
anticipation of the function ϕ. We also write that ϕ is (t, r)-local. Such functions,
restricted to finite sequences, are computable by a parallel algorithm in constant
time.

Definition 2.2. Given a base β with |β| > 1 and two alphabets A and B containing
0, a digit set conversion in base β from A to B is a function ϕ : AZ → BZ such that

(1) for any u = (uj)j∈Z ∈ AZ with a finite number of non-zero digits, v =
(vj)j∈Z = ϕ(u) ∈ BZ has only a finite number of non-zero digits, and

(2)
∑
j∈Z

vjβ
j =

∑
j∈Z

ujβ
j .

Such a conversion is said to be computable in parallel if it is a p-local function for
some p ∈ N.

Thus, addition on FinA(β) is computable in parallel if there exists a digit set
conversion in base β from A + A to A which is computable in parallel. We are
interested in the following question:

Given a base β ∈ C, which alphabet A allows parallel addition on FinA(β) ?

If we restrict ourselves to integer alphabets A ⊂ Z, then the necessary con-
dition (3) implies that β is an algebraic number, i.e. β is a root of a non-zero
polynomial with integer coefficients. In [12], we have studied a more basic ques-
tion: For which algebraic number β does there exist at least one alphabet allowing
parallel addition? We have proved the following statement.

Theorem 2.3. Let β be an algebraic number such that |β| > 1 and all its conjugates
in modulus differ from 1. Then there exists an alphabet A ⊂ Z such that addition
on FinA(β) can be performed in parallel.

The proof of this theorem is constructive, the obtained alphabet has the form of
a symmetric set of contiguous integers A = {−a,−a+ 1, . . . ,−1, 0, 1, . . . , a − 1, a}
and, in general, a is not minimum.

In this article, we address the question of minimality of the alphabet allowing
parallel addition. In the whole text we assume:

• the base β is an algebraic number such that |β| > 1,

1Careful! Indices of Z are decreasing from left to right.
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• the alphabet A is a finite set of consecutive integers containing 0 and 1, i.e.
A is of the form

A = {m,m+ 1, . . . , 0, 1, . . .M − 1,M} , where m 6 0 < M and m,M ∈ Z. (4)

Remark 2.4. Despite the usual requirement that a base β is in modulus bigger
than one, we can define the set FinA(β) even in the case |β| < 1 and ask whether
addition in this set can be performed in parallel. Since for any β ∈ C \ {0}, it holds

FinA(β) = FinA( 1
β
),

a p-local function performing parallel addition can be found either for both the sets
FinA(β) and FinA( 1

β
), or for none of them.

Remark 2.5. Let β and γ be two different algebraic numbers with the same min-
imal polynomial and σ : Q(β) 7→ Q(γ) be the isomorphism induced by σ(β) = γ. If
A ⊂ Z, then

FinA(γ) = {σ(x) |x ∈ FinA(β)}
and, for any integers aj , bj , cj , and for any finite coefficient sets I1, I2 ⊂ Z,

∑

j∈I1

(aj + bj)β
j =

∑

j∈I2

cjβ
j ⇐⇒

∑

j∈I1

(aj + bj)γ
j =

∑

j∈I2

cjγ
j.

Therefore, a p-local function performing parallel addition exists either simultane-
ously for both the sets FinA(γ) and FinA(β), or for none of them.

3. Lower bounds on the cardinality of alphabet allowing

parallelism

In this section, we give two lower bounds on the cardinality of alphabet A allowing
parallel addition in the set FinA(β).

Theorem 3.1. Let β be a positive real algebraic number, β > 1, and let A be a
finite set of contiguous integers containing 0 and 1. If addition in FinA(β) can be
performed in parallel, then #A > ⌈β⌉.
Proof. For any alphabet B, denote

ZB = ZB(β) :=
{ n∑

j=0

sjβ
j | sj ∈ B, n ∈ N

}
.

At first we recall a result from [9]. For an integer q > 0, let Qq = {0, 1, . . . , q}.
Erdös and Komornik proved the following: If β 6 q + 1, then any closed interval
[α, α+ 1] with α > 0 contains at least one point from ZQq

, i.e. [α, α+ 1]∩ZQq
6= ∅

for any α > 0.
We use the notation m = minA 6 0 and M = maxA > 1. Suppose, for

contradiction, that #A = M −m + 1 < β. In particular, this assumption implies
that, for any n ∈ N:

xn := βn +

n−1∑

j=0

mβj > 0 and yn :=

n∑

j=0

Mβj < βn+1. (5)

We can see that, for any n ∈ N, yn > xn, and, additionally, since xn − yn−1 =

βn − ∑n−1
j=0 (M −m)βj > βn(β−M+m−1)

β−1 > 0, we have

x1 < y1 < x2 < y2 < x3 < y3 < x4 < y4 < · · ·
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Consider an element x from ZA = ZA(β). It can be written in the form x =∑ℓ

j=0 ajβ
j , with aj ∈ A, where aℓ 6= 0. If the leading coefficient aℓ 6 −1, then

x =
∑ℓ

j=0 ajβ
j 6 −βℓ+

∑ℓ−1
j=0Mβj , and, according to (5), the number x is negative.

It means that any positive element x ∈ ZA can be written as x =
∑ℓ

j=0 ajβ
j , where

aℓ > 1, and, clearly,

xℓ 6 x 6 yℓ.

Thus, the intersection of ZA with the open interval (yn−1, xn) is empty for any
n ∈ N, or, equivalently, yn−1 and xn are the closest neighbors in ZA. The gap
between them is xn − yn−1, and it tends to infinity with increasing n.

The existence of a p-local function performing addition in FinA(β) implies that,

for any x, y ∈ ZA, the sum x + y has a (β,A)-representation x + y =
∑n+p

j=−p zjβ
j

with zj ∈ A, or, equivalently,

ZA + ZA ⊂ 1

βp
ZA.

As 1 ∈ A, for any positive integer q we obtain

ZQq
⊂ ZA + · · · + ZA︸ ︷︷ ︸

q times

⊂ 1

βqp
ZA (6)

Let us fix q = ⌊β⌋. Since q + 1 > β, then, according to the result of Erdös and
Komornik, the gaps between two consecutive elements in the set ZQq

are at most

1. The set 1
βqpZA is just a scaled copy of ZA and thus 1

βqpZA has arbitrary large

gaps. This contradicts the inclusion (6). �

Remark 3.2. The inequality #A > ⌈β⌉ guarantees that FinA(β) is dense in R+ or
in R, depending on the fact whether the digits of A are non-negative, or not. This
property is very important as it enables to approximate each positive real number
(resp. real number) by an element from FinA(β) with arbitrary accuracy.

Using Remarks 2.4 and 2.5 we can weaken the assumptions of Theorem 3.1.

Corollary 3.3. Let β be an algebraic number with at least one positive real conju-
gate (possibly β itself) and let A be an alphabet of contiguous integers containing 0
and 1. If addition in FinA(β) can be performed in parallel, then

#A > max{⌈γ⌉ | γ or γ−1 is a positive conjugate of β}.

When β is an algebraic integer, and not only an algebraic number, we can obtain
another lower bound on the cardinality of alphabet for parallelism:

Theorem 3.4. Let β, with |β| > 1, be an algebraic integer of degree d with minimal
polynomial f(X) = Xd−ad−1X

d−1−ad−2X
d−2−· · ·−a1X−a0. Let A be an alphabet

of contiguous integers containing 0 and 1. If addition in FinA(β) is computable in
parallel, then #A > |f(1)|. If, moreover, β is a positive real number, β > 1, then
#A > |f(1)| + 2.

Firstly, we prove several auxiliary statements with less restrictive assumptions
on the alphabet than required in Theorem 3.4.

In order to emphasize that the used alphabet is not necessarily in the form (4),
we will denote it by D. We suppose that addition in FinD(β) is performable in
parallel, which means that there exists a p-local function ϕ : (D + D)Z → DZ

with memory r and anticipation t, and p = r + t + 1, defined by the function
Φ : (D + D)p → D, as introduced in Definitions 2.1 and 2.2. We work in the set
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Z[β] = {b0 + b1β + b2β
2 + · · ·+ bd−1β

d−1 | bj ∈ Z}. Since β is an algebraic integer,
the set Z[β] is a ring.

Let us point out that the following claim does not assume that the digits are
integers:

Claim 3.5. Let β be an algebraic number, and let D be a finite set such that
0 ∈ D ⊂ Z[β]. Then, for any x ∈ D + D, the number Φ(xp) − x belongs to the set
(β − 1)Z[β].

Proof. Let us denote y := Φ(xp). For any n ∈ N, we denote by Sn the number
represented by the string

ω0 x · · ·x︸ ︷︷ ︸
t times

xxx · · · xxx︸ ︷︷ ︸
n times

• x · · ·x︸ ︷︷ ︸
r times

0ω. (7)

After the conversion by function Φ, we obtain the second representation of the
number Sn:

ω0wp−1wp−2 · · ·w2w1 yyy · · · yyy︸ ︷︷ ︸
n times

• w̃1w̃2 · · · w̃p−10
ω, (8)

where

wj = Φ(0jxp−j) ∈ D and w̃j = Φ(xp−j0j) ∈ D for j = 1, 2, . . . , p− 1 . (9)

Put W := wp−1β
p−2 + · · ·+w2β+w1 and W̃ := w̃1β

p−2 + · · ·+ w̃p−2β+ w̃p−1. Let

us stress that neither W nor W̃ depend on n. Comparing both the representations
(7) and (8) of the number Sn, we obtain

Sn = x

n+t−1∑

j=−r

βj = Wβn + y

n−1∑

j=0

βj + W̃β−p+1,

i.e.

x
βn+t − 1

β − 1
+ x

−1∑

j=−r

βj = Wβn + y
βn − 1

β − 1
+ W̃β−p+1 for any n ∈ N. (10)

Subtracting these equalities (10) for n = ℓ+ 1 and n = ℓ, we get

xβℓ+t = Wβℓ+1 −Wβℓ + yβℓ =⇒ x(βt − 1) = W (β − 1) + y − x. (11)

Since βt − 1 = (β − 1)(βt−1 + · · · + β + 1), the number y − x can be expressed in
the form (β − 1)

∑m

k=0 w
′
kβ

k with w′
k ∈ Z. �

A technical detail concerning the value of W in the course of the previous proof
(Equation (11)) will be important in the sequel as well. Let us point out this detail.

Corollary 3.6. Let β be an algebraic number, E ⊂ Z[β] and D ⊂ Z[β] be two
alphabets containing 0. Suppose that there exists a p-local digit set conversion ξ :
EZ → DZ defined by the function Ξ : Ep → D, p = r + t+ 1. Then

p−1∑

j=1

Ξ(0jxp−j)βj−1 =
xβt − Ξ(xp)

β − 1
for any x ∈ E .
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Claim 3.7. Let β be an algebraic integer and let D be a finite set of (not necessarily
contiguous) integers containing 0. Then

Φ(xp) ≡ x mod |f(1)| for any x ∈ D + D.

Proof. According to Claim 3.5, the number β−1 divides the integer Φ(xp)−x = y−x
in the ring Z[β], i.e.

y − x = (β − 1)(c0 + c1β + · · · + cd−1β
d−1) for some c0, c1, . . . , cd−1 ∈ Z.

As βd = ad−1β
d−1 + ad−2β

d−2 + · · ·+ a1β + a0 and powers β0, β1, β2, . . . , βd−1 are
linearly independent over Q, we deduce

y − x = −c0 + cd−1a0

0 = c0 − c1 + cd−1a1

0 = c1 − c2 + cd−1a2

...

0 = cd−3 − cd−2 + cd−1ad−2

0 = cd−2 − cd−1 + cd−1ad−1

Summing up all these equations, we obtain

y − x = −cd−1(1 − a0 − a1 · · · − ad−1) = −cd−1f(1),

which implies Claim 3.7. �

The following claim again allows a more general alphabet, but the base must be
a positive real number.

Claim 3.8. Let β be a real algebraic number, β > 1, and let D be a finite set,
such that 0 ∈ D ⊂ Z[β]. Denote λ = minD and Λ = maxD. Then Φ(Λp) 6= λ and
Φ(λp) 6= Λ.

Proof. Firstly, let us assume that Φ(Λp) = λ. Put x = Λ and y = λ into (10) and
use (11) for determining W . We get

Λ
βn+t − 1

β − 1
+ Λ

−1∑

j=−r

βj =

(
Λ

βt

β − 1
− λ

1

β − 1

)
βn + λ

βn − 1

β − 1
+ W̃β−p+1.

After cancellation of the same terms on both sides, we have to realize that 1
β−1 =

∑∞
j=1

1
βj , all digits in W̃ are at least λ, and our base β > 1. Therefore, we obtain

−Λ

∞∑

j=r+1

1

βj
= −λ

∞∑

j=1

1

βj
+

p−1∑

j=1

w̃j

βj
> −λ

∞∑

j=p

1

βj
,

which yields a contradiction, as the left side is negative, but the right one is non-
negative.
The proof of Φ(λp) 6= Λ is analogous. �

Claim 3.9. Let β be a real algebraic number, β > 1, and let D be a finite set,
such that 0 ∈ D ⊂ Z[β]. Denote λ = minD and Λ = maxD. Then Φ(Λp) 6= Λ. If,
moreover, λ 6= 0 then Φ(λp) 6= λ.
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Proof. We prove the claim by contradiction. Let us assume Φ(Λp) = Λ. For any
q ∈ N, denote Tq the number represented by

ω0 Λ · · ·Λ︸ ︷︷ ︸
t times

• Λ · · ·Λ︸ ︷︷ ︸
r times

(2Λ)(2Λ) · · · (2Λ)(2Λ)︸ ︷︷ ︸
q times

0ω. (12)

After conversion by the function Φ, we get

ω0wp−1wp−2 · · ·w2w1 • z1z2 · · · zr+t+q 0ω, (13)

where wj are defined in (9) for x = Λ and zj ∈ D. The value W =
∑p−1

j=1 wjβ
j−1

computed by (11) is now W = Λβt−1
β−1 = Λ

∑t−1
j=0 β

j . Using the representations (12)

and (13) for evaluation of the number Tq, and the fact that zj 6 Λ for any j, we
obtain

Λ

t−1∑

j=−r

βj + (2Λ)

−r−1∑

j=−r−q

βj = W +

r+t+q∑

j=1

zjβ
−j = Λ

t−1∑

j=0

βj +

r+t+q∑

j=1

zjβ
−j ,

and thus

Λ
−1∑

j=−r

βj + (2Λ)
−r−1∑

j=−r−q

βj 6 Λ
∞∑

j=1

β−j =⇒
−r−1∑

j=−r−q

βj 6

∞∑

j=q+r+1

β−j .

Summing up both sides of the last inequality, we get 1
βq+r

βq−1
β−1 6 1

βq+r
1

β−1 for all

q ∈ N, thus a contradiction.
The proof of Φ(λp) 6= λ is analogous. �

Now we can easily deduce the statement of Theorem 3.4:

Proof. Let A = {m,m+1, . . . ,M−1,M} be a set of contiguous integers containing
0 and 1, i.e. m 6 0 < M .

Firstly, consider the base β as any algebraic integer of modulo greater than 1. If
|f(1)| = 1, there is nothing to prove. Therefore, suppose now that |f(1)| > 2. Since
M+1 ∈ A+A, then, according to Claim 3.7, the digit Φ((M+1)p) 6 M is congruent
to M +1 modulo |f(1)|. Therefore, necessarily, M +1−|f(1)| > Φ((M +1)p) > m.
This implies the claimed inequality #A = M −m+ 1 > |f(1)|.

Now suppose that β > 1. According to Claims 3.8 and 3.9, the digits M , m, and
Φ(Mp) are distinct, i.e. the alphabet A contains at least three elements. Therefore,
for the proof of #A > |f(1)|+2, we can restrict ourselves to the case |f(1)| > 2. As
M > Φ(Mp) > m and Φ(Mp) ≡ M mod |f(1)|, we have M − |f(1)| > Φ(Mp) >

m + 1. It implies the second part of the claim, namely that #A = M −m + 1 >

|f(1)| + 2. �

The assumptions of the previous Claims 3.7, 3.8, and 3.9 are much more relaxed
than the assumptions of Theorem 3.4. Therefore, modified statements can be proved
as well. For instance, the following result holds.

Proposition 3.10. Given β > 1 an algebraic integer with minimal polynomial
f(X), let D be a finite set of (not necessarily contiguous) integers containing 0,
such that gcdD = 1 and minD < 0 < maxD. If addition in FinD(β) is computable
in parallel, then #D > |f(1)| + 2.

Remark 3.11. Exploiting Remarks 2.4 and 2.5, we may also strengthen Theo-
rem 3.4.
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(1) If a polynomial f(X) ∈ Z[X ] of degree d is the minimal polynomial of
β, then g(X) = Xdf( 1

X
) is the minimal polynomial of 1

β
, and, moreover,

f(1) = g(1). Therefore, the assumption “β is an algebraic integer” in
Theorem 3.4 can be replaced by “β or 1

β
is an algebraic integer”.

(2) Even the second part of Theorem 3.4 can be applied to a broader class of
bases. The lower bound #A > |f(1)| + 2 remains valid even if β is an
algebraic integer and one of its conjugates is a positive real number greater
than 1.

4. Addition versus subtraction and conversion

As we have already mentioned, addition in the set FinA(β) can be interpreted
as a digit set conversion from alphabet A + A into alphabet A. Let us point out
that, if addition of two numbers can be performed in parallel, then addition of
three numbers can be done in parallel as well, and the same holds for any fixed
number of summands. This implies that, if {−1, 0, 1} ⊂ A, then subtraction of two
numbers from FinA(β) can be viewed as addition of fixed numbers of summands, and
therefore, no special study of parallelism for subtraction of (β,A)-representations
is needed.

On the other hand, if the elements of A are non-negative and the base β is a real
number greater than 1, then the set FinA(β) ⊂ [0,+∞) is not closed under subtrac-
tion. We may investigate only the existence of a parallel algorithm for subtraction
y− x for y > x. But even if FinA(β) is closed under subtraction of y− x for y > x,
it is not possible to find any parallel algorithm for it. Let us explain why: Suppose
that subtraction is a p-local function ϕ. Then ϕ must convert a string with a finite
number of non-zero digits into a string with a finite number of non-zero digits. It
forces the function Φ associated with ϕ (see Definition 2.1) to satisfy Φ(0p) = 0.
Therefore, the algorithm has no chance to exploit the fact that y > x, when the
(β,A)-representation of y is ω010n•0ω and the (β,A)-representation of x is ω01•0ω.

Therefore, we are going to focus only on addition of (β,A)-representations. We
start with setting some terminology:

Definition 4.1. Let β with |β| > 1 be fixed, and consider c and K from Z, K > 2.
The parameters c and K must be such that 0 is always an element of the considered
alphabets (both before and after the conversion).

• Smallest digit elimination (SDE) in base β is a digit set conversion from
{c, . . . , c+K} to {c+ 1, . . . , c+K}.

• Greatest digit elimination (GDE) in base β is a digit set conversion from
{c, . . . , c+K} to {c, . . . , c+K − 1}.

The following result enables to replace the alphabet A+A entering into conver-
sion during parallel addition by a smaller one. When looking for parallel algorithms
for addition on minimal alphabets, we will separately discuss the case when an
alphabet contains only non-negative digits.

Proposition 4.2. Let A = {m,m+ 1, . . . ,M − 1,M} be an alphabet of contiguous
integers containing 0 and 1 and let β be the base of the respective numeration system.

(1) If m = 0, then addition in FinA(β) can be performed in parallel if, and only
if, the conversion from A∪{M + 1} into A (greatest digit elimination) can
be performed in parallel.

(2) Suppose that {−1, 0, 1} ⊂ A. Then addition in FinA(β) can be performed
in parallel if, and only if, the conversion from A∪{M +1} into A (greatest
digit elimination) and the conversion from {m − 1} ∪ A into A (smallest
digit elimination) can be performed in parallel.
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Proof. 1. Consider x and y from FinA(β), and let z = x + y. The coefficients of
z are in {0, . . . , 2M}, so z can be decomposed into the sum of z′ with coefficients
in {0, . . . ,M + 1} and z′′ with coefficients in {0, . . . ,M − 1}. According to the
assumption of Statement 1, z′ is transformable in parallel into w with coefficients
in A. So w + z′′ has coefficients in {0, . . . , 2M − 1}. We iterate this process until
the result is on A, knowing that we have to repeat M such iterations (i.e. a finite
fixed number of iterations).
2. Analogous to the proof of Statement 1; and, again, the number of such iterations
is finite and fixed, this time at max{M,−m}.

�

In the sequel we will discuss only questions about parallel addition on FinA(β).
Nevertheless, parallel addition is closely related to the question of parallel conversion
between different alphabets.

Corollary 4.3. Let A and B be two alphabets of consecutive integers containing 0.

(1) Suppose that {−1, 0, 1} ⊂ A and addition on FinA(β) can be performed in
parallel. Then conversion from B into A can be performed in parallel for
any alphabet B.

(2) Suppose that conversion from B to A and conversion from A to B can be
performed in parallel. Then parallel addition on FinA(β) can be performed
in parallel if, and only if, parallel addition on FinB(β) can be performed in
parallel.

Proof. 1. Possibility of parallel addition on FinA(β) implies that conversion

from A + A + · · · + A︸ ︷︷ ︸
k times

into A

can be made in parallel for any fixed positive integer k. Any finite alphabet B is a
subset of A + A + · · · + A︸ ︷︷ ︸

k times

for some k. This proves Point 1.

2. Let us assume that parallel addition is possible on FinA(β). To add two num-
bers x and y represented on the alphabet B, we at first use parallel algorithm for
conversion from B to A, then we add these numbers by parallel algorithm acting on
FinA(β) and finally we use parallel algorithm for conversion back from A to B. �

We now show how a parallel algorithm acting on one alphabet can be modified
to work on another alphabet. First we mention a simple property.

Proposition 4.4. Given a base β ∈ C, β an algebraic number, and two alphabets
A and B containing 0 such that A∪B ⊂ Z[β]. Then conversion in base β from A to
B is computable in parallel by a p-local function if, and only if, conversion in base
β from (−A) to (−B) is computable in parallel by a p-local function.

Proof. Let ϕ : AZ → BZ be p-local, defined by Φ : Ap → B. Conversion from the
alphabet (−A) = {−a | a ∈ A} to (−B) is computable in parallel by the p-local

function ϕ̃ : (−A)Z → (−B)Z which uses the function Φ̃ : (−A)p → (−B) defined
for any x1, x2, . . . , xp ∈ (−A) by the prescription

Φ̃(x1x2 · · ·xp) = −Φ
(
(−x1)(−x1) · · · (−xp)

)
,

which implies that Φ̃(0p) = −Φ(0p) = 0. �

The next result allows to pass from one alphabet allowing parallel digit set con-
version to another one. First we set a definition.
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Definition 4.5. Let A and B be two alphabets containing 0 such that A∪B ⊂ Z[β].
Let ϕ : AZ → BZ be a p-local function realized by the function Φ : Ap → B. The
letter h in A is said to be fixed by ϕ if ϕ(ωh • hω) = ωh • hω, or, equivalently,
Φ(hp) = h.

Theorem 4.6. Given a base β ∈ C, β an algebraic number, and two alphabets A
and B containing 0 such that A∪B ⊂ Z[β], suppose that conversion in base β from
A to B is computable by a p-local function ϕ : AZ → BZ.

If some letter h in A is fixed by ϕ then conversion in base β from A′ = {a−h | a ∈
A} to B′ = {b− h | b ∈ B} is computable in parallel by a p-local function.

Proof. Let Φ : Ap → B be the function realizing conversion from A to B, with
memory r and anticipation t satisfying p = r + t + 1. It means that for any
u = (uj) ∈ AZ such that u has only finite number of non-zero entries, we have after
conversion the sequence v = ϕ(u) such that

• v = (vj) ∈ BZ has only finite number of non-zero entries;
• vj = Φ(uj+t · · ·uj+1ujuj−1 · · ·uj−r) for any j ∈ Z;
• ∑

j∈Z
ujβ

j =
∑

j∈Z
vjβ

j .

For any x1, . . . , xp ∈ A′ we define

Ψ(x1x2 · · ·xp) = Φ
(
(x1 + h)(x2 + h) · · · (xp + h)

)
− h . (14)

It is easy to check that Ψ : (A′)p → B′. Denote by ψ : (A′)Z → (B′)Z the p-local
function realized by the function Ψ. We will show that the function ψ performes
conversion from A′ to B′.

As Φ(hp) = h we have Ψ(0p) = Φ(hp) − h = 0. Consequently, v′ = ψ(u′) has
only a finite numbers of non-zero digits of the form

v′j = Ψ(u′j+t · · ·u′j · · ·u′j−r)

for any u′ ∈ (A′)Z with a finite number of non-zero entries u′j. It remains to show
that ∑

j∈Z

u′jβ
j =

∑

j∈Z

v′jβ
j =

∑

j∈Z

Ψ(u′j+t · · ·u′j · · ·u′j−r)β
j . (15)

Before verifying the previous statement, we deduce an auxiliary equality. Put L :=
max{j ∈ Z |u′j 6= 0} and define u = (uj) ∈ AZ as

uj :=





u′j + h if j 6 L
h if L < j 6 L+ p− 1
0 if j > L+ p

As ϕ realizes conversion from A to B, we have

h
∑

j6L+p−1

βj+
∑

j6L

u′jβ
j =

∑

j∈Z

ujβ
j =

∑

j∈Z

Φ(uj+t · · ·uj · · ·uj−r)β
j =

∑

j∈Z

vjβ
j . (16)

Let us split the last sum into three pieces

P1 =
∑

j>L+p+r

vjβ
j , P2 =

L+p+r−1∑

j=L+r+1

vjβ
j and P3 =

∑

j6L+r

vjβ
j .

In the first sum, vj = Φ(0p) = 0, as for j > L+p+r, all arguments uj+t, . . . , uj, . . . , uj−r

of the function Φ are zeros, i.e., P1 = 0.
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In the second sum P2, the first coefficient is vL+r+1 = Φ(uL+p · · ·uL+1) =
Φ(0hp−1), the second one is vL+r+2 = Φ(uL+p+1 · · ·uL+2) = Φ(02hp−2), etc. Using
Corollary 3.6, we obtain

P2 = βL+r+1

p−1∑

j=1

Φ(0jhp−j)βj−1 = βL+r+1h
βt − 1

β − 1
.

Since
∑

j∈Z
vjβ

j = P1 + P2 + P3, we may calculate the value of P3 using (16)

P3 =
∑

j6L

u′jβ
j + h

∑

j6L+p−1

βj − βL+r+1h
βt − 1

β − 1
=

∑

j6L

u′jβ
j + h

∑

j6L+r

βj . (17)

All coefficients v′js in the sum P3 are of the form vj = Φ
(
(u′j+t + h) · · · (u′j−r + h)

)
.

We have thus shown that

∑

j6L+r

Φ
(
(u′j+t + h) · · · (u′j−r + h)

)
βj =

∑

j6L

u′jβ
j + h

∑

j6L+r

βj . (18)

Let us come back to the task to show (15). In the right sum of (15), all arguments
u′j+t, . . . , u

′
j , . . . , u

′
j−r of Ψ are zero for j > L + r, and therefore v′j = Ψ(0p) =

Φ(hp)−h = 0. In the left sum of (15), all coefficients u′j are for j > L equal to zero
as well. So we have to check whether

∑

j6L

u′jβ
j =

∑

j6L+r

Ψ(u′j+t · · ·u′j · · ·u′j−r)β
j .

Because of the definition of Ψ in (14), this relation is equivalent to Equation (18).
�

Remark 4.7. For deduction of (16), we have applied the mapping ϕ to the word
u = ω0uL+p−1uL+p−2 · · ·u0 • u−1u−2 · · · with infinitely many non-zero entries. Let

us explain the correctness of this step. Denote by u(n) the word ω0uL+p−1uL+p−2 · · ·u0•
u−1 · · ·u−n0ω. Since u(n) has only a finite number of non-zero digits, we know that
the value corresponding to ϕ(u(n)) equals the value corresponding to v(n) = ϕ(u(n)).
Clearly un → u and ϕ(u(n)) → ϕ(u) as n → ∞ in the product topology. The same
is true for the numerical values represented by these words.

In the following sections, we give parallel algorithms for addition in a given base
on alphabets (of contiguous integers) containing 0, of the minimal cardinality K.
While doing so, we favour the method of starting with an alphabet containing
only non-negative digits, and writing a parallel algorithm for the greatest digit
elimination, Algorithm GDE(β), converting representations on {0, 1 . . . ,K − 1,K}
into representations on {0, 1 . . . ,K − 1}. By Proposition 4.2, parallel addition is
thus possible on {0, 1 . . . ,K−1}. In order to show that parallel addition is possible
also on other alphabets (of the same size), we use the following corollary.

Corollary 4.8. For K, d ∈ Z, where 0 6 d 6 K − 1, denote

A−d = {−d, . . . , 0, . . . ,K − 1 − d} .

Let ϕ be a p-local function realizing conversion in base β from A0 ∪ {K} to A0. If
both letters d and K − 1− d are fixed by ϕ, then parallel addition is performable in
parallel on A−d as well.
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Proof. According to Theorem 4.6, conversions from {−d, . . . , 0, . . . ,K−1−d,K−d}
into {−d, . . . , 0, . . . ,K − 1 − d} and also from {−K + 1 + d, . . . , 0, . . . , d + 1} into
{−K−1+d, . . . , 0, . . . , d} are performable in parallel. According to Proposition 4.4,
conversion from {−d − 1, . . . , 0, . . . ,K − 1 − d} into {−d, . . . , 0, . . . ,K − 1 − d} is
performable in parallel, as well. Using Proposition 4.2 Point (2), addition on the
alphabet A−d can be made in parallel. �

5. Integer base and related complex numeration systems

In this section, we consider some well studied numeration systems, where the
base is an integer, or a root of an integer. Parallel algorithms for addition in these
systems can be found in [10], but the question of minimality of the alphabet was
not discussed there.

5.1. Positive integer base

If the base β is a positive integer b > 2, then the minimal polynomial is f(X) =
X − b, and Theorem 3.4 gives #A > |f(1)| + 2 = b + 1. It is known that parallel
addition is feasible on any alphabet of cardinality b + 1 containing 0, in particu-
lar on alphabets A = {0, 1, . . . , b} and A = {−1, 0, 1, . . . , b − 1}, see for instance
Parhami [23]. In the case that b is even, b = 2a, parallel addition is realizable on
the alphabet A = {−a, . . . , a} of cardinality b + 1 by the algorithm of Chow and
Robertson [7].

5.2. Negative integer base

If the base β is a negative integer, β = −b, b > 2, then the minimal polynomial
is f(X) = X + b, and Theorem 3.4 gives the bound #A > |f(1)| = b + 1. In this
section we prove

Theorem 5.1. Let β = −b ∈ Z, b > 2. Any alphabet A of contiguous integers
containing 0 with cardinality #A = b + 1 allows parallel addition in base β = −b
and this alphabet cannot be further reduced.

Any alphabet of contiguous integers containing 0 which has cardinality b+1 can
be written in the form

A−d = {−d, . . . , 0, . . . , b− d} for 0 6 d 6 b− 1 .

For proving Theorem 5.1, we firstly consider the alphabet consisting only of non-
negative digits, i.e., the alphabet A0.

Algorithm GDE(−b): Base β = −b, b > 2, parallel conversion (greatest digit
elimination) from {0, . . . , b+ 1} to {0, . . . , b}.

Input: a finite sequence of digits (zj) of {0, . . . , b+ 1}, with z =
∑
zjβ

j .
Output: a finite sequence of digits {0, . . . , b}, with z =

∑
zjβ

j .

for each j in parallel do

1. case

{
zj = b+ 1
zj = b and zj−1 = 0

}
then qj := 1

if zj = 0 and zj−1 > b then qj := −1
else qj := 0

2. zj := zj − bqj − qj−1
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Proof. Let wj = zj − bqj , and znew
j = wj − qj−1 after Step 2 of the algorithm.

• If zj = b+ 1, then wj = 1. Thus 0 6 znew
j 6 2 6 b.

• For zj = b and zj−1 = 0, we get wj = 0. Since qj−1 6 0, the resulting
znew

j ∈ {0, 1}.
• For zj = b and zj−1 6= 0, we obtain wj = b. Since qj−1 6= −1, the resulting
znew

j ∈ {b− 1, b}.
• When zj = 0 and zj−1 > b, then wj = b, and b − 1 6 znew

j 6 b, because
qj−1 > 0.

• When zj = and zj−1 6 b − 1, then wj = 0. Since qj−1 6= 1, we obtain
0 6 znew

j 6 1.
• If 1 6 zj 6 b− 1, then 0 6 znew

j 6 b, as qj ∈ {−1, 0, 1}.
Note that we obtain qj 6= 0 only if zj itself or its neighbor zj−1 are different from
zero; it means that the algorithm is correct in the sense that it does not create a
string of non-zeros from a string of zeros. The input value z equals the output value
z thanks to the fact that the base β satisfies βj+1 + bβj = 0 for any j ∈ Z. This
parallel conversion is 3-local, with memory 2 and anticipation 0, i.e. (0, 2)-local
since znew

j depends on (zj , zj−1, zj−2). �

Let us prove Theorem 5.1.

Proof. Proposition 4.2 and the previous Algorithm GDE(−b) imply that parallel ad-
dition is possible in the alphabet A0 = {0, 1, . . . , b}. Moreover, Algorithm GDE(−b)
applied to the infinite sequence u = ωh • hω gives the infinite sequence ϕ(u) =
ωh • hω for any h ∈ {0, 1, . . . , b}. Therefore, d and b − d are fixed by ϕ for any
d ∈ {0, 1, 2, . . . , b}. Corollary 4.8 gives that parallel addition is possible on any
alphabet A−d = {−d, . . . , , b − d} for d ∈ {0, 1, 2, . . . , b}. The minimality of the
alphabet A−d follows from Theorem 3.4. �

5.3. Base
k
√
b, b integer, |b| > 2

Here we will use that β is a root of the polynomial Xk−b, but this not in general
the minimal polynomial.

Proposition 5.2. Let β = k
√
b, b in Z, |b| > 2 and k > 1 integer. Any alphabet

A of contiguous integers containing 0 with cardinality #A = b + 1 allows parallel
addition.

The proof follows from the fact that γ = βk = b and the results of Sections 5.1
and 5.2 applied to base γ.

For the sake of completeness we give below the algorithms for the greatest digit
elimination in base β = k

√
b, b > 2 and in base β = k

√
−b, b > 2.

Algorithm GDE( k
√
b): Base β = k

√
b, b > 2, parallel conversion (greatest digit

elimination) from {0, . . . , b+ 1} to {0, . . . , b}.

Input: a finite sequence of digits (zj) of {0, . . . , b+ 1}, with z =
∑
zjβ

j .
Output: a finite sequence of digits {0, . . . , b}, with z =

∑
zjβ

j .

for each j in parallel do

1. case

{
zj = b+ 1
zj = b and zj−k > b

}
then qj := 1

else qj := 0
2. zj := zj − bqj + qj−k
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Algorithm GDE( k
√
−b): Base β = k

√
−b, b > 2, parallel conversion (greatest digit

elimination) from {0, . . . , b+ 1} to {0, . . . , b}.

Input: a finite sequence of digits (zj) of {0, . . . , b+ 1}, with z =
∑
zjβ

j .
Output: a finite sequence of digits (zj) of {0, . . . , b}, with z =

∑
zjβ

j .

for each j in parallel do

1. case

{
zj = b+ 1
zj = b and zj−k = 0

}
then qj := 1

if zj = 0 and zj−k > b then qj := −1
else qj := 0

2. zj := zj − bqj − qj−k

Note that in general, we cannot say that the minimal cardinality of an alphabet
for parallel addition is equal to b+1, since the polynomialXk−bmight be reducible.
But we have the following result. We say that β = k

√
b is written in the minimal

form if b 6= ck
′

where k′ > 2 divides k. Otherwise, β could be written as β = k′′
√
c

with k = k′k′′.

Lemma 5.3. Let β = k
√
b, with b ∈ N, b > 2 and k positive integer, be written in

the minimal form. Then the polynomial Xk − b is minimal for β.

Proof. Let us suppose the opposite fact, i.e. that the polynomial

Xk − b =

k−1∏

ℓ=0

(
X − e

2πiℓ
k

k
√
b
)

is reducible. One can write Xk − b = f(X)g(X), where f(X) and g(X) are monic
polynomials belonging to Z[X ], the polynomial f(X) is irreducible and its degree
m satisfies 1 6 m < k. Let f(X) = Xm + fm−1X

m−1 + · · ·+ f1X+ f0. All m roots

of f are roots of Xk − b as well, i.e. of the form
k
√
b times a complex unit. The

product of roots of f(X) is equal to (−1)mf0, so we have

|f0| =
(

k
√
b
)m

= b
m
k = b

m′

k′

where m
k

= m′

k′
and m′ and k′ are coprime. Let |f0| = pα1

1 · · · pαr
r be the decompo-

sition into product of distinct primes p1, . . . , pr. Then

bm
′

= pk′α1

1 · · · pk′αr

r

and thus m′ divides k′αj for all j = 1, 2, . . . , r. Since k′ and m′ are coprime, m′

divides αj and therefore αj = m′α′
j . We can write

b =
(
p

α′

1

1 · · · pα′

r
r

)k′

=: ck
′

.

As 1 > m
k

= m′

k′
the number k′ > 2 and k′ divides k – a contradiction with the

minimal form of β. �

Corollary 5.4. Let β = k
√
b, b in N, b > 2 and k > 1 integer, written in the

minimal form. Parallel addition is possible on any alphabet (of contiguous integers)
of cardinality b+ 1 containing 0, and this cardinality is the smallest possible.
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Proof. Since f(X) = Xk − b is the minimal polynomial of β, the lower bound of
Theorem 3.4 is equal to |f(1)| + 2 = b+ 1. �

We now present several cases of complex bases of the form β = k
√
−b, b in N,

b > 2.
The complex base β = −1 + ı satisfies β4 = −4. Its minimal polynomial is

f(X) = X2 + 2X + 2, and the lower bound on the cardinality of alphabet allowing
parallel addition (from Theorem 3.4) is |f(1)| = 5. It has been proved in [10] by
indirect methods that parallel addition on alphabet A = {−2, . . . , 2} is possible;
and, due to Theorem 3.4, this alphabet is minimal.

Corollary 5.5. In base β = −1 + ı, parallel addition is possible on any alphabet of
cardinality 5 containing 0, and this cardinality is the smallest possible.

Remark 5.6. With a more general concept of parallelism (k-block p-local function,
see [19]), there is a result by Herreros [15] saying that addition in this base is
realizable on {−1, 0, 1} by a 4-block p-local function.

The complex base β = 2ı has X2 +4 for minimal polynomial, so the lower bound
given by Theorem 3.4, equal to 5, is attained.

Corollary 5.7. In base β = 2ı, parallel addition is possible on any alphabet of
cardinality 5 containing 0, and this cardinality is the smallest possible.

Similarly the complex base β = ı
√

2 has X2 + 2 for minimal polynomial, so the
lower bound given by Theorem 3.4, equal to 3, is attained.

Corollary 5.8. In base β = ı
√

2, parallel addition is possible on any alphabet of
minimal cardinality 3 containing 0.

6. Quadratic Pisot units bases

6.1. Base β root of X2 = aX − 1

Among the quadratic Pisot units, we firstly take as base β the greater root of the
polynomial f(X) = X2 − aX + 1 with a > 3. Here, the canonical alphabet of the
numeration system related to this base by means of the Rényi expansion (greedy
algorithm) is the set C = {0, . . . , a− 1} of cardinality #C = a.

The numeration system given by this base β, alphabet C, and the Rényi ex-
pansions is restricted only to representations x =

∑
j xjβ

j , where not only the
digits must be from the alphabet C, but also the representations must avoid any
string of the form (a − 1)(a − 2)n(a − 1) for any n ∈ N. With this admissibility
condition, the numeration system has no redundancy. In order to enable parallel
addition, we always have to introduce some level of redundancy into the numera-
tion system. In this case, we prove that it is sufficient to stay in the same alphabet
A := C = {0, . . . , a − 1}, we only need to cancel the restricting condition given by
the Rényi expansion, so that all the strings on C are allowed.

The lower bound on the cardinality of alphabet for parallel addition given by
Theorem 3.4 for this base is equal to |f(1)| + 2 = a, which is just equal to the
cardinality of C. We show below that the canonical alphabet C = {0, . . . , a − 1}
already allows parallel addition. At the same time, the cardinality of this alphabet
C is equal to ⌈β⌉ = a, and thus this example demonstrates that also the lower bound
given by Theorem 3.1 cannot be further improved in general.

According to Proposition 4.2, we know that, for parallel addition on the alphabet
A = {0, . . . , a − 1}, it is enough to show that parallel conversion (greatest digit
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elimination) from {0, . . . , a} to A is possible. To perform conversion from A + A
to A, we then use several times greatest digit elimination (GDE). However, the
repetition of GDE may increase the width p of the sliding window in the resulting
p-local function. To illustrate this phenomenon, we provide below the complete
algorithm for parallel addition, which uses GDE just once and then in Remark 6.2
we compare the value of the width p for both approaches.

Algorithm A: Base β satisfying β2 = aβ− 1, with a > 3, parallel conversion from
{0, . . . , 2a− 2} to {0, . . . , a}.

Input: a finite sequence of digits (zj) of {0, . . . , 2a− 2}, with z =
∑
zjβ

j .
Output: a finite sequence of digits (zj) of {0, . . . , a}, with z =

∑
zjβ

j .

for each j in parallel do

1. case

{
zj > a
zj = a− 1 and zj+1 > a and zj−1 > a

}
then qj := 1

else qj := 0
2. zj := zj − aqj + qj+1 + qj−1

Proof. For correctness of Algorithm A, we have to show that the value znew
j =

zj −aqj + qj+1 + qj−1 belongs to the alphabet {0, 1, . . . , a} for each j. Let us denote
wj := zj − aqj , i.e. znew

j = wj + qj+1 + qj−1.

• If zj ∈ {0, . . . , a−2}∪{a, . . . , 2a−2}, then wj ∈ {0, . . . a−2}, and therefore
znew

j = wj + qj+1 + qj−1 ∈ {0, . . . a}.
• When zj = a − 1 and both its neighbors zj±1 > a, then wj = −1 and
qj+1 = qj−1 = 1. Thus znew

j = 1.
• If zj = a − 1, and zj−1 < a or zj+1 < a, then wj = a − 1 and qj+1 or
qj−1 = 0. Now znew

j ∈ {a− 1, a}.
The output value z equals the input value z thanks to the fact that βj+2 − aβj+1 +
βj = 0 for any j ∈ Z. Besides, it is to be noted that zj = 0 implies qj = 0, and
therefore, the algorithm cannot assign a string of non-zeros to a string of zeros. �

We then realize the greatest digit elimination in parallel. Let us denote by β−

the root larger than 1 of the equation X2 = aX − 1, a > 3.

Algorithm GDE(β−): Base β = β− satisfying β2 = aβ − 1, with a > 3, parallel
conversion (greatest digit elimination) from {0, . . . , a} to {0, . . . , a− 1} = A.

Input: a finite sequence of digits (zj) of {0, . . . , a}, with z =
∑
zjβ

j .
Output: a finite sequence of digits (zj) of {0, . . . , a− 1}, with z =

∑
zjβ

j .

for each j in parallel do

1. case





zj = a

zj = a− 1 and
(
zj+1 > a− 1 or zj−1 > a− 1

)

zj = a− 2 and zj+1 = a and zj−1 = a
zj = a− 2 and zj+1 = a and zj−1 = a− 1 and zj−2 > a− 1
zj = a− 2 and zj−1 = a and zj+1 = a− 1 and zj+2 > a− 1
zj = a− 2 and zj±1 = a− 1 and zj±2 > a− 1





then qj := 1

else qj := 0

2. zj := zj − aqj + qj+1 + qj−1

Proof. Let us denote again wj := zj − aqj , i.e. znew
j = wj + qj+1 + qj−1.
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• If zj ∈ {0, . . . , a− 3} ∪ {a}, then wj ∈ {0, . . . a− 3}, and therefore znew
j =

wj + qj+1 + qj−1 ∈ {0, . . . a− 1} = A.
• When zj = a − 1, and zj−1 > a − 1 or zj+1 > a − 1, then wj = −1 and
qj+1 + qj−1 ∈ {1, 2}. Thus znew

j ∈ {0, 1} ⊂ A.
• When zj = a− 1 and both its neighbors zj±1 < a− 1, then wj = a− 1 and
qj+1 = qj−1 = 0. Now znew

j = a− 1 ∈ A.
• If zj = a− 2 and qj = 1, then necessarily qj±1 = 1. Since wj = −2, we get
znew

j = 0 ∈ A.
• If zj = a−2 and qj = 0, then necessarily qj−1 or qj+1 equal 0, and therefore
qj+1 +qj−1 ∈ {0, 1}. As wj = a−2, the resulting znew

j ∈ {a−2, a−1} ⊂ A.

Again, the equation βj+2 − aβj+1 + βj = 0 for any j ∈ Z ensures that the output
value z equals the input value z. For zj = 0 we always have qj = 0, so the algorithm
cannot assign a string of non-zeros to a string of zeros. �

Now we can proceed by summarizing the algorithm for parallel addition:

Algorithm I: Base β satisfying β2 = aβ − 1, with a > 3, parallel addition on
alphabet A = {0, . . . , a− 1}.

Input: two finite sequences of digits (xj) and (yj) of {0, . . . , a−1}, with x =
∑
xjβ

j

and y =
∑
yjβ

j .
Output: a finite sequence of digits (zj) of {0, . . . , a−1} such that z = x+y =

∑
zjβ

j .

for each j in parallel do

0. vj := xj + yj

1. use Algorithm A with input (vj) and denote its output (wj)
2. use Algorithm GDE(β−) with input (wj) and denote its output (zj)

Theorem 6.1. Let β > 1 be a root of X2 = aX − 1, with a > 3, a ∈ N, and let A
be the canonical alphabet A = {0, . . . , a − 1} associated with this base β. Addition
in FinA(β) is a p-local function with p = 11. The alphabet A is the smallest one
for parallel addition.

Proof. In Algorithm A, the output digit znew
j depends on input digits (zj+2, . . . , zj−2),

so it is a (2, 2)-local function. In Algorithm GDE(β−) the output digit znew
j depends

on input digits (zj+3, . . . , zj−3), and thus it is a (3, 3)-local function. Algorithm I is
a composition of Algorithms A and GDE(β−), so the resulting function is a compo-
sition of the two local functions, (2, 2)-local and (3, 3)-local. Overall, the addition in
base β, fulfilling β2 = aβ−1 for a > 3, as performed by Algorithm I, is a (5, 5)-local
function, i.e. 11-local. �

Remark 6.2. According to Proposition 4.2, we need only Algorithm GDE(β−) for
performing parallel addition on A = {0, . . . , a − 1} in the base β2 = aβ − 1, with
a > 3. In order to obtain the sum x + y, we would apply Algorithm GDE(β−)
repeatedly (a − 1)-times. The function performing parallel addition in this way
would then be (3a − 3, 3a − 3)-local. On the other hand, Algorithm I, exploiting
firstly Algorithm A and then only once the Algorithm GDE(β−), reduces the size
of the sliding window, i.e. the parameters of the local function are only (5, 5).

Now we are going to show that parallel addition for base β2 = aβ − 1, with
a > 3, a ∈ N, is feasible also on any alphabet of contiguous integers of cardinality a
containing {−1, 0, 1}, of the form A−d = {−d, . . . , 0, . . . , a−1−d}, for 1 6 d 6 a−2.

Let us observe that Algorithm GDE(β−) applied to the bi-infinite sequence u =
ωh •hω gives the bi-infinite sequence ϕ(u) = ωh •hω = u for any h ∈ {0, . . . , a− 2},
and thus for any d ∈ {1, . . . , d − 2}, both letters d and a − 1 − d are fixed by ϕ.
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Corollary 4.8 therefore implies that the alphabet A−d = {−d, . . . , a− 1− d} allows
parallelization of addition for any such d ∈ {1, . . . , d− 2}. This fact, together with
Theorem 3.4, Proposition 4.4, and Theorem 6.1 enable us to conclude this section
with the following theorem.

Theorem 6.3. Let β satisfy β2 = aβ − 1, with a ∈ N, a > 3. Parallel addition is
possible on any alphabet of contiguous integers containing 0 of cardinality a, and
this cardinality is minimal.

6.2. Base β root of X2 = aX + 1

Let us now study the numeration systems with base a quadratic Pisot unit with
minimal polynomial f(X) = X2 − aX − 1, with a > 1. The canonical alphabet
of the numeration system related with this base by means of the Rényi expansion
(greedy algorithm) is C = {0, . . . , a}, of cardinality #C = a + 1. The numeration
system given by this type of quadratic base β, alphabet C, and the Rényi expansions
is restricted only to such representations x =

∑
j xjβ

j , where the digits are from
the alphabet C, but the representations must avoid any string of the form a1. This
admissibility condition makes the numeration system non-redundant.

It is known, for bases β satisfying β2 = aβ + 1 with a > 1, that the set of real
numbers with finite greedy expansion 〈x〉β is closed under addition and subtrac-
tion [4]. Therefore,

{x > 0 | 〈x〉β is finite } = FinA(β) for any A ⊂ N, A ⊃ C

and

{x ∈ R | 〈|x|〉β is finite } = FinA(β) for any A ⊂ Z, A ⊃ C ∪ {−1}.

In order to obtain an algorithm for parallel addition, we must have some redun-
dancy in the numeration system. As shown in Section 6.1, for the cases of base
β satisfying β2 = aβ − 1, it was sufficient to drop the one admissibility condition
(given by the Rényi expansion), and parallelization was already possible (without
adding any more elements into the alphabet C). The situation is not that simple
for the bases satisfying β2 = aβ + 1. Nevertheless, addition in these two families of
quadratic units is connected.

Proposition 6.4. Let β > 1 be a root of the polynomial X2 − aX − 1 with a > 1,
and let γ > 1 be a root of the polynomial X2 − (a2 + 2)X + 1. If there exists an
alphabet A and a p-local function performing in FinA(γ) addition in parallel, then
there exists a (2p− 1)-local function performing in FinA(β) addition in parallel.

Proof. It is enough to realize that γ = β2, and to apply Theorem 1 from [10]. �

Remark 6.5. According to the previous Section 6.1, we know that addition in base
γ, the root of the polynomial X2 − (a2 + 2)X + 1, can be performed in parallel on
alphabet {−d, . . . , a2 + 1 − d} for any d ∈ {0, . . . , a2}. Therefore, we immediately
obtain an upper bound a2 + 2 on the cardinality of the alphabet allowing parallel
addition in base β, the root of the polynomial X2 − aX − 1.

In general, the upper bound given in Remark 6.5 is too rough. But for a = 1, i.e.
for the base the golden ratio, it gives the precise value of cardinality of the minimal
alphabet for parallel addition in this base, namely the cardinality #A = 3.

Corollary 6.6. Let β = 1+
√

5
2 be the golden ratio, root of X2 −X − 1. Addition

in this base β can be performed in parallel on alphabet A = {0, 1, 2}, and also on
alphabet A = {−1, 0, 1}. Both these alphabets are minimal.



TITLE WILL BE SET BY THE PUBLISHER 23

Let us mention that this result for the alphabet {−1, 0, 1} is already stated in [12].
Non-sufficiency of the alphabet {0, 1} for parallel addition is stated in [10].

In the sequel, we are going to consider only parameters a > 2. The lower bound
on the cardinality of the alphabet of contiguous integers allowing parallel addition,
given by Theorem 3.4 for bases β being roots of equations X2 − aX − 1, is equal to
|f(1)|+ 2 = a+ 2. We show that, in these cases, parallel addition is doable on any
alphabet of contiguous integers containing 0 of cardinality a+ 2.

For short, the positive root of X2 − aX − 1 is denoted by β+.

Algorithm GDE(β+): Base β = β+ satisfying β2 = aβ+1, a > 2, a ∈ N, parallel
conversion (greatest digit elimination) from {0, . . . , a+ 2} to A = {0, . . . , a+ 1}.

Input: a finite sequence of digits (zj) of {0, . . . , a+ 2}, with z =
∑
zjβ

j .
Output: a finite sequence of digits (zj) of {0, . . . , a+ 1}, with z =

∑
zjβ

j .

for each j in parallel do

1. case





zj = a+ 2
zj = a+ 1 and (zj+1 = 0 or zj−1 > a+ 1)
zj = a and zj+1 = 0 and zj−1 > a+ 1



 then qj := 1

if zj = 0 and zj+1 > a+ 1 and zj−1 6 a then qj := −1

else qj := 0
2. zj := zj − aqj − qj+1 + qj−1

Proof. Let us denote again wj = zj − aqj, and znew
j = wj − qj+1 + qj−1.

• If zj = a + 2, then wj = 2. Since qj+1 > 0, we have −qj+1 + qj−1 ∈
{−2, . . . , 1}, and consequently, znew

j ∈ {0, . . . , 3} ⊂ {0, . . . , a + 1} = A,
using the fact that a > 2.

• For zj = a + 1 and zj+1 = 0, we get wj = 1. As qj+1 = 0, then znew
j ∈

{0, 1, 2} ⊂ A.
• For zj = a+ 1 and zj−1 > a + 1, we obtain again wj = 1. Since qj−1 > 0,

then −qj+1 + qj−1 ∈ {−1, . . . , 2}, and consequently, znew
j ∈ {0, . . . , 3} ⊂

{0, . . . , a+ 1} = A, as a > 2.
• If zj = a + 1 and zj+1 > 1 and zj−1 6 a, then wj = a + 1, qj−1 6 0 and
qj+1 > 0. Therefore, znew

j ∈ {a− 1, a, a+ 1} ⊂ A.
• In the case of zj = a and zj+1 = 0 and zj−1 > a + 1, we obtain wj = 0.

Since qj+1 6 0 and qj−1 > 0, the resulting znew
j ∈ {0, 1, 2} ⊂ A.

• When zj = a and zj+1 > 1, then wj = a. Since qj+1 > 0 and qj−1 > 0, we
obtain znew

j ∈ {a− 1, a, a+ 1} ⊂ A.
• When zj = a and zj−1 6 a, then again wj = a. This time, qj−1 = 0, so

consequently, znew
j ∈ {a− 1, a, a+ 1} ⊂ A.

• If zj = 0 and zj+1 > a+ 1 and zj−1 6 a, then wj = a. Since qj+1 > 0 and
qj−1 > 0, we obtain znew

j ∈ {a− 1, a, a+ 1} ⊂ A.
• For zj = 0 and zj+1 6 a, we get wj = 0, qj+1 6 0, and qj−1 > 0. Therefore,

the resulting znew
j ∈ {0, 1, 2} ⊂ A.

• If zj = 0 and zj−1 > a + 1, then wj = 0 and qj−1 = 1. Consequently,
znew

j ∈ {0, 1, 2} ⊂ A.
• For the cases when zj ∈ {1, . . . , a − 1}, we have qj = 0 and qj−1 > 0, so

consequently, znew
j ∈ {0, . . . , a+ 1} = A.

Note that, for zj = 0, we can only obtain qj 6= 0 when its neighbor zj+1 is greater
than zero. Therefore, it is ensured that the algorithm cannot assign a string of
non-zeros to a string of zeros. The output value z is equal to the input value z
thanks to the fact that the base β satisfies the equation βj+2 = aβj+1 + βj for
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any j ∈ Z. The output digit znew
j depends on input digits (zj+2, . . . , zj−2), so this

conversion from {0, . . . , a+ 2} to A = {0, . . . , a+ 1} is a (2, 2)-local function. �

Using Proposition 4.2 we can conclude that addition in FinA(β) can be performed
in parallel on the alphabet {0, 1, . . . , a+ 1}.

Let us now consider alphabet containing positive and negative digits. For any
d ∈ {1, . . . , a}, denote

A−d = {−d, . . . , 0, . . . , a− d+ 1} .

The previous Algorithm GDE(β+) applied to the infinite sequence u = ωh • hω

gives the infinite sequence ϕ(u) = ωh • hω = u for any h ∈ {0, . . . , a}. Thus, for
any d ∈ {1, 2, . . . , a}, both letters d and a + 1 − d are fixed by ϕ. According to
Corollary 4.8, the alphabet A−d allows parallelism of addition. Summarizing this
reasoning, together with Algorithm GDE(β+), Corollary 6.6, and Proposition 4.4,
we obtain the following result.

Theorem 6.7. Let β satisfy β2 = aβ + 1, with a > 1, a ∈ N. Parallel addition is
possible on any alphabet of contiguous integers containing 0, such that its cardinality
is a+ 2. The cardinality a+ 2 is minimal.

7. Rational Bases

Let us now consider the base β = ±a/b, with a, b being co-prime positive integers
fulfilling a > b > 1. When b = 1, we obtain the case of positive integer base
β = a ∈ N, a > 2, or the case of negative integer base β = −a ∈ N, a > 2 with
the minimal cardinality of alphabet for parallel addition being equal to a + 1, see
Sections 5.1 and 5.2. For b > 2, the base β is an algebraic number which is not an
algebraic integer, so Theorem 3.4 cannot be applied here to establish a lower bound
on the cardinality of alphabet for parallel addition. Theorem 3.1 can be used for
β = a/b, however it is not very useful here either; the lower bound given there is
equal to ⌈a/b⌉, which is too low for parallel addition, as is shown below.

In general, an alphabet A allows parallel addition only if the numbers with finite
representation are closed under addition, in particular, any non-negative integer
must have a finite representation. This requirement already forces the alphabet to
be big enough. By a modification of the Euclidean division algorithm, any non-
negative integer can be given a unique finite expansion in base β = a/b, and any
integer can be given a unique finite expansion in base β = −a/b, on the alphabet
C = {0, . . . , a− 1}, see [11] and [1].

As we shall see, even this alphabet is to small. For both positive base β = a/b
and negative base β = −a/b, the cardinality of alphabet actually needed for parallel
addition is at least a+ b. In the alphabet A = {0, 1, . . . , a+ b− 1}, we can perform
parallel addition in the base β = a/b and β = −a/b as well.

But surprisingly, these two types of bases differ substantially if we consider al-
phabets containing {−1, 0, 1}.

7.1. Positive Rational Base

Proposition 7.1. Parallel addition in base β = a/b, with a and b co-prime positive
integers such that a > b > 1, is possible on A = {0, . . . , a+ b− 1}.
Proof. We give a parallel algorithm Algorithm GDE(a/b): {0, . . . , a+b} → {0, . . . , a+
b− 1} for greatest digit elimination.
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Algorithm GDE(a/b): Base β = a/b, with a > b > 1, a and b co-prime posi-
tive integers, parallel conversion (greatest digit elimination) from {0, . . . , a+ b} to
{0, . . . , a+ b− 1}.

Input: a finite sequence of digits (zj) of {0, . . . , a+ b}, with z =
∑
zjβ

j .
Output: a finite sequence of digits (zj) of {0, . . . , a+ b− 1}, with z =

∑
zjβ

j .

for each j in parallel do

1. if a 6 zj 6 a+ b then qj := 1

else qj := 0
2. zj := zj − aqj + bqj−1

Denoting wj := zj − aqj , we clearly obtain 0 6 wj 6 a − 1. Thus, after Step 2
of the algorithm, znew

j = wj + bqj−1 belongs to {0, . . . , a+ b − 1}. This algorithm
assigns qj 6= 0 only in the cases of zj 6= 0, so it cannot produce a string of non-zeros
from a string of zeros. The output value z equals the input value z thanks to the
fact that bβj+1 − aβj = 0 for any j ∈ Z. So the algorithm is correct.
Thus the result follows from Algorithm GDE(a/b) and Proposition 4.2. �

Proposition 7.2. In base β = a/b, with a and b co-prime positive integers such
that a > b > 1, parallel addition is possible on any alphabet of cardinality a + b
A−d = {−d, . . . , 0, . . . , a+ b− d− 1} with b 6 d 6 a− 1.

Proof. Algorithm GDE(a/b) applied to the bi-infinite sequence u = ωh • hω gives
the bi-infinite sequence ϕ(u) = ωh • hω for any h ∈ {0, . . . , a − 1}. Thus for any
d ∈ {b, b+ 1, . . . , a− 1}, both letters d and a+ b− 1 − d are fixed by ϕ. According
to Corollary 4.8, the alphabet A−d allows parallelism of addition. �

So the question is now: what happens for alphabets A−d when d > a or d 6 b−1?
First recall a well known fact.
Fact 1. Let ω0ck · · · c0•c−1 · · · c−ℓ0

ω and ω0dk · · ·d0•d−1 · · · d−ℓ0
ω, k, ℓ > 0, be two

representations in base β = a/b of the same number in Z[β]. Then the polynomial
(ck − dk)Xk + · · ·+ (c0 − d0) + · · ·+ (c−ℓ − d−ℓ)X

−ℓ is a multiple of bX − a. Thus
there exist sk−1, sk−2, . . . , s0, s−1, . . . , s−ℓ ∈ Z such that

ck − dk = bsk−1 , (19)

cj − dj = −asj + bsj−1 for any k − 1 > j > −ℓ+ 1 , (20)

c−ℓ − d−ℓ = −as−ℓ . (21)

Lemma 7.3. Let D = {m, . . . , 0, . . . ,M} with m 6 −1 and M > 1, be an alphabet.
If M < b then the greatest digit elimination from D ∪ {M + 1} to D is not a local
function; if m > −b, then the smallest digit elimination from {m− 1} ∪ D to D is
not a local function either.

Proof. Suppose that M < b and that the greatest digit elimination from D∪{M+1}
to D is a p-local function ϕ. Consider the digit M + 1, and suppose that M + 1
has a representation on D, of the form ω0dk · · · d0 • d−1 · · · d−ℓ0

ω, with 0 < k, 0 < ℓ
(the values dk = 0 and d−ℓ = 0 are not excluded). By Fact 1, there exist integers
sj such that

• d0 = M + 1 + as0 − bs−1

• for 1 6 j 6 k − 1, dj = asj − bsj−1

• dk = −bsk−1

• for 1 6 j 6 ℓ− 1, d−j = as−j − bs−j−1

• d−ℓ = as−ℓ.
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Since dk = −bsk−1 ∈ D and M < b, sk−1 > 0. Then dk−1 = ask−1 − bsk−2 >

−bsk−2 ∈ D implies that sk−2 > 0. Similarly, sk−3 > 0, . . . , s0 > 0. Since
M > d0 = M + 1 + as0 − bs−1 > M + 1 − bs−1, we must have 1 − bs−1 6 0, hence
s−1 > 1. On the other hand, b > d−ℓ = as−ℓ ∈ D implies that s−ℓ 6 0. Then
b > d−ℓ+1 = as−ℓ+1 − bs−ℓ > as−ℓ+1 implies s−ℓ+1 6 0. Similarly, s−ℓ+2 6 0, . . . ,
s−1 6 0, a contradiction.
The case m < −b is analogous. �

Corollary 7.4. In base β = a/b, with a and b co-prime positive integers such that
a > b > 1, parallel addition is not possible on alphabets of positive and negative
digits not containing {−b, . . . , 0, . . . , b}.

Note that in [12] we have given an alphabet of the form {−d, . . . , 0, . . . , d} on
which parallel addition in base a/b is possible, with d = ⌈a−1

2 ⌉ + b.

Proposition 7.5. Let a and b be co-prime positive integers such that a > b > 1.
The minimal alphabet of contiguous non-negative integers containing 0 allowing
parallel addition in base β = a/b is A = {0, . . . , a+ b− 1}.
Proof. Let us suppose that this statement is not valid, it means that there exists
a p-local function ϕ : AZ → BZ which performs conversion in base β from A to B,
where B = {0, . . . , a+ b− 2}.

Let us fix n ∈ N and q ∈ N such that n > p and
(

a
b

)q
> a+b

a−b
. Then the image of

ω0(a− 1)n • 0ω by ϕ can be written in the form

ϕ(ω0(a− 1)n • 0ω) = ω0whwh−1w0 • w−1w−2 . . . w−ℓ0
ω , (22)

where wh > 0, w−ℓ > 0 and ℓ > 1.
Consider now the string ω0(a−1)n • (a+ b−1)(a+ b−2)q0ω. Since ϕ is a p-local

function and n > p, the image of this string coincides on the positions j > p with
the image of the string ω0(a− 1)n • 0ω. Therefore we can write

ϕ(ω0(a− 1)n • (a+ b− 1)(a+ b− 2)q0ω) = ω0vhvh−1v0 • v−1v−2 . . . v−m0ω , (23)

where wh = vh > 0, v−m > 0 and m > q + 1.
We will discuss the value of the index h in the above equalities.

Case h > n: At first we focus on the equality (22) and apply Fact 1 to the
string ω0(a−1)n•0ω in the role of ω0ck · · · c0•c−1 · · · c−ℓ0

ω and to the string
ω0whwh−1w0 • w−1w−2 · · ·w−ℓ0

ω in the role of ω0dk · · ·d0 • d−1 · · ·d−ℓ0
ω

with k = h. As both strings belong to BZ, we obtain 0 > −wh = bsh−1

which gives sh−1 6 −1. By the same reason, we have for all j such that
−ℓ+ 1 6 j 6 h− 1 the inequality

a− 1 > cj − dj = −asj + bsj−1

which gives the following implication

sj 6 −1 =⇒ sj−1 6 −1 , for − ℓ+ 1 6 j 6 h− 1 .

In particular, s−ℓ 6 −1. Together with (21), we have

0 > −d−ℓ = −as−ℓ > a - a contradiction.

Case h 6 n− 1: Now we focus on the equality (23) and apply Fact 1 to
the string ω0(a− 1)n • (a + b − 1)(a+ b− 2)q0ω in the role of ω0ck · · · c0 •
c−1 · · · c−ℓ0

ω and to the string ω0vhvh−1v0 • v−1v−2 · · · v−m0ω in the role of
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ω0dk · · · d0 • d−1 · · · d−ℓ0
ω with k = n− 1 and ℓ = m > q+ 1. For the index

j = n − 1, Equality (19) implies −b + 1 6 a− 1 − dn−1 = bsn−2 and thus
sn−2 > 0. For indices j, where n− 2 > j > 0, Equality (20) gives

−b+ 1 6 a− 1 − dj = −asj + bsj−1 6 a− 1 .

From the above inequality, we can derive the implication

sj > 0 =⇒ sj−1 > 0 , for 0 6 j 6 n− 2 .

In particular, s−1 > 0. For the index j = −1, Equality (20) gives

1 6 a+ b− 1 − d−1 = −as−1 + bs−2 and thus s−2 > 1 .

For indices −2 > j > −q − 1, we obtain

0 6 a+ b− 2 − dj = −asj + bsj−1 =⇒ sj−1 > a
b
sj .

In particular,

s−q−2 >
(

a
b

)q
s−2 >

(
a
b

)q
. (24)

On the other hand, for the index −ℓ < −q−1, Equality (21) sounds −as−ℓ =
−d−ℓ > −a−b+2, and thus s−ℓ 6 1. For indices j with −ℓ+1 6 j 6 −q−2,
one can deduce

−a− b < −dj = −asj + bsj−1 6 0 =⇒ sj < 1 + b
a

+ b
a
sj−1 .

The last inequality enables us to show by induction that

sj <
a+b
a−b

for all j satisfying − ℓ 6 j 6 −q − 2 . (25)

Indeed, s−ℓ 6 1 < a+b
a−b

and for all j = −ℓ+ 1,−ℓ+ 2, . . . ,−q − 2, we have

sj < 1 + b
a

+ b
a
sj−1 < 1 + b

a
+ b

a
a+b
a−b

= a+b
a−b

.

Combining (25) for j = −q − 2 and (24), we get

a+b
a−b

> s−q−2 >
(

a
b

)q
, a contradiction with the choice of q.

Both discussed cases lead to contradiction, therefore a p-local function ϕ converting
in base β from the alphabet A to B cannot exist.

�

Proposition 7.6. In base β = a/b, with a and b co-prime positive integers such
that a > b > 1, parallel addition is not possible on any alphabet {−d, . . . , 0, . . . , a+
b− d− 2} for 1 6 d 6 a+ b− 3, of cardinality a+ b− 1.

Proof. If parallel addition was possible on {−d, . . . , 0, . . . , a + b − 2 − d}, then,
by Proposition 4.2, the conversion ϕ from {−d − 1, . . . , 0, . . . , a + b − 1 − d} to
{−d, . . . , 0, . . . , a+ b− 2 − d} would be a p-local function for some p. The proof is
then analogous to that of Proposition 7.5, by considering the words ω0(a−1−d)n •
(a+ b− 1 − d)(a+ b− 2 − d)q0ω and ω0(a− 1 − d)n • 0ω. �

Summarizing the results for both the cases of alphabets, either with non-negative
digits only, or with positive as well as negative digits, we have proved that:
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Theorem 7.7. Let β = a/b be the base, with a and b co-prime positive integers
such that a > b > 1, and let A be an alphabet (of contiguous integers containing 0)
of the minimal cardinality allowing parallel addition in base β.
Then, A has cardinality a+ b, and A has the form

• A = {0, . . . , a+ b− 1}, or A = {−a− b + 1, . . . , 0}, or
• A = {−d, . . . , 0, . . . , a+ b− 1 − d} containing a subset {−b, . . . , 0, . . . , b}.

When b = 1, we find back the classical case of positive integer base, see Sec-
tion 5.1.

7.2. Negative Rational Base

Proposition 7.8. Parallel addition in base β = −a/b, with a and b co-prime
positive integers such that a > b > 1, is possible on any alphabet (of contiguous
integers) of the form A−d = {−d, . . . , 0, . . . , a+ b− 1− d} with cardinality #A−d =
a+ b, where d ∈ {0, . . . , a+ b− 1}.
Proof. Firstly, we show that parallel addition is possible on the alphabet A0 =
{0, . . . , a + b − 1}, by providing an algorithm for the greatest digit elimination
GDE(−a/b): {0, . . . , a+ b} → {0, . . . , a+ b− 1}:

Algorithm GDE(−a/b): Base β = −a/b, with a > b > 1, a and b co-prime
positive integers, parallel conversion (greatest digit elimination) from {0, . . . , a+ b}
to {0, . . . , a+ b− 1}.

Input: a finite sequence of digits (zj) of {0, . . . , a+ b}, with z =
∑
zjβ

j .
Output: a finite sequence of digits (zj) of {0, . . . , a+ b− 1}, with z =

∑
zjβ

j .

for each j in parallel do

1. case

{
zj = a+ b
a 6 zj 6 a+ b− 1 and 0 6 zj−1 6 b− 1

}
then qj := 1

if 0 6 zj 6 b− 1 and a 6 zj−1 6 a+ b then qj := −1

else qj := 0
2. zj := zj − aqj − bqj−1

Using our usual notion of wj = zj − aqj , and znew
j = wj − bqj−1, we describe the

various cases that can occur during the course of this algorithm:

• If zj = a + b, we obtain wj = b, and then znew
j ∈ b − b · {−1, 0, 1} =

{0, b, 2b} ⊂ {0, . . . , a+ b− 1} = A0.
• For zj ∈ {a, . . . , a + b − 1} and zj−1 ∈ {0, . . . , b − 1}, we have qj = 1,

and consequently wj ∈ {0, . . . , b − 1}. As qj−1 ∈ {−1, 0}, we finally get
znew

j ∈ {0, . . . , b−1}−b ·{−1, 0} = {0, . . . , 2b−1} ⊂ {0, . . . , a+b−2} ⊂ A0.

• For zj ∈ {a, . . . , a + b − 1} and zj−1 ∈ {b, . . . , a + b}, we have qj = 0,
so we keep wj ∈ {a, . . . , a + b − 1}. Now qj−1 ∈ {0, 1}, and thus znew

j ∈
{a, . . . , a+b−1}−b ·{0, 1} = {a−b, . . . , a+b−1} ⊂ {1, . . . , a+b−1} ⊂ A0.

• In the case of zj ∈ {b, . . . , a − 1}, simply qj = 0, wj ∈ {b, . . . , a − 1}, and
the resulting znew

j ∈ {b, . . . , a− 1}− b · {−1, 0, 1} ⊂ {0, . . . , a+ b− 1} = A0.
• When zj ∈ {0, . . . , b − 1} and zj−1 ∈ {0, . . . , a − 1}, we have qj = 0,

so we keep wj ∈ {0, . . . , b − 1}, and qj−1 ∈ {−1, 0}. Therefore, we obtain
znew

j ∈ {0, . . . , b−1}−b ·{−1, 0} = {0, . . . , 2b−1} ⊂ {0, . . . , a+b−2} ⊂ A0.
• Lastly, when zj ∈ {0, . . . , b − 1} and zj−1 ∈ {a, . . . , a + b}, by means of
qj = −1 we get wj ∈ {a, . . . , a + b − 1}. As qj−1 ∈ {0, 1}, then znew

j ∈
{a, . . . , a+ b− 1} − b · {0, 1} = {a− b, . . . , a+ b− 1} ⊂ A0.

Again, we must not forget to mention that the digit zj = 0 is transformed by
this algorithm onto another digit (by means of qj 6= 0) only if its neighbour zj−1
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is a non-zero, namely from the set {a, . . . , a + b}; thereby, it is ensured that the
algorithm cannot assign a string of non-zeros to a string of zeros. The output value
z is equal to the input value z, since the base β fulfils the equality bβj+1 + aβj = 0
for any j ∈ Z. Thus, we see that this algorithm is correct for the greatest digit
elimination from the alphabet A0 ∪ {a+ b} into A0 = {0, . . . , a+ b− 1}.

Now let us point out that all the elements d ∈ {0, . . . , a + b − 1} are fixed by
the p-local function ϕ given by this algorithm, in the sense that ϕ(ωd • dω) =
(ωd • dω). This fact, together with Corollary 4.8, implies that parallel addition
in the negative rational base β = −a/b is possible on any alphabet of the form
A−d = {−d, . . . , 0, . . . , a+ b− 1 − d}, with cardinality #A−d = a+ b. �

Also here in the negative case β = −a/b, for b = 1 we find back the classical case
of (negative) integer base, see Section 5.2.

Since we do not have any lower bound for this base, we must find one directly.

Proposition 7.9. Let A = {m, . . . , 0, . . . ,M} with m 6 0 6 M be an alphabet of
contiguous integers which enables parallel addition in base β = −a/b, with a and b
co-prime positive integers, a > b > 1. Then #A > a+ b.

Proof. Without loss of generality, we may assume that 1 6 M . Let ϕ be a p-local
function realizing parallel conversion from A ∪ {M + 1} into A using the mapping
Φ : (A ∪ {M + 1})p → A. Put x = M + 1 and y = Φ(xp). According to Claim 3.5,
we have

y − x =
(
−a

b
− 1

) n∑

k=0

ck
(
−a

b

)k
for some n ∈ N and ck ∈ Z. (26)

Multiplying the previous equation by −bn+1 one gets

(x− y)bn+1 = (a+ b)

n∑

k=0

ck(−a)kbn−k,

and consequently, the number a+ b divides (x − y)bn+1. As a and b are co-prime,
necessarily a + b divides x − y. Since x − y > 0, there exists k ∈ N such that
x− y = k(a+ b) > a+ b. But simultaneously, x− y 6 M + 1 −m = #A. Putting
these two inequalities together, we obtain a+ b 6 #A. �

We can summarize this section into the following theorem.

Theorem 7.10. In base β = −a/b, with a and b co-prime positive integers, a >
b > 1, parallel addition can be performed in any alphabet A of contiguous integers
containing 0 with cardinality #A = a+ b. This cardinality cannot be reduced.

8. Conclusions and comments

Here is a summary of the numeration systems studied in this paper. We have
considered only alphabets of contiguous integers containing 0.
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Base Canonical alphabet Minimal alphabet for parallel addition

b > 2 integer {0, . . . , b− 1} All alphabets of size b+ 1
−b, b > 2 integer {0, . . . , b− 1} All alphabets of size b+ 1
k
√
b, b > 2 integer All alphabets of size b+ 1

−1 + ı {0, 1} All alphabets of size 5
2ı {0, . . . , 3} All alphabets of size 5

ı
√

2 {0, 1} All alphabets of size 3
β2 = aβ − 1 {0, . . . , a− 1} All alphabets of size a
β2 = aβ + 1 {0, . . . , a} All alphabets of size a+ 2
a/b {0, . . . , a− 1} {0, . . . , a + b − 1}, {−a− b + 1, . . . , 0},

and all alphabets of size a+b containing
{−b, . . . , 0, . . . , b}

−a/b {0, . . . , a− 1} All alphabets of size a+ b

Generalization of these results to other bases remains an open problem. The
cases of the Tribonacci numeration system with basis satisfying the equation X3 =
X2 +X +1, or quadratic bases satisfying the equation X2 = aX ± b, b > 2, are not
so straightforward. The reason is that we have only two tools so far, namely Theo-
rem 3.4 and Theorem 3.1, which provide us with lower bounds on the cardinality of
the alphabet. For the bases listed in the summary table, the bounds given in these
theorems were attained, the only exception being the rational bases β = ±a/b, for
which we had to refine our methods specifically in order to prove minimality of
the alphabets. These examples show that, for attacking the question of minimality
of alphabet for other bases, we need to find stronger versions of Theorem 3.4 and
Theorem 3.1.

The positive rational base β = a/b is exceptional among our results by another
property as well. Contrary to the other bases, not all alphabets of contiguous
integers (containing 0) with sufficiently large cardinality allow parallel addition.

As mentioned in Remark 5.6, for alphabets which are too small to allow parallel
addition in a given base, one can consider a more general concept of the so-called
k-block p-local functions. It means that, instead of a base β and an alphabet A, we

consider addition in base βk and on the alphabet Ak = {∑k−1
j=0 ajβ

j | aj ∈ A}. Our
interest in addition in base β can be extended to the question: What is the minimal
size of an alphabet A and the minimal size k of the blocks such that addition can
be performed by a k-block p-local function. This question was not tackled here at
all. In [19], the precise definition of k-block p-local function and a relation between
A and k can be found.
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