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1) Nastudujte podmínky na komplexní bázi beta v absolutní hodnotě větší než 1 a konečnou
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3) Zjistěte, které z těchto systémů splňují vlastnost OL nezbytnou pro on-line algoritmy. 

4) Zjistěte, u kterých z těchto systémů je možné navrhnout algoritmus pro paralelní sčítání.
U  systémů,  kde  toto  nelze,  studujte  možnost  rozšíření  abecedy  tak,  aby  paralelní
algoritmus existoval.

5) U  zadaných  systémů  proveďte  přípravu  na  předzpracování  dělitelů,  tj.  najděte  seznam
přepisovacích pravidel a odhad na předzpracovaného dělitele.
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Abstrakt: Nestandardní číselné systémy jsou určené svou bází β ∈ C, |β| > 1, a svou abecedou cifer
A ⊂ C. Zabýváme se polygonálními číselnými systémy s abecedou ve tvaru An = {0, 1, ξ, . . . , ξn−1}, kde
ξ = e

2πi
n . Navíc požadujeme, aby báze i abeceda byly v okruhu celých čísel nějakého imaginárního kva-

dratického tělesa. Pro efektivní počítání základních aritmetických operací v těchto číselných systémech
lze využít algoritmy pro paralelní sčítání a on-line násobení a dělení. V této práci charakterizujeme po-
lygonální číselné systémy v imaginárních kvadratických tělesech. Pro tyto systémy využíváme metodu
na konstrukci algoritmů na paralelní sčítání [20]. Dále rozhodneme, zda je splněná OL vlastnost pro
počítání on-line aritmetiky a použijeme implementaci předzpracování pro on-line dělení [29].
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Abstract: Non-standard numeration systems are given by their base β ∈ C, |β| > 1, and their alpha-
bet of digits A ⊂ C. We focus on the so-called polygonal numeration systems where the alphabet is
of the form An = {0, 1, ξ, . . . , ξn−1} where ξ = e

2πi
n and both the base and the alphabet are in the ring of

algebraic integers of some imaginary quadratic field. Feasibility of several arithmetic operations includ-
ing parallel addition and on-line division and multiplication is discussed. We characterize the complete
polygonal numeration systems in imaginary quadratic fields. The Extending Window Method [20] is
used to find the algorithms for parallel addition. Then the decision whether the numeration systems
satisfy OL property follows along with computation of preprocessing for on-line division using the im-
plementation from [29].
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Introduction

Arithmetic operations such as addition, multiplication and division are the essence of any computa-
tion. The algorithms for computing such operations are well known for numeration systems with integer
base q ≥ 2 and canonical alphabet {0, . . . , q − 1}. The situation differs for non-standard numeration sys-
tems with non-integer base or alphabet. To decide whether every real/complex number has a representa-
tion in a non-standard numeration system is generally a difficult question which was studied for example
by Thurston [27] and Daróczy and Kátai [3].

We are interested in redundant systems where any number has generally multiple representations
in (β, A). Only in such numeration systems we can perform arithmetic operations using effective algo-
rithms, in particular, parallel addition and on-line multiplication and division. Parallel algorithms were
first given for integer bases by Avizienis [2]. In [11] the possibility of parallel addition was shown
for systems with algebraic base. On-line algorithms were introduced for classical numeration systems
by Trivedi and Ercegovac [28] and later modified for non-standard numeration systems in [9].

In redundant numeration systems an algorithm for parallel addition where the digit of the result
depends only on fixed number of neighbouring digits can be designed. Such an algorithm allows us to
perform addition in constant time. On-line arithmetic is a mode of computation where operands and
results are processed in a digit serial manner, starting with the most significant digit. In order to execute
on-line division and multiplication in linear time, we need to ensure that the numeration system satisfies
conditions for parallel addition [11].

The aim of this work is to study numeration systems where both the base and the alphabet are
in the ring of algebraic integers in some imaginary quadratic field. Moreover we focus only on polygonal
numeration systems where the alphabet consists of 0 and all powers of an n-th root of unity for n ∈ N.
Such alphabets are closed under multiplication. In [26] several conditions on completeness of these
numeration systems were introduced. These numeration systems for a real base β were studied in [16].

The work is organised as follows. Chapter 1 is dedicated to basic definitions and concepts of combi-
natorics on words, algebraic numbers, number systems and their spectra.

In Chapter 2 numeration systems in the ring of algebraic integers of an imaginary quadratic fields
and their completeness are discussed. We describe the relation among different polygonal numeration
systems with the same alphabet of digits.

Chapters 3 contains basic definitions and concepts of parallel addition. The Extending Window
Method for construction of an algorithms for parallel addition from [22] is discussed along with the de-
scription of the implementation borrowed from [20].

13



Basic definitions and concepts of on-line multiplication and division can be found in Chapter 4.
We define the so-called OL property and introduce a necessary condition for computation of on-line
algorithms. The preprocessing of divisors for on-line division which we implemented in the previous
work [29] is described.

Chapter 5 provides an application of the previous theory on complete polygonal numeration systems
in imaginary quadratic fields and a discussion whether these numeration systems satisfy OL property. We
then apply two computer programs in order to construct the algorithm for parallel addition and perform
preprocessing for on-line division. The resulting parameters of the algorithms for effective arithmetic
operations are presented.

14



Chapter 1

Preliminaries

1.1 Combinatorics on words

Numbers are represented by finite or infinite strings (words) of digits. In order to work with such
objects, we introduce basic definitions and concepts of combinatorics on words.

A non-empty finite set A is called alphabet. Elements of the alphabet are called letters. A word over
the alphabet A is defined as a finite sequence of letters from A. We denote the empty word ε.

Let u = u0u1 · · · um and v = v0v1 · · · vn be words, where ui, v j ∈ A for i = 0, . . . ,m and j = 0, . . . , n.
Then concatenation of words is defined as uv = u0 · · · umv0 · · · vn. the set of words over the alphabet A
with operation concatenation of words is a monoid of words A∗. Concatenation of words is obviously
associative and the empty word ε is the unit of the monoid A∗.

We further define:

• The length of a word u = u0 · · · un−1 ∈ A∗ is defined as the number of its letters, we write |u| = n.
The number of occurrences of a letter a ∈ A in the word u ∈ A∗ is denoted as |u|a.

• Let u, v, v(1), v(2) ∈ A∗ be words such that u = v(1)vv(2). Then the word v(1) is a prefix, v is a factor
and v(2) is a suffix of the word u.

• A sequence u = (ui)∞i=0 where ui ∈ A for i ∈ N is called an infinite word over the alphabet A.
The set of all infinite words over A is denoted AN.

The definition of prefix, factor and suffix can be extended to u ∈ AN. Then prefix and factor are finite
words and suffix is an infinite word. The infinite concatenation uuu · · · for a finite word u is denoted uω.

1.2 Algebraic numbers

In this section we recall basic definitions concerning algebraic numbers and give some examples of
important algebraic numbers.

15



16 CHAPTER 1. PRELIMINARIES

A number β ∈ C is called algebraic if β is a root of a monic polynomial with rational coefficients

P(x) = xn + an−1xn−1 + · · · + a1x + a0, where a0, . . . , an−1 ∈ Q.

Let β be an algebraic number. Then among all polynomials from Q[x] (polynomials with rational
coefficients) with root β, there exists one monic polynomial f of minimal degree. Moreover, f divides
all polynomials g ∈ Q[x] such that g(β) = 0.

The polynomial f defined above is called the minimal polynomial of the number β. The degree
of the polynomial is the degree of the number β. Two algebraic numbers are algebraic conjugates if they
have the same minimal polynomial. A number β ∈ C is called algebraic integer if there exists a monic
polynomial f ∈ Z[x] such that f (β) = 0.

We consider two special cases of algebraic integers, Pisot and complex Pisot numbers.

Definition 1.1. A real algebraic integer β > 1 whose algebraic conjugates are less than 1 in absolute
value is called a Pisot number.

Definition 1.2. Let β ∈ C \ R be an algebraic integer such that |β| > 1. If all algebraic conjugates of β
except for β are less than 1 in absolute value, then β is called a complex Pisot number.

Example 1.3. Here are some examples of Pisot and complex Pisot numbers:

• rational Pisot number: every m ∈ N,m ≥ 2 with minimal polynomial of the form x − m.

• quadratic Pisot number:

– root of a monic polynomial of the form x2 − ax − b where a, b ∈ Z and a > |b − 1|.

– e.g. golden ratio τ = 1+
√

5
2 with minimal polynomial of the form x2 − x − 1.

• d-Bonacci number, d ≥ 2, which is a root of xd − xd−1 − · · · − x − 1.

– for d = 2 the d-Bonacci number is equal to the golden ratio τ.

– for d = 3 the d-Bonacci number is called Tribonacci number.

• quadratic complex Pisot number:

– root of a monic polynomial x2 − ax − b where a, b ∈ Z, |b| ≥ 2 and a2 + 4b < 0.

– Eisenstein number −3+i
√

3
2 with minimal polynomial x2 + 3x + 3.

– Penney number −1 + i with minimal polynomial x2 + 2x + 2.

– Knuth number −2i with minimal polynomial x2 + 4.

Example 1.4. Another example of algebraic integer is determined by the so-called cyclotomic polyno-
mials. Let ξ ∈ C be an n-th root of 1, i.e. a number such that ξn = 1 for some n ∈ N. The number ξ is
of the form e

2πik
n where k ∈ {0, 1, . . . , n − 1}. Let ξ be a primitive n-th root of 1, i.e. ξ j , 1 for 0 < j < n.
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Then ξk is also a primitive n-th root of 1, if and only if k and n are coprime numbers which we denote
by k ⊥ n. The n-th cyclotomic polynomial is defined as

Φn(x) =
∏

k≤n,k⊥n

(x − ξk).

It can be shown that Φn has integer coefficients and is irreducible over Q. It is therefore the minimal
polynomial of ξ. Notice that the degree of the n-th root of one is ϕ(n) where ϕ is Euler’s totient function,
which counts the number of positive integers smaller than n, coprime to n.

We define for number β ∈ C the set

Q(β) =
⋂
{T : T is subfield of C, β ∈ T }.

The field Q(β) for β an algebraic number is called algebraic number field and it is the minimal subfield
of C which contains β. It can be shown that if β is an algebraic number of degree n then Q(β) is equal to

Q(β) =
{
c0 + c1β + · · · + cn−1β

n−1 : c0, . . . , cn−1 ∈ Q
}
.

The field Q(β) is isomorphic to Q(β( j)) where β( j) is an algebraic conjugate of β. We denote the image of
an element

x = c0 + c1β + · · · + cn−1β
n−1

under the isomorphism by x( j). In particular, we have

x( j) = c0 + c1β
( j) + · · · + cn−1

(
β( j)

)n−1
.

Definition 1.5. Let β be an algebraic number. The ring of all algebraic integers in the field K = Q(β) is
denoted by OK .

The ring of all algebraic integers OK is an integral domain. This means that one can define naturally
the notion of divisibility. For α, β ∈ OK we say that α divides β, α | β, if there exists δ ∈ OK such
that β = αδ. Similarly as in rational integers, we say that α is congruent to δ modulo β, α ≡ δ mod β, if
β | (δ − α).

The question of divisibility in OK can be converted into questions of divisibility in Z through the no-
tion of a norm over the field K, which is a function N : K → Q,N(x) :=

∏n
j=1 x( j) that satisfies N(α) ∈ Z

for every α ∈ OK . We have N(α) | N(β) in Z whenever α | β in OK .

Note that in imaginary quadratic fields K which are of interest in our work, the norm is equal to
the square of the absolute value of the complex number.
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1.3 Number representations and number systems

Definition 1.6. Let β be a complex number, |β| > 1, and A ⊆ C be an alphabet of digits. By a numer-
ation system we understand the ordered pair (β, A). A (β, A)-representation of a complex number z is
a convergent series

∑m
j=−∞ z jβ

j where z j ∈ A.

If β ∈ R and A ⊂ R we say that the numeration system (β, A) is real. Otherwise we say that the nu-
meration system (β, A) is complex.

The representation is usually identified with the infinite word of digits. We denote

z = zmzm−1 · · · z1z0•z−1z−2 · · · , or z = 0•z−1z−2 · · · ,

respectively. If the digits in the representation form an eventually periodic sequence with a period u ∈ A∗,
we write (u)ω for the infinite repetition.

We say that the (β, A)-representation of z is finite, if only finitely many digits are non-zero. In the no-
tation, we usually omit the suffix 0ω. The set of numbers with finite (β, A)-representation is denoted
by

FinA(β) =

x ∈ C : x =

l∑
j=k

x jβ
j, k, l ∈ Z, x j ∈ A

 .
Let us introduce another important property of a numeration system.

Definition 1.7. A numeration system (β, A) in which every complex number is representable is called
complete. We say that a real, resp. complex numeration system is complete in R, resp. in C.

Two different meanings of completeness need to be distinguished depending on the type of the nu-
meration system. If the field is not specified it is obvious from the context.

A general condition for completeness of the numeration system follows.

Proposition 1.8. Let β ∈ C, β > 1 and let A ⊂ C. If the set of fractions

WA(β) =


−1∑

j=−∞

a jβ
j : a j ∈ A


contains an open neighbourhood of 0, then the numeration system (β, A) is complete.

Proof. If for a numeration system (β, A) there exists an open set B ⊂ WA(β) such that 0 ∈ B, where
for every x ∈ B the number x has a (β, A)-representation, then the representation of any z ∈ C can be
found. We simply divide z by βk for appropriate k in order to z · β−k ∈ B. We know that z · β−k has
a (β, A)-representation. Finally we shift the fractional point back. �

In [27] Thurston formulated a sufficient condition for completeness of the numeration system in the
following terms.
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Theorem 1.9 ([27]). Let β be a complex number such that |β| > 1 and let A ⊂ C be a finite set satisfying
0 ∈ A. If there exists V ⊂ C such that

1. V is bounded,

2. 0 ∈ V,

3. βV ⊆
⋃

a∈A(V + a),

then all complex numbers have a representation in the numeration system (β, A).

A necessary condition for completeness of numeration system in C was provided in [3].

Proposition 1.10 ([3]). Let β be a complex number and let A ⊂ C be an alphabet. If the numeration
system (β, A) is complete in C, then

|β|2 ≤ #A. (1.1)

This work deals with a special case of numeration systems and with the question whether they enable
various arithmetic algorithms to be performed.

Definition 1.11. A polygonal numeration system is a numeration system (β, An) for n ≥ 4, where β =

seiθ ∈ C, s > 1 real and θ ∈ [0, 2π] in general and An = {0, 1, ξ, ξ2, . . . , ξn−1} where ξ = e
2πi
n .

In [16],[26] completeness of a polygonal numeration system was studied. The following result was
proven in [16] for real bases and then extended in [26] for complex bases.

Theorem 1.12 ([16],[26]). Let β = seiθ ∈ C where θ ∈ [0, 2π], s > 1 is real number and let An =

{0, 1, ξ, ξ2, . . . , ξn−1}, with n ≥ 4 and ξ = e
2πi
n . If 1 < s ≤ 1 + 2 cos

(
2π
n

)
, then the polygonal numer-

ation system (β, An) is complete, and if s > 1 + 2 cos
(
π
n

)
, then there exist complex numbers with no

representation in (β, An).

The question whether every complex number has a (β, An)-representation for s satisfying

1 + 2 cos
(
π

n

)
≥ s > 1 + 2 cos

(
2π
n

)
remains to be an open problem.

1.4 Spectra of real and complex numbers

As will be seen later, certain features of (β, A)-numeration systems depend on the properties of
the corresponding spectrum of the number β.

Definition 1.13. Let β be a complex number, |β| > 1, and let A ⊂ C be a finite alphabet of digits.
The A-spectrum of β is the set

XA(β) =

 n∑
k=0

akβ
k : n ∈ N, ak ∈ A

 .
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The spectrum was first considered by Erdös [5] in the case that β is a real number, β > 1, and
A = {0, 1, 2, . . . ,m}. Then XA(β) is discrete (has no accumulation point) and its elements can be arranged
into an increasing sequence 0 = x0 < x1 < · · · . Many authors have been studying the value lm(β) =

lim infk−→∞(xk+1 − xk).
We will discuss several geometric properties of the spectrum, relative density and discreteness in par-

ticular. The first property we are going to focus on is closely linked with completeness of the numeration
system.

Definition 1.14. Let X ⊂ C. We say that X is relatively dense if there exists some r > 0 such that for all
z ∈ C the condition Br(z) ∩ X , ∅ holds.

Relative density of the spectrum has the following implication for the numeration system.

Theorem 1.15 ([15]). Let β be a complex number, |β| > 1, and let A ⊂ C be finite. If XA(β) is discrete,
then the following are equivalent:

1. XA(β) is relatively dense in C,

2. (β, A) is complete,

3. 0 ∈ int
(
WA(β)

)
where WA(β) =

{∑−1
j=−∞ a jβ

j : a j ∈ A
}
.

For an alphabet composed of any complex numbers, a necessary condition for relative density (and
thus completeness of the corresponding numeration system) is formulated using the number of letters
in the alphabet. Note that the same can be derived using Proposition 1.10 and Theorem 1.15.

Theorem 1.16 ([15]). Let β be a complex number, |β| > 1, and let A ⊂ C be finite. If #A < |β|2, then
the set XA(β) is not relatively dense.

In case of a real base β and a real alphabet A, one can state an analogy of Theorem 1.15, namely
that relative density of the spectrum in R is equivalent to completeness of the system in R. Necessary
condition for completeness of a real numeration system is then given as #A ≥ |β|.

From the result of Pedicini [24], one can derive a sufficient condition for completeness in case that β
is positive.

Theorem 1.17 ([24]). Let β > 1 be a real number and let A = {a1, a2, . . . , am} ⊂ R be an alphabet where
a1 < a2 < · · · < am and a1 < 0 < am. If

max
1≤ j≤m−1

{a j+1 − a j} <
am − 1
β − 1

,

then every x ∈
(

a1
β−1 ,

am
β−1

]
has a representation x = 0•x1x2 · · · , and thus the numeration system (β, A) is

complete in R.

Let us focus on another property of the spectrum called discreteness. Usually, discreteness is a topo-
logical property, i.e. that any element of the discrete set is isolated. In the Euclidean topology of C, it is
equivalent to the following definition.
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Definition 1.18. A point set X ⊂ C is discrete in C, if it has no accumulation point in C. Analogically
we define a set discrete in R.

The property of the spectrum XA(β) to have an accumulation point is linked to (β, A)-representations
of 0. Discreteness of the spectrum is also necessary and sufficient for the possibility of performing
on-line division in the corresponding numeration system.

In case of a positive base β > 1 and a non-negative alphabet, the spectrum is always discrete in R.
The question of discreteness of the spectrum is much less obvious if the alphabet contains both positive
and negative digits, or in the case of a complex base β and A ⊂ C.

Let us cite several results. The case for β real and a symmetric alphabet is completely answered.

Theorem 1.19 ([1], [6]). Let β > 1 be a real number and A = {−M, . . . ,M} be an alphabet. Then
the spectrum XA(β) has an accumulation point if and only if β < M + 1 and β is not Pisot.

If the alphabet is not symmetric or the base is not real, one can state at least a sufficient condition for
discreteness of the spectrum.

Theorem 1.20 ([10], [13]). Let β be a complex number, |β| > 1, and let A ⊂ Q(β) be an alphabet, 0 ∈ A.
If

1. β is a real number and if β or −β is Pisot,

2. or β ∈ C\R is complex Pisot,

then XA(β) has no accumulation point.
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Chapter 2

Numeration systems
in imaginary quadratic fields

In this chapter we present description of all complete polygonal numeration systems in imaginary
quadratic fields. Such description was given in [26], however, it turned out that the characterisation
given there contains mistakes. Therefore we provide a correction with a detailed proof (Theorem 2.5).

2.1 Number systems in rings

For the proof of Theorem 2.5 we need to prepare an auxiliary statement. The idea is taken from
Kovács [18] who studies the so-called "number systems" in rings of algebraic fields and shows that such
number systems give rise to complete numeration systems. The "number systems" are in focus of for ex-
ample [14], [19]. In all cases, the alphabet considered was a subset of Z. Combining the results of [14]
and [18], we can already state the following.

Proposition 2.1. The numeration systems for bases

β ∈

−1 ± i,±i
√

2,
±1 ± i

√
7

2


and alphabet A = {0, 1} are complete.

In order to adapt the idea to polygonal numeration systems, we had to extend the result given as
Theorem 3 in [19] to non-integer alphabets. We only needed the sufficient condition of this theorem.

Theorem 2.2. Let α ∈ OK where K is a field of degree n. Let β ∈ Z[α], |β| > 1 and A ⊂ Z[α]. Assume
that

1. |β( j)| > 1 where j = 1, . . . , n,

2. Z[α] ⊂ A + β · Z[α],
23
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3. every y ∈ Z[α] satisfying

|y( j)| ≤
maxa∈A |a( j)|

|β( j)| − 1
for j = 1, . . . , n

has a (β, A)-representation of the form y =
∑N

l=0 blβ
l, bl ∈ A,N ∈ N0.

Then the numeration system (β, A) is complete.

First let us prove the following lemma.

Lemma 2.3. Let the conditions of the previous theorem be satisfied. Then for all x ∈ Z[α] and for all
k ∈ N there exist a0, . . . , ak−1 ∈ A and y ∈ Z[α] such that

x =

k−1∑
l=0

alβ
l + yβk and |y( j)| <

|x( j)|

|β( j)|k
+

maxa∈A |a( j)|

|β( j)| − 1
for j = 1, . . . , n. (2.1)

Proof. We use mathematical induction on k to show the first part of (2.1). First let k = 0. Clearly x = y.
Now we assume that

x =

k−1∑
l=0

alβ
l + ykβ

k (2.2)

is satisfied for k ≥ 1 and we will prove that it is satisfied also for k + 1. Since yk ∈ Z[α], using
the assumption that Z[α] ⊂ A + β · Z[α], it can be written as

yk = ak + β · yk+1

where yk+1 ∈ Z and ak ∈ A. After substitution in (2.2) we obtain

x =

k−1∑
l=0

alβ
l + βk (ak + β · yk+1) =

k∑
l=0

alβ
l + βk+1 · yk+1.

Thus the first part of (2.1) is proven. Let us verify the second part of (2.1). From (2.2) we have

yk =
1
βk−1

x −
k−1∑
l=0

alβ
l

 .
When we consider the isomorphism j for j = 1, . . . , n:

|y
( j)
k | ≤

|x( j)|

|β( j)|k
+

∑k−1
l=0 |a

( j)
l ||β

( j)|l

|β( j)|k
<
|x( j)|

|β( j)|k
+ max

a∈A
|a( j)| ·

+∞∑
l=1

|β( j)|−l =
|x( j)|

|β( j)|k
+

maxa∈A |a( j)|

|β( j)| − 1
.

The lemma is hereby proven. �

Proof of Theorem 2.2. Clearly for a given x ∈ Z[α] and for all ε > 0 there exists K ∈ N0 such that

|x( j)| < ε · |β( j)|K for j = 1, . . . , n.
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From Lemma 2.3 we know that x can be rewritten to the form (2.1) for the same K. Moreover

|y
( j)
K | <

|x( j)|

|β( j)|K
+

maxa∈A |a( j)|

|β( j)| − 1
< ε +

maxa∈A |a( j)|

|β( j)| − 1
.

Since there is only finitely many yK ∈ Z[α] which satisfy this inequality, we can choose ε very small and
therefore

|y
( j)
K | ≤

maxa∈A |a( j)|

|β( j)| − 1
.

By the assumptions of Theorem 2.2, such yK has a representation yK =
∑N

m=0 bmβ
m. Substituting this

into (2.2) we have

x =

k−1∑
l=0

alβ
l +

N∑
m=0

bmβ
m+k =

N+k∑
l=0

alβ
l

where we have denoted ak+m = bm for m = 0, . . . ,N. We have thus shown that the spectrum XA(β)
contains a relatively dense set Z[α] and thus it is relatively dense itself. By Theorem 1.15, the numeration
system (β, A) is complete. �

2.2 Quadratic fields and their rings of algebraic integers

Quadratic fields are algebraic number fields of the form Q(
√

d) = {r + s
√

d : r, s ∈ Q} where d ∈ Z
is square-free. If d is a negative integer then Q(

√
d) is called imaginary quadratic field. The set of all

algebraic integers OK of the number field Q(β) = K was defined in Definition 1.5. We can say more
about this set for a quadratic field Q(

√
d).

Proposition 2.4 ([23]). Let d be a square-free integer. Then the set of all algebraic integers in the quadratic
field K = Q(

√
d) is for d . 1 mod 4 equal to

OK =
{
a + b

√
d : a, b ∈ Z

}
=

a + b
√

d
2

: a, b ∈ 2Z


and for m ≡ 1 mod 4 equal to

OK =

a + b
1 +
√

d
2

: a, b ∈ Z
 =

a + b
√

d
2

: a, b ∈ Z and a ≡ b mod 2

 .
Proof. First we want to prove that OK is a subset of our desired sets from the theorem. Assume z =

a + b
√

d ∈ OK for a, b ∈ Q. Its complex conjugate z̄ is also in OK since z and z̄ share the same minimal
polynomial x2−(z+z̄)x+zz̄. Since the minimal polynomial of an algebraic integer has integer coefficients,
we need to have

z + z̄ = 2a ∈ Z

and also
zz̄ = a2 − db2 ∈ Z.
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The requirement that d is square-free combined with the fact that 4db2 = d(2b)2 ∈ Z implies 2b ∈ Z.
Otherwise it would mean that 2b =

p
q for some coprime p, q ∈ Z where q ≥ 2 which after substitution

in the previous equation would mean that d(2b)2 = m p2

q2 ∈ Z and thus q2|d which is a contradiction.

So far we have proven that

OK ⊂

 x + y
√

d
2

: x, y ∈ Z
 .

In order to prove the opposite inclusion we need to find pairs of integers x, y for which the condition∣∣∣∣ x+y
√

d
2

∣∣∣∣2 ∈ Z is satisfied. This would imply that x+y
√

d
2 is algebraic integer from Q(

√
d) and thus x+y

√
d

2 ∈

OK . We know that ∣∣∣∣∣∣ x + y
√

d
2

∣∣∣∣∣∣
2

=
x2 − dy2

4
∈ Z

if and only if x2 − dy2 ≡ 0 mod 4. If both numbers x and y are even, the congruence stands. Assume
that at least one of x, y is odd. When we square an odd number, we obtain a number of the following
form

(2k + 1)2 = 4k2 + 4k + 1 ≡ 1 mod 4.

Therefore the equivalence x2 − dy2 ≡ 0 mod 4 has a solution only for d ≡ 1 mod 4 for x and y both odd
numbers. �

Two of the imaginary quadratic fields are particularly interesting, namely Q(
√
−1),Q(

√
−3), which

are in the same time cyclotomic fields. The ring of integers in these fields are the well known Gaussian
integers

Z[i] = {a + bi : a, b ∈ Z} = OQ(
√
−1)

and Eisenstein numbers where ω = 1+i
√

3
2

Z[ω] = {a + bω : a, b ∈ Z} = OQ(
√
−3),

respectively.

2.3 Complete polygonal numeration systems

We are interested in complete polygonal numeration systems of imaginary quadratic fields in particu-
lar. The question of whether a general polygonal numeration system is complete was treated in [26]. We
recalled it in Theorem 1.12. Recall the notation: A polygonal numeration system has for base a complex
number

β = seiξ and alphabet is An = {0, 1, ξ, ξ2, . . . , ξn−1}

where ξ = e
2πi
n , n ∈ N, s ∈ R and s > 1.
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The results from [26] should have completely answered the question of which polygonal numeration
systems in imaginary quadratic fields are complete. Unfortunately, the description contained mistakes
both in the formulation and in the proof. The majority of the proof was based on Lemma 3 in [26] which
was not used correctly. This resulted in numeration systems in Table 2.1. We state here the correct
version and include the proof with all the details.

d OK = Z[ρ] n An β

−1 Z[i] 1 {0, 1} ±1 ± i
2 {0,±1} ±1 ± i
4 {0,±1,±i} ±1 ± i,±2 ± 2i,±1 ± 2i,±2

−2 Z[i
√

2] 1 {0, 1} ±i
√

2
2 {0,±1} ±i

√
2,±1 ± i

√
2

−3 Z[ 1+i
√

3
2 ] 2 {0,±1} ±i

√
3, ±3±i

√
3

2

3 {0, 1, ρ2, ρ4} ±i
√

3
6 {0, 1, ρ, ρ2, ρ3, ρ4, ρ5} ±2,±2(1 ± i

√
3),±(2 + i

√
3),

±i
√

3, ±3±i
√

3
2

−7 Z[ 1+i
√

7
2 ] 1 {0, 1} ±1±i

√
7

2

2 {0,±1} ±1±i
√

7
2

−11 Z[ 1+i
√

11
2 ] 2 {0,±1} ±1±i

√
11

2

Table 2.1: The original table from [26] which should have contained complete polygonal numeration
systems (β, An) of imaginary quadratic fields Q(

√
d) = K where β ∈ OK and An ⊂ OK where d < 0.

Theorem 2.5. The only complete polygonal numeration systems (β, An) of imaginary quadratic fields
Q(
√

d) = K where d < 0, that satisfy β ∈ OK , and A ⊂ OK , are given in Table 2.2.

Notice how Table 2.2 is different from the original table in [26]. The missing cases were

(β, A) ∈

(±2i, A4), (±2 ± i, A4),
±3 ± i

√
3

2
, A3

 , (−2, A3), (±1 ± i
√

3, A3),

(
±(2 − i

√
3), A6

)
,

±5 ± i
√

3
2

, A6

 , ±1 ± i 3
√

3
2

, A6

 .
On the other hand, Table 2.1 contains numeration systems

(β, A) ∈

(+1 ± i, A1), (±2 ± 2i, A4),
±3 ± i

√
3

2
, A2

 , (±2(1 ± i
√

3), A6
)

which are not complete.

All combinations of bases and alphabets of complete polygonal numeration systems in imaginary
quadratic fields are shown in Figure 2.12 below.
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d OK = Z[ρ] n An β

−1 Z[i] 1 {0, 1} −1 ± i
2 {0,±1} ±1 ± i
4 {0,±1,±i} ±1 ± i,±2,±2i,±1 ± 2i,±2 ± i

−2 Z[i
√

2] 1 {0, 1} ±i
√

2
2 {0,±1} ±i

√
2,±1 ± i

√
2

−3 Z[ 1+i
√

3
2 ] 2 {0,±1} ±i

√
3

3 {0, 1, ρ2, ρ4} ±i
√

3, ±3±i
√

3
2 ,−2,+1 ± i

√
3

6 {0, 1, ρ, ρ2, ρ3, ρ4, ρ5} ±2,±1 ± i
√

3,±i
√

3, ±3±i
√

3
2

±2 ± i
√

3, ±5±i
√

3
2 , ±1±i 3

√
3

2

−7 Z[ 1+i
√

7
2 ] 1 {0, 1} ±1±i

√
7

2

2 {0,±1} ±1±i
√

7
2

−11 Z[ 1+i
√

11
2 ] 2 {0,±1} ±1±i

√
11

2

Table 2.2: The complete polygonal numeration systems (β, An) of imaginary quadratic fields Q(
√

d) = K
where β ∈ OK and An ⊂ OK where d < 0.

In order to prove Theorem 2.5, we first have to cite several results. We accompany them with detailed
proofs.

Lemma 2.6 ([26]). Let d < 0 be a square-free integer and let K = Q(
√

d) and OK be the set of all
algebraic integers in K. Let An ⊂ OK where n ∈ N, n , 0. Then A1 = {0, 1} and A2 = {0,±1} are subsets
of OK for all values of d, and for n ≥ 3, the set An satisfies the following:

• if d ≡ 2 or 3 mod 4, then An ⊂ OK if and only if d = −1 and n = 4,

• if d ≡ 1 mod 4, then An ⊂ OK if and only if d = −3 and n ∈ {3, 6}.

Proof. The first part of the statement for n = 1, 2 is obvious. Let n ≥ 3. In order that An ⊂ OK , necessarily
ξ = e

2πi
n must be a quadratic number. The minimal polynomial of the algebraic number e

2πi
n is the n-th

cyclotomic polynomial Φn, which is of degree ϕ(n) where ϕ is Euler’s totient function. It can be easily
shown that ϕ(n) = 2 only for n = 3, 4, 6.

In order to complete the proof, realize that according to Proposition 2.4, if d < 0 is a square-free
integer, then the set of all algebraic integers in Q(

√
d) is

OK =

 Z[
√

d] if d ≡ 2 or 3 mod 4,

Z[ 1+
√

d
2 ] if d ≡ 1 mod 4.

Thus for d = −1, n = 4 we have OK = Z[i] and obviously A4 ⊂ OK and for d = −3, n ∈ {−3,−6} we have
OK = Z[ 1+i

√
3

2 ] and A3, A6 ⊂ OK . �

Lemma 2.7. For all n ≥ 1, n ∈ N, the set An is closed under multiplication by ξk for all k ∈ Z, and under
complex conjugation, in other words ξkAn = An and Ān = An. Thus if (β, An) is a complete numeration
system, then (β̄, An) and (ξkβ, An) are also complete numeration systems for all k ∈ N.
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Proof. Let the numeration system (β, An) be complete. The completeness of the numeration system
(β̄, An) is clear from the fact that Ān = An. In order to prove that the numeration system (ξkβ, An) is
complete, we only have to realize that if z ∈ C such that

z =

N∑
j=−∞

a jβ
j

is a (β, An)-representation of z where ai ∈ An and N ∈ Z, then we obtain the (ξkβ, An)-representation
in the following form

z =

N∑
j=−∞

a jβ
j =

N∑
j=−∞

a jξ
−k j︸︷︷︸
∈An

(
ξkβ

) j
.

The digits a jξ
−k j belong to An, since the alphabet An is closed under multiplication by ξ. Therefore we

can obtain a (ξkβ, An)-representation of every complex number and the numeration system (ξkβ, An) is
complete. �

During the proof of Theorem 2.5 we will also use the obvious fact that if (β, A) is complete and
A′ ⊃ A, then (β, A′) is also complete.

Proof of Theorem 2.5. We will divide the analysis into two cases depending on whether the parameter
d is equal to 1 modulo 4 or if it is d ≡ 2 or 3 mod 4. Each part is then subdivided into several cases
depending on n ∈ N.

Case d ≡ 2 or 3 mod 4
According to Proposition 2.4 the set of all algebraic integers of quadratic field K = Q(

√
d) is OK =

Z[
√

d]. Let us consider β = a + b
√

d where a, b ∈ Z. This implies that |β|2 = a2 − db2. From Lemma 2.6
we know that n ∈ {1, 2, 4}.

Case n = 1: If (β, An) is complete, then by Proposition 1.10 we know that β must satisfy 1 < |β|2 =

a2−db2 ≤ #A1 = 2 where a, b ∈ Z which implies that d is either −1 or −2. This gives β ∈ {±1± i,±i
√

2}.
From Proposition 2.1 we know that for

β ∈ {−1 ± i,±i
√

2}

the numeration systems (β, A1) are complete. For β = +1 ± i the numeration system is not complete. It
can be seen from Theorem 1.15, since the set WA1(β) does not contain 0 in its interior, see Figure 2.1.
By Lemma 2.7 this implies non-completeness of (+1 − i, A1).
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0.5 0.5
Re

1.0

0.5

Im

0.2 0.1 0.1 0.2
Re

0.2

0.1

0.1

0.2
Im

Figure 2.1: The set WA1(β) for β = +1 + i and its close-up.

Case n = 2: For n = 2, β must satisfy 1 < |β|2 ≤ #A2 = 3. The bases from the previous case still verify
this condition and moreover we obtain additional values ±1 ± i

√
2. Together

β ∈ {±1 ± i,±i
√

2,±1 ± i
√

2}.

The numeration systems (β, A2) for β ∈ {−1± i,±i
√

2} are complete, since even smaller alphabet A1 ⊂ A2

is sufficient for completeness. For the bases β = +1 ± i the systems are also complete using Lemma 2.7.

In order to prove completeness for β = ±1 ± i
√

2 we only have to verify that (β, A2) satisfies the
conditions from Theorem 2.2 for α = i

√
2. Figure 2.2 displays the method to verify that

Z[i
√

2] ⊂ A2 + β · Z[i
√

2].

It remains to check that all x ∈ Z[i
√

2] such that |x( j)| ≤ 1√
3−1

= 1.366025 · · · , in particular {0,±1}, have
a (β, A2) representation. This is obviously true. Therefore the numeration system with base β and its

2 2
Re

2

2
Im

2 2
Re

2

2

Im

4 2 2 4
Re

4

2

2

4

Im

Figure 2.2: Verification of condition Z[i
√

2] ⊂ A2 + β · Z[i
√

2] from Theorem 2.2 where β = 1 + i
√

2.
Each row shows respectively a small part of the grid Z[i

√
2], the grid multiplied by β (the blue points)

and all points obtained by adding a digit from A2 (the red points).
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1 1
Re

1

1

Im

2 1 1 2
Re

2

1

1

2

Im

I

I+ 1

I+ i β · I

I− i

I− 1

Figure 2.3: The set showing the sufficient condition from Theorem 1.9 for β = 2 and A4 = {0,±1,±i}.

conjugate are complete.

Case n = 4: If n = 4, then from Lemma 2.6 we know that d = −1. According to Theorem 1.12
the numeration system (β, A) with β = seiθ where θ ∈ [0, 2π] can be complete only if

1 < s ≤ 1 + 2 cos
(
π

4

)
= 1 +

√
2.

This gives the following candidates

β ∈ {±1 ± i,±2,±2i,±1 ± 2i,±2 ± i}.

Since A2 ⊂ A4, we have completeness for β ∈ {±1 ± i}.
The case where β ∈ {±2,±2i} follows from [4] and Lemma 2.7. The set I which proves the sufficient

condition from Theorem 1.9 can be seen in Figure 2.3.
Now we consider β ∈ {±1 ± 2i,±2 ± i}. By Lemma 2.7, it is sufficient to verify for only one of

these values of β that the system is complete since A4 is closed under multiplication by i and complex
conjugation.

Let us focus on β = +2 + i in particular. We will check the conditions of Theorem 2.2 for α = i. All
conjugates of β , in our case 2 ± i, satisfy |β( j)| =

√
5 > 1. The second condition

Z[i] ⊂ A4 + β · Z[i]

is verified in Figure 2.4. The last condition is to check whether every x ∈ Z[i] such that

|x( j)| ≤
1

√
5 − 1

= 0.809016 · · ·
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Figure 2.4: Verification of condition Z[i] ⊂ A4 + β · Z[i] from Theorem 2.2 where β = 2 + i. Each row
shows respectively a small part of the grid Z[i], the grid multiplied by β (the blue points) and all points
obtained by adding a digit from A4 (the red points).

has a (β, A4)-representation. The only possible value of x is 0 which is in the alphabet. Therefore
the numeration system (2 + i, A4) is complete. Hence all other corresponding numeration systems are
complete as well.

Case d ≡ 1 mod 4
From Proposition 2.4 we know that the set of all algebraic integers of quadratic field Q(

√
d) = K is

OK = Z[ 1+
√

d
2 ] =

{
a+b
√

d
2 : a, b ∈ Z, a ≡ b mod 2

}
. Since we consider the base of the form β = a+b

√
d

2 ,

we have |β|2 = a2−db2

4 . In Lemma 2.6 it was proven that if An ⊂ OK , the only possible values for n are
n ∈ {1, 2, 3, 6}.

Case n = 1: The base β has to satisfy 1 < |β|2 ≤ #A1 = 2. Let us check which values the parameter d
can take. Since d ≡ 1 mod 4 and d < 0, then d = −3,−7 since these are the only two values for which it
is possible that |β|2 ≤ 2.

There is no possible combination of coefficients a and b when d = −3. Therefore the only possibility
is d = −7 and

β =
±1 ± i

√
7

2
.

By Proposition 2.1 the numeration systems (β, A1) are complete.

Case n = 2: If n = 2, then we have 1 < |β|2 ≤ #A2 = 3. Since d ≡ 1 mod 4 and d < 0, the possible
values of d are −3,−7,−11 for the same reason as for n = 1. Then

β =


±i
√

3, ±3±i
√

3
2 for d = −3,

±1±i
√

7
2 for d = −7,

±1±i
√

11
2 for d = −11.
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Figure 2.5: Verification of condition Z[ 1+i
√

11
2 ] ⊂ A2 +β ·Z[ 1+i

√
11

2 ] from Theorem 2.2 where β = 1+i
√

11
2 .

Each row shows respectively a small part of the grid Z[ 1+i
√

11
2 ], the grid multiplied by β (the blue points)

and all points obtained by adding a digit from A2 (the red points).

For β = ±1±i
√

7
2 the completeness follows from the previous case, since A2 ⊂ A4.

For β = ±1±i
√

11
2 we use Theorem 2.2 with α = 1+i

√
11

2 . The first condition is clearly fulfilled.
In Figure 2.5 we show an illustration of the second condition

Z
1 + i

√
11

2

 ⊂ A2 + β · Z
1 + i

√
11

2

 .
Finally we have to verify that all x ∈ Z

[
1+i
√

11
2

]
for which

|x( j)| ≤
1

√
3 − 1

= 1.366025 · · ·

have a (β, A2)-representation. The only possible values of x are {−1, 0, 1} which are in the alpha-
bet. Therefore ( 1+i

√
11

2 , A2) is complete which implies completeness for all bases ±1±i
√

11
2 according

to Lemma 2.7.
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Figure 2.6: Verification of condition Z[i
√

3] ⊂ A2 + i
√

3 · Z[i
√

3] from Theorem 2.2. Each row shows
respectively a small part of the grid Z[i

√
3], the grid multiplied by β (the blue points) and all points

obtained by adding a digit from A2 (the red points).

The case where β = ±i
√

3 satisfies the conditions of Theorem 2.2 for α = i
√

3. See Figure 2.6 for
verification of the second part of the sufficient condition

Z[i
√

3] ⊂ A2 + i
√

3 · Z[i
√

3].

Since the threshold for the third part is the same as in the previous case (the bases are of the same
absolute value) the only values of x are {−1, 0, 1} = A2. Using Lemma 2.7 the numeration systems with
bases β = ±i

√
3 and alphabet A2 are complete.

When considering β = +3+i
√

3
2 , the numeration system does not satisfy the sufficient condition from

Theorem 2.2. In Figure 2.7 it can be seen that 0 is not in the interior of WA2(β) and thus by Theorem 1.15,
the numeration system for β = +3+i

√
3

2 is not complete. This also implies non-completeness for β =
±3±i

√
3

2 by Lemma 2.7.
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Figure 2.7: The set WA2(β) for β = +3+i
√

3
2 and its close-up.
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Figure 2.8: The set WA3(β) for β = 2 and its close-up.
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Figure 2.9: Verification of condition Z[ 1+i
√

3
2 ] ⊂ A3 + β ·Z[ 1+i

√
3

2 ] from Theorem 2.2 where β = 1 + i
√

3.

Each row shows respectively a small part of the grid Z[ 1+i
√

3
2 ], the grid multiplied by β (the blue points)

and all points obtained by adding a digit from A3 (the red points).

Case n = 3: Using Lemma 2.6 we know that for n = 3 the parameter d has to be equal to −3. In order
that the numeration system (β, A3) be complete when considering the base of the form β = seiθ, from
the necessary condition (1.1) we obtain 1 < s =

√
a2−db2

2 ≤
√

#A3 = 2. Thus

β ∈

±2,±i
√

3,±1 ± i
√

3,
±3 ± i

√
3

2

 .
However in [16] it was proven that in the numeration system (2, A3), the point 0 is not in the interior of

WA3(2), see Figure 2.8. Thus by Theorem 1.15 the numeration system (2, A3) is not complete. Lemma 2.7
and the fact that A3 is closed under multiplication by ρ2 where ρ = 1+i

√
3

2 implies that (−1± i
√

3, A3) are
not complete as well.

The numeration system (−2, A3) is complete if and only if numeration systems with bases +1 ± i
√

3
are also complete according to Lemma 2.7. We verify that (+1+ i

√
3, A3) satisfies the sufficient condition
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Figure 2.10: The set I ensuring the sufficient condition from Theorem 1.9 for β = i
√

3 and alphabet A3.
The left figure displays the set β · I. On the right the sets I + 1, I + ρ2 and I + ρ4 where ρ = 1+i

√
3

3 can be
seen. The sets I and β · I are covered.

from Theorem 2.2 for α = 1+i
√

3
2 . The verification of the condition

Z[
1 + i

√
3

2
] ⊂ A3 + β · Z[

1 + i
√

3
2

]

can be seen in Figure 2.9. The last condition we have to verify is whether every x ∈ Z[ 1+i
√

3
2 ] such that

|x( j)| ≤
1

2 − 1
= 1

has a (β, A3)-representation. Among them, the only possible values of x are in {0, 1, ρ, ρ2, ρ3, ρ4, ρ5}. Only
ρ, ρ3 and ρ5 are not in the alphabet A3. Nevertheless they have the following (β, A3)-representations:

ρ = β · 1 + ρ4,

ρ3 = β · ρ2 + 1,

ρ5 = β · ρ4 + ρ2.

The spectrum of the numeration system (β, A3) can be seen in the appendix. Therefore the numeration
system with base 1 + i

√
3 and alphabet A3 is complete along with the bases −2,+1 − i

√
3.

The last case is for β ∈
{
±i
√

3, ±3±i
√

3
2

}
. In Figure 2.10 the set ensuring the sufficient condition from

Theorem 1.9 is rendered.

Case n = 6: By Lemma 2.6, it remains to treat the case when n = 6 and d = −3. By Theorem 1.12, if

1 < s =

√
a2 − db2

2
≤ 1 + 2 cos

(
2π
6

)
= 2,
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Figure 2.11: Verification of condition Z[ 1+i
√

3
2 ] ⊂ A6 +β ·Z[ 1+i

√
3

2 ] from Theorem 2.2 where β = 2+ i
√

3.

Each row shows respectively a small part of the grid Z[ 1+i
√

3
2 ], the grid multiplied by β (the blue points)

and all points obtained by adding a digit from A6 (the red points).

then the numeration system is complete. This condition is satisfied for all bases

β ∈

±2,±1 ± i
√

3,±i
√

3,
±3 ± i

√
3

2

 .
We obtain more candidates for β by considering the necessary condition from Theorem 1.12, i.e.

bases β = a+b
√

d
2 such that

2 < s =

√
a2 − db2

2
< 1 + 2 cos

(
π

6

)
= 1 +

√
3.

We obtain the following candidates

β ∈

±2 ± i
√

3,
±5 ± i

√
3

2
,
±1 ± i 3

√
3

2

 .
In order to prove that these numeration systems are complete, we only have to prove this fact for one

value of β. This will imply the completeness for all values of β using Lemma 2.7 and closure of A6 to
multiplication by ρ = 1+i

√
3

2 and complex conjugation.

Let us verify that β = +2 + i
√

3 satisfies the conditions from Theorem 2.2 for α = ρ. Figure 2.11
shows that the condition

Z[ρ] ⊂ A6 + β · Z[ρ]

is satisfied. Finally every x ∈ Z[ρ] such that |x( j)| ≤ 1√
7−1

= 0.607625 · · · has to have a (β, A6)-
representation. This is trivial since the only x ∈ Z[ρ] with such property is 0. �
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Figure 2.12: Alphabets A1, A2, A3, A4 and A6, respectively, and corresponding bases β for which the
numeration systems (β, A) are complete. The elements of the alphabet are blue, the bases are red.

2.4 Groups of similar numeration systems

In the proof of Theorem 2.5 we have used Lemma 2.7 which shows certain symmetry of numeration
systems (β, An) and (β′, An) when β′ = β̄ or β′ = ξ jβ, ξ = e

2πi
n . Indeed the bases can be divided into

groups which give similar numeration systems with the same alphabet An, see Figure 2.12. One example
of a group of numeration systems is for alphabet A6 = {0, 1, ρ, ρ2, ρ3, ρ4, ρ5} where ρ = 1+i

√
3

2 and bases
β ∈ {±2,±1 ± i

√
3}. If we have a (β, A6)-representation of a number x, we can always easily obtain

representation of x in the numeration system considering another base from this group.

Consider x =
∑n

j=−∞ a j2 j where a j ∈ A6 is the (2, A6)-representation of number x. The representation
in base β ∈ {−2,±1 ± i

√
3} of the form x =

∑n
j=−∞ b jβ

j is given by the rules in Table 2.3. It is clear
that for every β from the group it holds that β6 = 64. Therefore the formula for the digit b j will be
the same for position in the same class modulo 6.

j mod 6 (2, A6) → (2ρ, A6) → (2ρ2, A6) → (−2, A6) → (−2ρ, A6) → (−2ρ2, A6)

0 a j a j a j a j a j a j

1 a j a j · ρ
5 a j · ρ

4 a j · ρ
3 a j · ρ

2 a j · ρ

2 a j a j · ρ
4 a j · ρ

2 a j a j · ρ a j · ρ
2

3 a j a j · ρ
3 a j a j · ρ

3 a j a j · ρ
3

4 a j a j · ρ
2 a j · ρ

4 a j a j · ρ
2 a j · ρ

4

5 a j a j · ρ a j · ρ
2 a j · ρ

3 a j · ρ a j · ρ
5

Table 2.3: Transformation of (2, A6)-representation into representations in (β, A6) where β ∈ {−2,±1 ±
i
√

3} and A6 = {0, 1, ρ, ρ2, ρ3, ρ4, ρ5} with ρ = 1+i
√

3
2 for each position j.
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These transformations are possible since the alphabet A6 is closed under multiplication. Similar
rules can be applied on every group of numeration systems with similar properties. In Table 2.2 one
finds the following groups of numeration systems:

A2 = {0,±1} groups: {±(1 + i)} , {±(1 − i)},
{
±i
√

2)
}
,
{
±(1 + i

√
2)

}
,{

±(1 − i
√

2)
}
,
{
±i
√

3
}
,

±(1 + i
√

7)
2

 ,
±(1 − i

√
7)

2

 ,±(1 + i
√

11)
2

 ,
±(1 − i

√
11)

2

 ,
A3 = {0, 1, ρ2, ρ4} groups:

i
√

3,
±3 − i

√
3

2

 ,
−i
√

3,
±3 + i

√
3

2

 , {−2,+1 ± i
√

3
}

A4 = {0,±1,±i} groups: {±1 ± i} , {±2,±2i}, {±(1 + 2i),±(2 − i)}, {±(−1 + 2i),±(2 + i)} ,

A6 = {0, 1, ρ, ρ2, ρ3, ρ4, ρ5} groups:
{
±2,±1 ± i

√
3
}
,

±i
√

3,
±3 ± i

√
3

2

 ,±(5 + i
√

3)
2

,
±(1 + i 3

√
3)

2
,±(2 − i

√
3)

 ,±(5 − i
√

3)
2

,
±(1 − i 3

√
3)

2
,±(2 + i

√
3)

 .
Note that every numeration system from Table 2.2 with alphabet A1 is a group itself, since the size

of the groups for alphabet Ak is equal to k. Moreover, using the closeness of An on complex conjugation,
one can compactly rewrite these groups as

A1 = {0, 1} groups: {−1 ± i} ,
{
±i
√

2
}
,

1 ± i
√

7
2

 ,
−1 ± i

√
7

2

 ,
A2 = {0,±1} groups: {±1 ± i} ,

{
±i
√

2
}
,
{
±1 ± i

√
2
}
,
{
±i
√

3
}
,±1 ± i

√
7

2

 ,
±1 ± i

√
11

2

 ,
A3 = {0, 1, ρ2, ρ4} groups:

±i
√

3,
±3 ± i

√
3

2

 , {−2,+1 ± i
√

3
}

A4 = {0,±1,±i} groups: {±1 ± i} , {±2,±2i}, {±1 ± 2i,±2 ± i},

A6 = {0, 1, ρ, ρ2, ρ3, ρ4, ρ5} groups:
{
±2,±1 ± i

√
3
}
,

±i
√

3,
±3 ± i

√
3

2

 ,±5 ± i
√

3
2

,
±1 ± i 3

√
3

2
,±2 ± i

√
3

 .
Not only we can easily transform representations among numeration systems in a certain group,

we will later show that other properties of these systems are the same, for example the parameters of
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algorithms for parallel addition, the set ensuring OL property or the results of preprocessing for on-line
division.

The groups of bases for each alphabet A1, A2, A3, A4 and A6 can be seen in Figure 2.12 where the
bases are rendered in the complex plane. The circles highlight the absolute value of the bases since all
the bases in one group are of the same size.

For each of the complete polygonal numeration systems we give an illustration of the spectrum XA(β)
and the set of fractions WA(β) in the appendix.

In Chapter 5 we will discuss whether the numeration systems from Table 2.2 enable us to compute
effective arithmetic algorithms including parallel addition and on-line multiplication and division.



Chapter 3

Parallel addition

In usual algorithm for addition performed by hand, the most significant digit of the sum may depend
on the least significant digit of the input, as can be seen on the simple example

999 · · · 9
+1

1000 · · · 0

This is the case in numeration systems which are not redundant. On the other hand in redundant numera-
tion systems one may design algorithm for addition in which the digit on position j of the result depends
only on digits j + t, . . . , j − r of the inputs for fixed r, t. The addition is then performed in constant time.

Let us formalize the above description of parallel addition and its properties according to [8]. First we
introduce several definitions and conditions on feasibility of parallel addition in a given numeration sys-
tem. A description of a general algorithm for parallel addition together with the so-called neighbour-free
algorithm follows. At the end of this chapter, the Extending Window Method is explained introducing
a possible approach in search for the algorithm for parallel addition [20],[22].

3.1 Local functions and parallel addition

When performing addition of numbers written in base β with digits in a given alphabet A, x =∑
l≥0 xlβ

l, y =
∑

j≥0 y jβ
j where xl, y j ∈ A, one aims to obtain the sum

z = x + y =
∑
j≥0

(x j + y j)β j

again in the form z =
∑

k≥0 zkβ
k, zk ∈ A. In fact, the task consists in transforming a string of digits over

the alphabet A + A into a string of digits over A, so that the value of the corresponding number remains
unchanged. Such a transformation is called digit set conversion.

Definition 3.1. Let β ∈ C be a base, |β| > 1 and let A and B be two alphabets of complex numbers
containing 0. A digit set conversion in base β from B to A is a function ϕ : BZ → AZ such that

41
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1. for any u = (u j) j∈Z ∈ BZ with a finite number of non-zero digits, the image v = ϕ(u) = (v j) j∈Z ∈ AZ

has only a finite number of non-zero digits as well,

2.
∑

j∈Z v jβ
j =

∑
j∈Z u jβ

j.

In order that the digit set conversion is performed in constant time, it should be computable using
a local function.

Definition 3.2. A function ϕ : BZ → AZ is said to be p-local if there exist two non-negative integers r
and t satisfying p = r + t + 1, and a function ψ : Bp → A such that for any u = (u j) j∈Z ∈ BZ and its image
v = ϕ(u) = (v j) j∈Z ∈ AZ, we have v j = φ(u j + t · · · u j − r) for every j ∈ Z.

Definition 3.3. A digit set conversion ϕ in base β ∈ C, |β| > 1, ϕ : BZ → AZ is said to be computable
in parallel if it is a p-local function for some p ∈ N.

Sometimes, a numeration system does not allow parallel addition in the sense of Definition 3.3.
The problem of addition in constant time can, however, be still solved by the so-called block paral-
lel addition. The idea stems in dividing the (β, A)-representation of a number x into groups of digits,
which represent x in base βk. In [17] the notation

A(k) =
{
a0 + a1β + · · · + ak−1β

k−1 : ai ∈ A, i ∈ {0, 1, . . . , k − 1}
}

was introduced, where A is an alphabet and k ∈ N. Obviously for k = 1 the set A(1) is equal to the original
alphabet A.

Also, a digit set conversion in base β from B to A is said to be block parallel computable if there
exists some k ∈ N such that the digit set conversion in base βk from B(k) to A(k) is computable in parallel.
When the specification of k is needed, we say k-block parallel computable.

In this terminology, the original parallel addition is 1-block parallel addition.

Example 3.4. Let β = 2 and let A = {−1, 0, 1} be an alphabet. Then the alphabet A(2) is obtained
in the following form

A(2) =
{
a0 + a1β : a0, a1 ∈ A

}
= {−3, . . . , 0, . . . , 3} .

Definition 3.5. The algorithm for parallel addition is neighbour-sensitive if the decision how to compute
the digit on position j depends on the digit at position j − 1. Otherwise we say that the algorithm for
parallel addition is neighbour-free.

In [11] a sufficient condition for existence of a parallel addition algorithm in base β was given.

Theorem 3.6 ([11]). Let β be an algebraic number such that |β| > 1 and all its conjugates in modulus
differ from 1. Then there exists an alphabet A of consecutive integers containing 0 such that addition
on FinA(β) can be performed in parallel.

Parallel addition is possible only in numeration systems with sufficiently large alphabet with respect
to the base. An estimate on the necessary cardinality of the alphabet was formulated in [12] for numera-
tion systems where the alphabet is a finite set of consecutive integers containing 0.
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Theorem 3.7 ([12]). Let β, with |β| > 1, be an algebraic integer of degree d with minimal polynomial

f (x) = xd − ad−1xd−1 − ad−2xd−2 − · · · − a1x − a0.

Let A be an alphabet of consecutive integers containing 0 and 1. If addition in FinA(β) is computable
in parallel, then #A ≥ | f (1)|. If, moreover, β is a positive real number, β > 1, then #A ≥ | f (1)| + 2.

From the following proposition it can be seen that for some cases of β a positive number, β > 1,
the lower bound on the size of the alphabet A is acquired.

Proposition 3.8 ([12]). Let β =
k√b, b ∈ Z, |b| ≥ 2 and k ≥ 1 integer. Any alphabet A of consecu-

tive integers containing 0 with cardinality #A = b + 1 ensures that addition in FinA(β) is computable
in parallel.

In [21] the author treats more general numeration systems where the digits take values in the ring
generated by the base β. This is useful for example when considering k-block parallel addition.

Theorem 3.9. Let (β, A) be a numeration system such that β ∈ C, |β| > 1 is an algebraic integer with
minimal polynomial f (x), and let A be an alphabet of complex digits such that A[β] = Z[β]. If addition
in FinA(β) is computable in parallel, then β is expanding and

#A ≥ max{| f (0)|, | f (1)|}.

Moreover, if β has a positive real conjugate, then

#A ≥ max{| f (0)|, | f (1)| + 2}.

Let us show what the assumption of the theorem actually mean. We presume that

A[β] =


n∑

j=0

x jβ
j : n ∈ N, x j ∈ A

 =


n∑

j=0

x jβ
j : n ∈ N, x j ∈ Z

 = Z[β].

Hence the set of all numbers with a finite (β, A)-representation with only non-negative powers of β is
equal to the same set when considering the whole Z as the alphabet.

The condition A[β] = Z[β] could be replaced by a slightly weaker condition of A[β] being closed
under addition. The stronger condition is used since it is required in applications using parallel addition,
e.g. in on-line multiplication and division.

3.2 Algorithms for parallel addition

In this section we will describe how an algorithm for parallel addition works in general. Then a de-
scription of a neighbour-free parallel addition will be covered.
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When we want to calculate addition of two numbers, the easiest part of the addition is to simply
obtain a digit-wise sum of the two input (β, A)-representations which gives a number w of the form

w = wn′ · · ·w1w0•w−1 · · ·w−m′

which is a (β, A + A) representation of the result. The desired form of the result of the addition is a (β, A)
representation of w which we denote as

z = zn · · · z1z0•z−1 · · · z−m

satisfying our requirements, i.e. z j ∈ A for every j and

n′∑
l=−m′

wl =

n∑
j=−m

z j.

Notice that the indices n and m are not necessarily equal to the indices n′ and m′ because in general
the representation of a number over a smaller alphabet results in a longer representation, i.e. m ≥ m′ and
n ≥ n′.

The main part of the algorithm for parallel addition is therefore the conversion from the alphabet A+A
to the alphabet A. The conversion we are performing is based on a digit-wise addition with a convenient
representation of zero in the base β which in this context is any polynomial R(x) = bsxs + · · · + b1 + b0

where b j ∈ Z[β] such that R(β) = 0. The polynomial R(x) is also called a rewriting rule.

There are definitely multiple representations of zero which can be used. In Section 3.3 and 3.4 we
show two different examples of representation of zero which can be used in the algorithm for parallel
addition. Both of these examples have one thing in common which is crucial for the algorithm. Specif-
ically the representation of zero needs to have the so-called dominant coefficient which is the greatest
coefficient of R in modulus in order to be suitable for computation of the conversion.

Further we consider a general rewriting rule in the form

R(x) = bkxk + bk−1xk−1 + · · · + b1x + b0 + b−1x−1 + · · · + b−hx−h (3.1)

where b0 is the dominant coefficient of the rewriting rule R, b j ∈ Z[β]. Since

R(β) = 0

= β j · R(β) = bkβ
j+k + bk−1β

j+k−1 + · · · + b1β
j+1 + b0β

j + b−1β
j−1 + · · · + b−hβ

j−h

for every j ∈ N, the rewriting rule R can be then written in its representation

bkbk−1 · · · b1b0b−1 · · · · · · b−h 00 · · · 0︸  ︷︷  ︸
j−h

• = (0)β.



3.2. ALGORITHMS FOR PARALLEL ADDITION 45

Moreover any rewriting rule can be also multiplied by any number from C and its value is still equal to 0.
Therefore we can multiply all digits of the representation of zero by the so-called weight coefficient
q j ∈ Z[β] in order to obtain the following representation of zero

(q jbk)(q jbk−1) · · · (q jb1)(q jb0)(q jb−1) · · · (q jb−h) 00 · · · 0︸  ︷︷  ︸
j−h

• = 0. (3.2)

This rewriting rule in particular is used in the digit-wise conversion. The idea of the algorithm is the fol-
lowing. We have the rewriting rule R with parameters k, h which are the greatest and the smallest powers
of β in R(β). In order to compute the resulting digit z j on position j we need to look at digits of w
on positions

l ∈ { j + h, j + h − 1, . . . , j − k + 1, j − k}.

For each of these positions we select the weight coefficient ql and then compute the sum of w j and
the corresponding powers of selected representations of zero given by (3.2). The correctness of the con-
version from A + A to A is ensured by the selection of particular weight coefficients ql which is crucial.
Illustration of how this process works for position j can be seen in the following column notation.

w = · · · w j+k · · · w j+1 w j w j−1 · · · w j−h · · ·

q j−k · 0 = q j−kbk q j−kbk−1 · · · · · · q j−kb−h
...

...
...

...

q j−1 · 0 = q j−1bk · · · q j−1b1 q j−1b0 · · · · · ·

q j · 0 = q jbk · · · q jb1 q jb0 q jb−1 · · · q jb−h

q j+1 · 0 = · · · · · · q j+1b0 q j+1b−1 · · ·
...

...
...

...
...

q j+h · 0 = q j+hbk · · · · · · · · · q j+hb−h

z = · · · z j+k · · · z j+1 z j z j−1 · · · z j−h · · ·

Such conversion of the digit on the position j causes a carry q j onto the positions

l = j + k, . . . , j + 1, j − 1, j − 2, . . . , j − h.

This process can be calculated for every position j ∈ N independently of calculation for other positions,
therefore it can be computed in parallel. The resulting formula for the digit conversion from A + A to A
on the position j is

z j = w j +

k∑
l=−h

q j−lbl. (3.3)

The presented conversion preserves value of w since only representations of zero are added. A formal
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proof of this fact follows.

z =

n+k∑
j=m−h

z jβ
j =

n+k∑
j=m−h

w j +

k∑
l=−h

q j−lbl

 β j =

n+k∑
j=m−h

w jβ
j −

n+k∑
j=m−h

k∑
l=−h

q j−lblβ
j

= w −

n+k∑
j=m−h

k∑
l=−h

(
blβ

l
) (

q j−lβ
j−l

)
= w −

∑
s∈Z

 k∑
l=−h

blβ
l

︸     ︷︷     ︸
=0

qsβ
s = w − 0 = w.

The bracket is equal to 0 since β is a root of the polynomial R(x) which determines our chosen rewriting
rule.

The difficult part is to find for a given numeration system (β, A) the weight coefficients ensuring
correctness of the algorithm. The choice of the weight coefficient q j for a neighbour-free algorithm
for parallel addition is dependent only on digit on position j, i.e. q j = q j(w j). Then the resulting
weight function is quite simple. The case is much different for q j depending also on digits wl on other
positions than j. The resulting weight function then can be considered as a look-up-table where based
on the digits wl around position j you can find corresponding weight coefficient q j. This is one of
the outputs of the algorithm for Extending Window Method discussed in Section 3.4.

3.3 Neighbour-free parallel addition

Given a base β, it may be possible to design several different algorithms for parallel addition with
different alphabets of digits. One is of course interested in algorithms in numeration systems with small
alphabets. However, the digit set conversion is then performed using p-local function with large p, or, one
is even forced to use k-block algorithms with k ≥ 2. On the other hand, most simple parallel algorithms
are 1-block neighbour free, on the expense of taking a larger alphabet.

In the following we present a method from [11] for finding a neighbour-free algorithm for any al-
gebraic base β without conjugates on the unit circle, the alphabet of digits being composed of consec-
utive integers. We will consider base β an algebraic number, |β| > 1, and search for an alphabet A so
that the numeration system (β, A) allows a neighbour-free algorithm to be performed.

We define a property which will ensure that the algorithms used for parallel addition are neighbour-
free.

Definition 3.10. Let β be a complex number, |β| > 1. We say that β satisfies t-representation of zero
property where t ∈ N if there exist coefficients bk, bk−1, . . . , b1, b0, b−1, . . . , b−h with b j ∈ Z for some
k, h ∈ N0 such that β is a root of the polynomial

T (x) = bkxk + bk−1xk−1 + · · · + b1x + b0 + b−1x−1 + · · · + b−hx−h (3.4)
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and

b0 > t
∑

j∈{−h,...,k}\{0}

|b j|.

We say that β satisfies the strong representation of zero property (SRZ) if t ≥ 2 and β satisfies
the weak representation of zero property (WRZ) if t ≥ 1.

Notice that the coefficient b0 has to satisfy b0 > 0. If it does not satisfy this requirement, we simply
take the polynomial −T (x) instead of the polynomial T (x).

Notation. We set P = b0 and S =
∑

j∈{−h,...,k}\{0} |b j|.

The proof of the following theorem can be found in [11].

Theorem 3.11. Let β be a complex number, |β| > 1, and let A be a symmetric alphabet of the form
A = {−a, . . . , 0, . . . , a}. If β satisfies SRZ, then there exists a neighbour-free algorithm which realizes
addition in constant time in parallel in FinA(β) where a =

⌈
P−1

2

⌉
+

⌈
P−1

2(P−2S )

⌉
S .

If β satisfies WRZ, then there exists a neighbour-free algorithm which realizes addition in constant
time in parallel in FinA(β) where a =

⌈
P−1

2

⌉
+ S .

We can find strong and weak polynomials of β using a constructive proof of the following proposition,
again taken from [11]. We present its proof here, since it is a base for one of the programs we have
implemented.

Proposition 3.12. Let β be an algebraic number of degree d with algebraic conjugates β1, β2, . . . , βd

(including β itself). Let |βi| , 1 for all i ∈ {1, 2, . . . , d} and |β| > 1. Then for any t ≥ 1 there exists
a polynomial

Q(x) = amxm + am−1xm−1 + · · · a1x + a0 ∈ Z[x]

and an index i0 ∈ {1, . . . ,m} such that

Q(β) = 0 and |ai0 | > t
m∑

i=0
i,i0

|ai|.

Proof. Let us denote the minimal polynomial of β as

F(x) =

d∏
i=1

(x − βi) = xd + fd−1xd−1 + · · · + f1x + f0 ∈ Q[x].
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Let M be the companion matrix of the polynomial F(x), i.e.

M =



− fd−1 1 0 0 . . . 0
− fd−2 0 1 0 . . . 0
− fd−3 0 0 1 . . . 0
...

...
...

...
. . .

...

− f1 0 0 0 . . . 1
− f0 0 0 0 . . . 0


∈ Qd×d.

We can easily prove that

det(M − xI) = (−1)dF(x),

where I denotes the unit matrix of the size d × d. We can also notice that the numbers βi are eigenvalues
of M. We define for any n ∈ N the following polynomial:

Fn(x) =

d∏
i=1

(x − βn
i ) = fd(n)xd + fd−1(n)xd−1 + · · · + f1(n)x + f0(n).

As the matrix Mn has eigenvalues βn
1, . . . , β

n
d, it can be also easily proven that

det(Mn − xI) = (−1)d
d∏

i=1

(x − βn
i ) = (−1)dFn(x).

Since M ∈ Qd×d, the matrix Mn is also from Qd×d and therefore the determinant det(Mn − xI) is a poly-
nomial with rational coefficients and consequently, for all n ∈ N, the polynomial Fn(x) has also rational
coefficients. We can see that for every n ∈ N and for every i ≤ d the following equality stands:

fi(n) = (−1)d−i
∑

{ j1, j2,..., ji}∈S i

βn
j1β

n
j2 · · · β

n
ji , (3.5)

where S i denotes the set of all subsets of {1, 2, . . . , d} with i elements.

Without loss of generality, we assume that |β1| ≥ |β2| ≥ · · · ≥ |βd | and denote j0 the greatest index for
which the algebraic conjugate |β j0 | > 1, i.e. j0 = max{ j : |β j| > 1}. Our choice of the index j0 ensures
that ∣∣∣∣∣∣β j1β j2 · · · β jr

β1β2 · · · β j0

∣∣∣∣∣∣ < 1

for every subset { j1, j2, . . . , jr} ⊂ {1, 2, . . . , d} such that { j1, j2, . . . , jr} , {1, 2, . . . , j0}. Therefore the fol-
lowing stands

lim
n→∞

βn
j1
βn

j2
· · · βn

jr

βn
1β

n
2 · · · β

n
j0

= 0.

Since the coefficients fi(n) of the polynomial Fn(x) satisfy (3.5) for every n ∈ N, we can deduce



3.3. NEIGHBOUR-FREE PARALLEL ADDITION 49

that the limit

lim
n→∞

fi(n)
βn

1β
n
2 · · · β

n
j0

=

 0 for every i ∈ {1, . . . , d}, i , j0,
(−1)d−i for i = j0.

This implies that for every t ≥ 1 there exists some n0 = n0(t) ∈ N such that

| f j0(n0)| > t
m∑

i=1
i, j0

| fi(n0)|.

We can equivalently write

| f j0(n0)|
|βn0

1 β
n0
2 · · · β

n0
j0
|
> t

m∑
i=1
i, j0

| fi(n0)|
|βn0

1 β
n0
2 · · · β

n0
j0
|
.

Such n0 = n0(t) exists, because the right side of the inequality has the limit 0 and the left side has
the limit 1.

Therefore, to construct the polynomial Q(x), we fix n0 and denote K the least common multiple
of the denominators of the rational numbers f1(n0), . . . , fd−1(n0), fd(n0). Then we get the polynomial
Q(x) = KFn0(xn0) and the index i0 = n0 j0. Thus the obtained polynomial has the required properties. �

Let us present one example of the construction given by the proof of Proposition 3.12.

Example 3.13. Let β be a root of the polynomial f (x) = x2 + 3x + 3, i.e. the Eisenstein number. First we
want to find a weak polynomial using the construction from Proposition 3.12. The companion matrix of
the polynomial f is

M =

−3 1
−3 0

 .
Set n = 2 as the parameter of the construction. We compute the characteristic polynomial of the matrix
M on the power of n:

∣∣∣M2 − xI
∣∣∣ =

∣∣∣∣∣∣∣6 − X −3
9 −3 − X

∣∣∣∣∣∣∣ = (6 − X)(−3 − X) + 27 = X2 − 3X + 9

which already has a dominant coefficient P = 9 which satisfies the condition P > 2S where S = 4.
In other words, it already satisfies both weak and strong representation of zero property. The weak
polynomial is

W(x) = x4 − 3x2 + 9

and according to Theorem 3.11 the alphabet enabling neighbour-free parallel addition is of the form
A = {−a, . . . , 0, . . . , a} for a =

⌈
P−1

2

⌉
+ S = 8. According to (3.4) the rewriting rule derived from W(x)

has the coefficients b0 = 9, b1 = 0, b2 = −3, b3 = 0 and b4 = 1.
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The algorithm for neighbour-free parallel addition uses the rewriting rule given by the polynomial
W(x), see [11]. Assume that x =

∑n
j=m x jβ

j, y =
∑n

j=m y jβ
j are the inputs of the algorithm where

x j, y j ∈ A.

After computation of the digit-wise addition we obtain

w = x + y =

n∑
j=m

(x j + y j)β j =

n∑
j=m

w jβ
j

where w j ∈ A+A = {−16, . . . , 0, . . . , 16}. In order to make the description of the algorithm more clear, we
define an auxiliary alphabet A′ = {−a′, . . . , 0, . . . , a′} where a′ =

⌈
P−1

2

⌉
= 4. The conversion is performed

in a cycle of the length s =
⌈

a
P−S

⌉
, in this case s = 2. Then for each position j ∈ {m, . . . , 0, . . . , n}

at the same time we perform the following steps written in the pseudocode:

For l = 1, 2, . . . , s do:

set the weight coefficient q j ∈ {−1, 0, 1} :

q j =


1 w j > a′,
0 w j ∈ A′,
−1 w j < −a′,

z j = w j − 9q j + 3q j−2 − q j−4,

set w j = z j.

One can check that if we run the conversion for our β and alphabet A = {−8, . . . , 8}, we start with
−16 ≤ w j ≤ 16, and thus the partial result z j is after the first run of the cycle in the following alphabet:

z j = w j − 9q j︸    ︷︷    ︸
∈{−7,...,0,...,7}

− (q j−4 − 3q j−2)︸           ︷︷           ︸
∈{−4,...,0,...,4}

∈ {−11, . . . , 0, . . . , 11}.

For the second and final run we start with −11 ≤ w j ≤ 11 and therefore we obtain the result for position j:

z j = w j − 9q j︸    ︷︷    ︸
∈{−4,...,0,...,4}

− (q j−4 − 3q j−2)︸           ︷︷           ︸
∈{−4,...,0,...,4}

∈ {−8, . . . , 0, . . . , 8} = A.

The output of the conversion is therefore z =
∑n+k

j=m−h z jβ
j where z j ∈ A. The fact that the value is

preserved (w = z) is proven for a general algorithm for parallel addition based on some rewriting rule
at the end of Section 3.2.

For every position j the choice of the weight coefficient is dependent only on a digit w j, i.e. q j =

q j(w j). Thus for one run of the cycle is

z j = z j(q j, q j−2, q j−4) = z j(w j, w j−2, w j−4).

The whole conversion is then p-local function where p = s · 4 + 1 = 9.
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For performing the algorithm for parallel addition using the strong representation of zero, we still
can use the polynomial W(x) since it already satisfies P = 9 > 8 = 2 · S . According to Theorem 3.11
the symmetric integer alphabet enabling the algorithm for parallel addition is A = {−a, . . . , 0, . . . , a}
where a =

⌈
P−1

2

⌉
+

⌈
P−1

2(P−2S )

⌉
S = 20. The size of the alphabet A is then #A = 41 which is much

greater that the alphabet enabling parallel addition using weak representation of zero. On the other hand,
the resulting the result for position j is obtained by one run of the algorithm, we do not have to compute
the digit z j in a cycle. More details about this algorithm can be found in [11].

In the previous example a very simple neighbour-free conversion function was shown. If we want to
compute parallel addition with a smaller alphabet, we would have to change the dependency q j = q j(w j)
and choose the weight coefficient based on multiple digits.

It is not possible to find a neighbour-free algorithm for a smaller alphabet than A using a different
rewriting rule, since we obtained the representation of zero with the smallest P and S possible. In other
iterations (for n > 2) of the construction from Proposition 3.12 these two parameters would only increase.

Example 3.14. Let us compute a 2-block algorithm for parallel addition for numeration system from
Example 3.4 with base 2 and alphabet A = {−1, 0, 1} which is essentially an algorithm for parallel
addition with base β2 = 22 = 4 and alphabet A(2) = {−3, . . . , 0, . . . , 3} .

When we sum two inputs x and y we obtain the number w = x + y =
∑n

j=−m(x j + y j)β j =
∑n

j=−m w jβ
j

where all digits w j ∈ {−6, . . . , 0, . . . , 6}. Therefore to obtain the result z whose digits satisfy z j ∈ A(2) we
use the identity

β2 − 4 = 0.

Depending on the digit w j on position j we perform the following adjustments:

q j =


1 w j ∈ {4, 5, 6},
0 w j ∈ A(2),

−1 w j ∈ {−6,−5,−4},

z j = w j − 4q j + q j−1.

This can be done for each position independently and the resulting digit on position j depends only
on inputs on positions j and j − 1. The last step is to transform the digit z j ∈ A(2) to a pair of digits from
alphabet A. This operation is not unique since for example 1̄1 = 01̄.

3.4 Extending window method

In this section we will describe the main idea of a method to construct algorithms for parallel addi-
tion in a (β, A)-numeration system. The so-called Extending Window Method was introduced in [22],
from now on abbreviated as EWM. This algorithm works not only for the ring generated by β but we
can choose some algebraic number ω ∈ Q(β). Then we consider the numeration system (β, A) such
that β ∈ Z[ω] is an algebraic integer and A ⊂ Z[ω] is an input alphabet where A ( B ⊂ A + A. We select
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the alphabet B because the conversion from A + A to A can sometimes be replaced by a conversion from
a smaller alphabet B applied multiple times. In default we set B = A + A.

The EWM is a proposed approach to construct algorithms for digit set conversion in the base β
from input alphabet B to alphabet A which can be performed in parallel. This method uses the simplest
rewriting rule determined by the following polynomial

R(x) = x − β ∈
(
Z[ω]

)
[x]. (3.6)

Notice that the parameters k, h ∈ N0 from (3.1) are set as k = 1 and h = 0 and thus carry from position
j ∈ N is only to position j + 1.

The main issue of the construction of the algorithm for parallel addition based on the principle de-
scribed in Section 3.2 is to find a suitable weight coefficients q j ∈ Z[ω] such that

z j = w j + q j−1 − q jβ ∈ A, w j ∈ B for all j ≥ 0

for any w ∈ FinB(β) with (β, B)-representation of the form w = wn · · ·w1w0•. This formulation was
created by substituting for our rewriting rule in (3.3).

The aim of any parallel algorithm for addition is for the digit z j of the result to be dependent only
on a fixed number of digits of the inputs, i.e. z j = z j(w j, . . . , w j−r) for some fixed r ∈ N. Since we are
using the rewriting rule (3.6), the digit z j is dependent only on information from the right, i.e. we have
q j = q j(w j, . . . , w j−(r−1)). The goal is to find a weight coefficient q j ∈ Z[ω] satisfying

z j = w j + q j−1 − q jβ ∈ A. (3.7)

Notice that the above formula was obtained simply by substitution of our rewriting rule (3.6) in the gen-
eral formulation (3.3).

We introduce two definitions which will simplify the description of the Extending Window Method,
[22].

Definition 3.15. Let (β, A) be a numeration system, let B ⊂ Z[ω] be a digit set such that A ( B ⊂ A + A.
Any finite set F ⊂ Z[ω] containing 0 such that

B + F ⊂ A + βF

is called a weight coefficients set for the numeration system (β, A) and input digit set B.

The idea of EWM is to design a weight coefficient set F ⊂ Z[ω] so that for any carry q j−1 ∈ F and for
any digit w j ∈ B it contains a weight coefficient q j ∈ F such that z j = w j + q j−1−q jβ is in the alphabet A.

Definition 3.16. Let F ⊂ Z[ω] be a weight coefficients set for numeration system (β, A) and let B ⊂ Z[ω]
be an input digit set. Let r ∈ N and let q : Br → F be a mapping such that q(0, . . . , 0) = 0 and

w j + q(w j−1, . . . , w j−r) − βq(w j, . . . , w j−(r−1)) ∈ A



3.4. EXTENDING WINDOW METHOD 53

for any w j, w j−1, . . . , w j−r ∈ B. Such mapping q is called weight function of length r for (β, A)-numeration
system and input digit set B.

We also define another mapping ϕ : Br+1 → A by the following formula

ϕ(w j, . . . , w j−r) = w j + q(w j−1, . . . , w j−r)︸               ︷︷               ︸
q j−1

−β q(w j, . . . , w j−(r−1))︸                 ︷︷                 ︸
q j

=: z j ∈ A. (3.8)

where q : Br → F is the weight function. Using the function ϕ, we can directly calculate the digit set
conversion from the input digit set B to the alphabet A in base β as a p-local function where p = r + 1.

Notice the requirement q(0, . . . , 0) = 0 in Definition 3.16. This ensures that if the inputs of the con-
version (i.e. digits of w) are zero, the result of the conversion and of the weight function is also going to
be zero. Therefore the construction as presented above satisfies both conditions of the definition of
the digit set conversion in Definition 3.1.

3.4.1 Algorithm for EWM

The so-called Extending Window Method implementing the above described approach to search for
an algorithm for parallel addition was introduced in [20],[22]. EWM is organized in two phases, both
of them performable by several different methods. The first phase finds for a given numeration system
(β, A) and given input digit set B some weight coefficients set F ⊂ Z[ω] according to Definition 3.15.
This set is not uniquely determined. For different methods for Phase 1 we can obtain different weight
coefficients sets F.

The weight coefficients set F is then considered as input of the second phase. In this phase the ex-
pected length r is gradually incremented until the weight function q : Br → F is completely defined for
each (w j, . . . , w j−(r−1)) ∈ Br.

Finally, the algorithm is successful if both phases are completed and the desired local conversion
function is then completely determined by the function found in Phase 2. We use the weight function
outputs q as the weight coefficients in the formula (3.8).

The algorithm for both phases are in detail described in [20] together with the description of their
convergence.

3.4.2 Computer program

The algorithm for Extending Window Method was implemented in programming language Sage-
Math, which is a computer algebra system written in Python, and described in detail in [20] and can be
found in the following GitHub repository

https://github.com/Legersky/ParallelAddition.git .

We applied this algorithm on several numeration systems in Chapter 5.
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From the previous section it can be seen that if the algorithm finds a weight function, then we obtain
a working algorithm for parallel addition. However, it does not imply anything if the construction does
not find a weight function. The algorithm for parallel addition may still exist even if the search was not
successful.

Let us describe how the computer program is applied on a given numeration system (β, A). First we
need to set the inputs of the program which can be done either directly in the file of the computer program,
or in a Google spreadsheet where we can choose multiple numeration systems to apply the program on.
The required inputs of the EWM are:

• minimal polynomial of ring generator ω (not necessary equal to β),

• embedding of the ring generator (the closest root of the minimal polynomial to this value is taken
as the ring generator)

• alphabet A ⊂ Z[ω],

• input alphabet B ⊂ Z[ω] (optional, default input alphabet is set as B = A + A),

• base β ∈ Z[ω] of the numeration system for which we search for an algorithm for parallel addition,

• parameter k ∈ N of the k-block parallel addition.

We can also choose whether we want to save some output files. For example we can save general
information about the process, file containing the weight function, a local conversion function or a log
file. We can also save images including the image of the alphabet and the input alphabet in the complex
plane, step-by-step images of Phase 1, image of the weight coefficient set or step-by-step images of
Phase 2.

A very important part of the input is to choose methods to compute each phase. More than one method
can be chosen at the same time from several methods implemented. There are 5 recommended methods
for both phases and several experimental methods which may also lead to obtaining the algorithm for
parallel addition.

All the methods implemented are described in [20]. If there exists an algorithm for parallel addition
it does not necessarily mean that the computer program will converge. Even the convergence of different
methods for each phase often vary. Therefore it is necessary to run the program multiple times while
selecting different methods for each phase.



Chapter 4

On-line arithmetics

On-line arithmetic is a mode of computation where operands and results are processed in a digit serial
manner, starting with the most significant digit. We will focus on the algorithms for on-line multiplication
and division in particular.

The algorithms for on-line multiplication and division were introduced by Trivedi and Ercegovac for
computation in integer bases with symmetric integer alphabet [28]. In [9] a modification was presented
for non-standard numeration systems for arbitrary base β, |β| > 1 (in general a complex number) and
alphabet A (in general a finite set of complex numbers).

4.1 Algorithm for on-line multiplication

The algorithm for on-line multiplication in numeration system (β, A) has only one parameter, the de-
lay δ ∈ N. We work with (β, A)-representations of:

• the number X =
∑+∞

j=1 x jβ
− j,

• the number Y =
∑+∞

j=1 y jβ
− j,

• their product P =
∑+∞

j=1 p jβ
− j.

The inputs of the algorithm are two strings of arbitrary length

0•x1x2 · · · xδxδ+1xδ+2 · · · with x j ∈ A and x1 = x2 = · · · = xδ = 0, and

0•y1y2 · · · yδyδ+1yδ+2 · · · with y j ∈ A and y1 = y2 = · · · = yδ = 0.

The output of the algorithm is a string of arbitrary length 0•p1 p2 p3 · · · corresponding to a (β, A)-
representation of the product P = X · Y =

∑+∞
j=1 p jβ

− j. The settings of the algorithm ensure that the rep-
resentation of P indeed starts only on the right of the fractional point.

The on-line multiplication is carried out in iterative steps. First set W0 = X0 = Y0 = p0 = 0.
For k ≥ 1, the k-th step of the iteration process computes:

Wk = β(Wk−1 − pk−1) + (xkYk−1 + ykXk), and pk = SelectM(Wk) ∈ A.
55
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The selection function is chosen so to ensure correctness of the algorithm for on-line multiplication.
The particular properties of the algorithm and its parameters can be found in [9].

4.2 Algorithm for on-line division

The algorithm for on-line division in (β, A) numeration system has two parameters:

• the delay δ ∈ N,

• the minimal value (in modulus) of the denominator Dmin > 0.

We will work with (β, A)-representations of:

• the numerator N =
∑+∞

j=1 n jβ
− j,

• the denominator D =
∑+∞

j=1 d jβ
− j,

• their quotient Q =
∑+∞

j=1 q jβ
− j.

Partial sums are denoted by Nk =
∑k

j=1 n jβ
− j,Dk =

∑k
j=1 d jβ

− j, and Qk =
∑k

j=1 q jβ
− j.

The inputs of the algorithm are two (possibly infinite) strings representing the nominator N and
the denominator D, namely

0•n1n2 · · · nδnδ+1nδ+2 · · · where n j ∈ A and n1 = n2 = · · · = nδ = 0, and

0•d1d2d3 · · · where d j ∈ A satisfying |Dk| ≥ Dmin for all k ∈ N, k ≥ 1. (4.1)

The output is an arbitrarily long string 0•q1q2q3 · · · corresponding to a (β, A)-representation of
the quotient

Q =
N
D

=

+∞∑
j=1

q jβ
− j.

Note that the representation of Q starts behind the fractional point. This is ensured by the setting of
the algorithm.

We realize the on-line division in iterative steps. In the beginning, we set W0 = q0 = Q0 = 0.
For k ≥ 1, the step of the iteration proceeds by calculation of

Wk = β(Wk−1 − qk−1Dk−1+δ) + (nk+δ − Qk−1dk+δ)β−δ. (4.2)

The k-th digit qk of the representation of the quotient Q = N
D is evaluated by Select, a function of

the values of the auxiliary variable Wk and the interim representation Dk+δ, so that

qk = Select(Wk,Dk+δ) ∈ A.

The selection function is chosen so to ensure correctness of the algorithm for on-line division.
For more details about the setting of the function Select see [9].
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4.3 OL Property

Both algorithms for on-line multiplication and division work for the numeration systems which sat-
isfy the so-called OL property.

Definition 4.1. A numeration system (β, A) has the OL Property if there exists a bounded set I such
that 0 ∈ I and

β cl(I) ⊂
⋃
a∈A

(int(I) + a)

where cl(I) and int(I) are closure and interior of the set I, respectively.

We need to be careful about the field in which we construct the set I. If the numeration system is
real, then I ⊂ R is an interval. Otherwise for complex numeration systems I ⊂ C is two-dimensional.

Notice the similarities in the definition of OL property and the property of numeration systems,
namely completeness, cf. Theorem 1.9. It is easily seen that the OL property is a sufficient condition for
the numeration system to be complete.

Whether the on-line division can be performed depends not only on the OL Property of the numera-
tion system, but also on Condition (4.1) imposed on the string representing the denominator . This fact
is stated in the following theorem.

Theorem 4.2 ([9]). Assume that the OL Property is satisfied in the (β, A)-numeration system. Then
on-line multiplication in (β, A) can be performed by the Trivedi-Ercegovac algorithm. Moreover let
strings 0•n1n2 · · · and 0•d1d2 · · · satisfying condition (4.1) represent numbers N and D respectively.
Then computing N

D can be performed by the Trivedi-Ercegovac algorithm.

In this section, we will discuss cases in which the OL Property is satisfied. In order to prove
that the set ensuring OL property can not be found, a necessary condition on the size of the alphabet
can be formulated using the volume of sets.

Proposition 4.3. Let β ∈ C and let A ⊂ C be an alphabet. Assume that the numeration system (β, A) has
OL property. If (β, A) is real, then

#A > |β|.

If (β, A) is complex, then

#A > |β|2.

Proof. Let I be the set ensuring OL property of the numeration system (β, A), i.e.

β cl(I) ⊂
⋃
a∈A

(int(I) + a). (4.3)

Let n be the dimension of the field we are in (for (β, A) real n = 1, otherwise n = 2). We want to
cover something slightly larger than cl(I) by the set {int(I) + a : a ∈ A} . Hence there exists some small
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ε ∈ R, ε > 0 which satisfies
β(I + ε) ⊆

⋃
a∈A

(int(I) + a).

and cl(I) ( I + ε. If we compute volume of the closure of I multiplied by β

vol
(
β cl(I)

)
= |β|nvol(I) < vol

(
(1 + ε)β I

)
= (1 + ε)n|β|nvol(I)

and compare it with volume of the right side of (4.3):

vol
(⋃

a∈A

(int(I) + a)
)
≤ #A vol(I)

we obtain the following inequality

|β|n vol(I) < (1 + ε)n|β|nvol(I) ≤ #A vol(I).

Therefore #A > |β|n. In the proof we have used that the volume of the set I is defined. We can set it
to be the Lebesgues measure of the measurable set cl(I), resp. int(I). �

For a special case of numeration system with real base and integer alphabet, a sufficient condition for
OL Property is given by the following proposition.

Proposition 4.4 ([9]). Let β be a real number with |β| > 1 and A = {m, . . . , 0, . . . ,M} ⊂ Z. Let us assume
that m ≤ 0 < M for β > 1, and m ≤ 0 ≤ M for β < −1. If

|β| < #A = M − m + 1,

then division in the numeration system (β, A) is on-line performable by the Trivedi-Ercegovac algorithm.

For complex bases and integer alphabets, we cite only a general result for systems with a symmetric
alphabet [9].

Theorem 4.5. Let β ∈ C\R with |β| > 1 and let A = {−M, . . . ,M} ⊂ Z be an alphabet where M ≥ 1. If

ββ + |β + β| < #A = 2M + 1,

then the numeration system (β, A) has the OL Property.

Besides that, redundant Eisenstein system and redundant Penney system were treated in [9]. Corre-
sponding sets proving OL property for each numeration system can be seen in Figure 4.1.

Proposition 4.6. Let β = −1 + ω where ω = exp 2πi
3 is the third root of unity and A = {0,±1,±ω,±ω2}

(redundant Eisenstein system). The (β, A)-numeration system satisfies the OL Property.

Proposition 4.7. Let β = −1 + i and A = {0,±1,±i} (redundant Penney system). The (β, A)-numeration
system satisfies the OL Property.
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Figure 4.1: Sets I satisfying OL property for redundant Eisenstein system and redundant Penney system
from article [9], respectively.

4.4 Preprocessing of divisors

When making division, we need that the divisor stays away from 0. By definition of the on-line algo-
rithm, this means that the value of all the prefixes of the divisor d1d2 · · · must be greater in absolute value
than some Dmin > 0. So the divisor must be preprocessed before making the division.

Example 4.8. Let us take β = 2 and the alphabet A = {1̄, 0, 1}. Then 0 has two non-trivial representations
in (β, A)-numeration system:

0 = 0•11̄1̄1̄ · · · = 0•1̄111 · · · .

This means that even if a divisor has a representation with infinitely many non-zero digits, its numeri-
cal value can be still 0, which we have to avoid.

So we consider only divisors not starting on 11̄ . . . because they can be rewritten to 01 . . . . For
the same reason we do not consider divisors of the type 1̄1 . . . . It can be shown that any divisor without
prefix 0k11̄ or 0k1̄1 for k ∈ N has a non-zero value.

Definition 4.9. We say that a complex numeration system (β, A) allows preprocessing if there exists
Dmin > 0 and a finite list L of identities of the type 0•wk · · ·w0 = 0•0uk−1 · · · u0 with digits in A such
that any string d1d2 · · · on A without prefix wk · · ·w0 from L satisfies |0•d1d2 · · · d j| > Dmin for all j ∈ N.

In order to have d1 , 0 the preprocessing starts by shifting the fractional point to the most significant
non-zero digit of the (β, A)-representation of the divisor. After such transformation the value of the orig-
inal divisor v has been changed into a new divisor d which is just a shift of the original one, so d = vβk

for some k ∈ Z.
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If zero has only the trivial (β, A)-representation, we can equivalently rewrite this fact as

inf R > 0, where R =


∣∣∣∣∣∑

i≥1

ziβ
−i
∣∣∣∣∣ : z1 , 0, zi ∈ A

 .
In this case the numeration system (β, A) allows preprocessing, since Dmin is trivially equal to inf R and
the list of rewriting rules is empty.

The question of existence of a non-trivial (β, A)-representation of zero is quite complicated in general.
The following proposition taken from [10] provides a necessary and sufficient condition in case of a real
numeration system with integer alphabet.

Proposition 4.10 ([10]). Let β > 1 be a real number and let {−1, 0, 1} ⊂ A = {m, . . . , 0, . . . ,M} ⊂ Z be
an alphabet. Zero has a non-trivial (β, A)-representation if and only if β satisfies

β ≤ max{M + 1,−m + 1}. (4.4)

Example 4.11. Let β = 3+
√

5
2 and the alphabet A = {−1, 0, 1}. According to Proposition 4.10 the numer-

ation system (β, A) does not have non-trivial representation of 0, since β > 2. Therefore the parameter
Dmin = inf R =

β−1+min A
β(β−1) = 0.145898 · · · and the list of rewriting rules is empty.

The following theorem links the property of the spectrum XA(β) of having an accumulation point
to the preprocessing in on-line division in the (β, A)-numeration system. Since this theorem is directly
linked to our research problem, we include it with its proof, which is based on several lemmas, see [10].

Theorem 4.12 ([10]). Let β be a complex number and let A ⊂ C be an alphabet. The numeration system
(β, A) allows preprocessing if and only if the spectrum XA(β) has no accumulation point.

Notation. In the following three lemmas we will use notation

H = max


∣∣∣∣∣∑

i≥1

diβ
−i
∣∣∣∣∣ : di ∈ A for all i ∈ N

 . (4.5)

Lemma 4.13. If XA(β) has an accumulation point then the numeration system (β, A) does not allow
preprocessing.

Proof. In Theorem 3.5 of [10] it is proven that XA(β) has an accumulation point if and only if there exists
z1z2 · · · a β-representation of z = 0 in the alphabet A, i.e.

∑
i≥1 ziβ

−i = 0 with zi ∈ A, such that

0•z1z2 · · · z j , 0•0z′2 · · · z
′
j (4.6)

for all j ≥ 2 and for all z′2 · · · z
′
j in A∗. Assume that

0 = 0•z1z2z3 · · · , (4.7)
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is such a representation of 0. Also assume that preprocessing is possible with the value of parameter
Dmin > 0. First we find j ∈ N such that

H
|β| j

< Dmin.

Then we consider the string 0•z1z2z3 · · · z j000 · · · . Due to (4.6) no prefix of the string z1z2z3 · · · z j is
contained in the list of rewriting rules. But from (4.7) we know that

|0•z1z2z3 · · · z j| = |0• 000 · · · 0︸   ︷︷   ︸
j−times

z j+1z j+2 · · · | <
H
|β| j

< Dmin,

which is a contradiction. �

Lemma 4.14. Let us assume that XA(β) has no accumulation point and fix K > 0. Then there exists
m ∈ N such that any string xm−1xm−2 · · · x1x0 of length m over A satisfies either

|xm−1β
m−1 + xm−2β

m−2 + · · · + x1β + x0| ≥ K

or there exists a string yk−1yk−2 · · · y1y0 of length k < m over A such that

xm−1β
m−1 + xm−2β

m−2 + · · · + x1β + x0

= yk−1β
k−1 + yk−2β

k−2 + · · · + y1β + y0.

Proof. Since the spectrum XA(β) has no accumulation point, the set of points in XA(β) in absolute value
smaller then K is finite, i.e. the set S = {z ∈ XA(β) : |z| < K} is finite.

We will denote for every x ∈ XA(β) the number

ρ(z) = min

n ∈ N : z =

n∑
j=0

z jβ
j where z j ∈ A


and m = 2 + max{ρ(z) : z ∈ S }. Let us take some x with (β, A)-representation

x = xk−1β
k−1 + xk−2β

k−2 + · · · + x1β + x0, x j ∈ A.

Obviously, x ∈ XA(β). Then either |x| ≥ K, which is the first case, or x ∈ S . In that case k ≤ max{ρ(z) :
z ∈ S } ≤ m − 1. �

Lemma 4.15. If the spectrum XA(β) has no accumulation point, then there exists Dmin > 0 and m ∈ N
such that for all infinite strings d1d2 · · · over A one has

(i) either |0•d1d2 · · · d j| ≥ Dmin for all j ∈ N,

(ii) or 0•d1d2 · · · dm , 0•0d′2d′3 · · · d
′
m for some string d′2d′3 · · · d

′
m ∈ A∗.
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Proof. Let ε > 0 and let us apply Lemma 4.14 where K = H + ε to get the parameter m ∈ N. We will
denote the set

D =
{
|0•d1d2 · · · d j| : j < m and 0•d1d2 · · · d j , 0•0d′2 · · · d

′
j

}
which does not contain 0. Since XA(β) has no accumulation point, the setD is finite. Thus D′ = minD >

0.
We consider an infinite string d1d2 · · · and assume that 0•d1d2 · · · dm , 0•0d′2d′3 · · · d

′
m for all

d′2d′3 · · · d
′
m ∈ A∗. There may be two cases:

• j < m where j ∈ N. Then 0•d1d2 · · · d j , 0•0d′2 · · · d
′
j, otherwise it would mean that

0•d1d2 · · · dm = 0•0d′2d′3 · · · d
′
jd j+1dm

which is a contradiction. Hence |0•d1d2 · · · d j| ≥ D′.

• j ≥ m where j ∈ N. In this case

|0•d1d2 · · · d j| ≥ |0•d1d2 · · · dm| −
1
|β|m
|0•dm+1dm+2 · · · d j|

≥
1
|β|m

K −
1
|β|m

H =
ε

|β|m
.

Therefore, we can set the value

Dmin = min
{

D′,
ε

|β|m

}
(4.8)

and the theorem is hereby proved. �

Proof of Theorem 4.12. In case that the spectrum XA(β) has an accumulation point, Lemma 4.13 implies
that the numeration system (β, A) does not allow preprocessing.

Assume that the spectrum does not have an accumulation point. Then Lemma 4.15 enables us to find
a list L of identities for preprocessing. �

Using the constructive proof of Lemma 4.15 we can perform the algorithm for preprocessing for
on-line division in the numeration system (β, A).

Every preprocessing consist of three steps:

1. Given a complex base β where |β| > 1 and an alphabet A, check the OL property, so that on-line
division in the numeration system (β, A) is possible.

2. Check if the numeration system (β, A) has a non-trivial 0 representation.

3. If there exists a non-trivial 0 representation, find the minimal list of rewriting rules and the value
of parameter Dmin.

We have implemented the preprocessing algorithm in the SageMath programming language, which is
a computer algebra system written in Python. The details of the implementation are described in our
previous work [29].
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4.5 Time complexity of on-line algorithms

In the algorithms for on-line multiplication and division, the inputs can be infinite strings. There-
fore, by time complexity we understand the number of elementary operations needed to get n digits of
the output, the product or quotient of given numbers, respectively.

The time complexity depends on the number of steps needed to compute the auxiliary value Wk and
on the Select function. If both these operations can be performed in constant time, the time complexity
of computing the first n digits of the result is O(n).

As we can see from (4.2), the time complexity of computation of Wk heavily depends on whether we
can perform addition and subtraction fast. If we can compute addition in parallel, the time complexity of
this operation is O(1).

Conditions on the numeration system (β, A) so that it allows parallel addition were discussed in Chap-
ter 3.
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Chapter 5

Arithmetics in imaginary quadratic fields

In this chapter we apply all the previously developed theory to complete polygonal numeration sys-
tems of imaginary quadratic fields which are listed in Table 2.2. For each numeration system we will
examine whether OL property is satisfied and what is the set ensuring this property. Then we check
whether the necessary condition for parallel addition is fulfilled and we try to find an algorithm for paral-
lel addition using a computer program implementing the Extending Window Method. If the numeration
system has OL property, we also run our computer program in order to compute the preprocessing for
on-line division and find the minimal list of rewriting rules and the corresponding parameter Dmin.

When examining whether the numeration system satisfies OL property first we have to check if
the necessary condition formulated in Proposition 4.3 stands. Table 5.1 contains a list of complete polyg-
onal numeration systems of imaginary quadratic fields which satisfy the necessary condition on the size
of the alphabet. We will consider only these numeration systems from now on.

The question whether addition is computable in parallel considering numeration systems in Table 5.1
which does not satisfy necessary condition for OL property is not completely answered. Each numeration
system either does not satisfy a necessary condition for parallel addition from Theorem 3.9 as well
or there was not found an algorithm using the Extending Window Method described in Section 3.4.
This does not necessarily mean that there does not exist any algorithm for parallel addition using these
numeration systems. The fact that they do not satisfy the necessary condition for OL property mean
that the redundancy of these numeration systems is too small to compute on-line algorithms. We believe
that parallel addition will not be possible either. Although even if the necessary condition is not satisfied,
a k-block algorithm for parallel addition may exist. It remains an open question.

This chapter is organised as follows. Each section is dedicated to a particular quadratic field Q(
√

d)
for integer d < 0. Specifically we consider complete polygonal numeration systems of quadratic fields
Q(
√

d) = K for d = −1,−2,−3,−7. The title of each section is the set of all algebraic integers OK

in the particular quadratic field which is given by Proposition 2.4 and is also stated in Table 5.1. These
rings are very important for our numeration systems (β, An) since β ∈ OK and An ⊂ OK .

Sections are further divided according to the numeration systems. We will consider only those nu-
meration systems which either have OL property and therefore allows to compute on-line algorithms
or allows to compute addition in parallel. This is verified by applying the computer program described

65
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OK β A |β|2 < #A
Z[i] −1 ± i {0, 1} ×

±1 ± i {0,±1} X
{0,±1,±i} X

±2 {0,±1,±i} X
±2i {0,±1,±i} X
±2 ± i {0,±1,±i} ×

±1 ± 2i {0,±1,±i} ×

Z[i
√

2] ±i
√

2 {0,±1} X
±1 ± i

√
2 {0,±1} ×

Z[ 1+i
√

3
2 ] ±i

√
3 {0,±1} ×

{0, 1, ρ2, ρ4} X
{0, 1, ρ, ρ2, ρ3, ρ4, ρ5} X

±3±i
√

3
2 {0, 1, ρ2, ρ4} X

{0, 1, ρ, ρ2, ρ3, ρ4, ρ5} X
−2 {0, 1, ρ2, ρ4} ×

±2 {0, 1, ρ, ρ2, ρ3, ρ4, ρ5} X
+1 ± i

√
3 {0, 1, ρ2, ρ4} ×

±1 ± i
√

3 {0, 1, ρ, ρ2, ρ3, ρ4, ρ5} X
±2 ± i

√
3 {0, 1, ρ, ρ2, ρ3, ρ4, ρ5} ×

±5±i
√

3
2 {0, 1, ρ, ρ2, ρ3, ρ4, ρ5} ×

±1±i 3
√

3
2 {0, 1, ρ, ρ2, ρ3, ρ4, ρ5} ×

Z[ 1+i
√

7
2 ] ±1±i

√
7

2 {0, 1} ×

{0,±1} X

Z[ 1+i
√

11
2 ] ±1±i

√
11

2 {0,±1} ×

Table 5.1: Numeration systems from Table 2.2 which satisfy necessary condition for OL property from
Proposition 4.3. The first column lists the ring of all algebraic integers OK containing particular polygo-
nal numeration systems, i.e. β ∈ OK and A ⊂ OK . The constant ρ is ρ = 1+i

√
3

2 .
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in Section 3.4.2. The resulting weight functions for the algorithms for parallel addition found by the pro-
gram are saved in .csv files which are available in the following GitHub repository:

https://github.com/pajav7/weight_functions .

Then we apply our computer program implementing preprocessing for on-line division, which was
written as part of research assignment [29], to numeration systems with OL property. The implementa-
tion uses programming language SageMath as well and can be seen in the GibHub repository:

https://github.com/pajav7/preprocessing.git .

We use this program to compute the minimal list of rewriting rules and minimal parameter Dmin but
one can also use it to find greater and more appropriate parameter Dmin and corresponding bigger list of
identities.

The algorithm for parallel addition and results of preprocessing for on-line division are the same for
the numeration systems which have the same alphabet and the bases are mutually complex conjugates
since both are obtained considering the minimal polynomial and not the particular root of this polyno-
mial. Therefore in every section we will show the results for bases with positive imaginary part.
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5.1 Ring Z[i]

Let us consider the quadratic field Q(
√
−1) and the corresponding set of all algebraic integers Z[i].

We describe 12 complete polygonal numeration systems in Z[i].

We will discuss the numeration systems (β, A) where β is ±1 ± i and A2 = {0,±1} or β ∈ {±1 ±
i,±2,±2i} and the alphabet is A4 = {0,±1,±i}. The results of preprocessing for on-line division and
the parameters of the algorithms for parallel addition are very similar for these numeration systems and
can be seen in Tables 5.2 and 5.3, respectively.

5.1.1 Base +1 ± i

First base we are going to discuss is β = +1 + i with minimal polynomial x2 −2x + 2. The base +1− i
is very similar since it has the same minimal polynomial. Therefore the algorithm for parallel addition
and results of preprocessing for on-line division are the same. We consider two alphabets A2 = {0,±1}
and A4 = {0,±1,±i}.

In order to find an algorithm for parallel addition we applied the Extending Window Method and
found a 2-block parallel addition algorithm for (β, A2) and 1-block algorithm for numeration system
(β, A4). Other parameters of the algorithms can be seen in Table 5.3.

The set I ensuring OL property of the system (β, A4) is shown for illustration in Figure 5.1. We did
not find a set I for numeration system (β, A2).

Although we have an algorithm for 2-block parallel addition even for smaller alphabet A2, we are
not sure if this numeration would satisfy OL property. Therefore we compute preprocessing for on-line
division only with the larger alphabet A4. Results of preprocessing are listed in Table 5.2 and the list of
rewriting rules follows.

L : 11̄→ 0i 1ī→ 01 10ī→ 00i

101→ 01i 101̄→ 0ii 11ī→ 01i

1iī→ 0ii 1001→ 00ii 100ī→ 00i1̄

Unlike the parameter Dmin,H or number of identities, the particular rewriting rules are very depen-
dent on the minimal polynomial of β and therefore they are slightly different for each numeration system
in the given ring of all algebraic integers.

5.1.2 Base −1 ± i - Penney number

Let us consider the base with minimal polynomial of the form x2 − 2x + 2, i.e. the Penney number
and its complex conjugate. Let β = −1 ± i. We use the same alphabets A2 = {0,±1} and A4 = {0,±1,±i}
as in the previous section.
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Figure 5.1: OL property for numeration system (β, A) with base β = +1 + i and alphabet A4.

The program implementing the EWM was used to find a 2-block and 1-block algorithms for parallel
addition for numeration systems (β, A2) and (β, A4), respectively. Details of these algorithms may be seen
in Table 5.3 and the weight functions are available in the GitHub repository. Note that these algorithms
were already mentioned in [22].

The question whether the numeration system (β, A4) satisfies OL property was already treated in [9].
Notice that we can use the same set I as we used in Figure 5.1 in order to prove that OL property
is satisfied because the set is symmetrical to multiplying by -1 and i. We did not find a set ensuring
OL property for the numeration system (β, A2).

The results of preprocessing and the parameters of the algorithm for parallel addition can be seen
in Tables 5.2 and 5.3. We can compare the list of rewriting rules with the results obtained in the previous
section:

L : 11→ 0i 1ī→ 01̄ 10i→ 00ī

101→ 01̄ī 101̄→ 0iī 11̄i→ 01̄ī

1ii→ 0iī 1001̄→ 00īi 100ī→ 00ī1̄
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5.1.3 Base ±2,±2i

The question whether OL property is satisfied is not yet answered for four numeration systems in Z[i],
namely numeration systems with bases β ∈ {±2,±2i} and alphabet A4 = {0,±1,±i}. Since the necessary
condition

#A4 = 5 > |β|2 = 4

is valid, it is possible that some set I ensuring OL property of these numeration systems exists. Therefore
we did not perform preprocessing for on-line division since it is not clear whether necessary condition is
satisfied. Also, the EWM did not find an algorithm for parallel addition for either numeration system.

5.1.4 Summary

In Tables 5.2 and 5.3 we provide the results of preprocessing for on-line division and parameters of
algorithms for parallel addition for complete polygonal numeration systems in Z[i].

Dmin = 0.148089 · · ·
#L = 36
H = 2.236067 · · ·

Table 5.2: Results of preprocessing for polygonal numeration system (β, A4) in Z[i], namely for bases
β = ±1 ± i.

A {0,±1} {0,±1,±i}

k-block 2 1
p = 1 + r 5 6

# LuT 60721 2165713

Table 5.3: Parameters of algorithms for parallel addition for complete polygonal numeration systems
(β, A) with bases β = ±1 ± i and alphabets A2 and A4.
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5.2 Ring Z[i
√

2]

Let us consider the quadratic field Q(
√
−2) and the corresponding ring of all algebraic integers

Z[i
√

2]. The only two numeration systems we are going to discuss are for β = ±i
√

2 with minimal
polynomial x2 + 2 and alphabet A2 = {0,±1}.

The necessary condition for parallel addition from Theorem 3.9 is satisfied. The program implement-
ing the Extending Window Method found a 1-block parallel addition algorithm. The properties of this
algorithm can be seen in Table 5.4. Note that algorithm for parallel addition for the numeration systems
(±i
√

2, A2) was already mentioned in [7]. In [22] the Extending Window Method was already used to
find an algorithm for parallel addition for numeration system (β, A2).

k-block = 1
p = 4

# LuT = 289

Table 5.4: Parameters of algorithms for parallel addition for complete polygonal numeration systems
(β, A2) with bases β = ±i

√
2.

OL property for the numeration system (β, A2) is satisfied due to Theorem 4.5. The corresponding
set I can be found in Figure 5.2. This figure shows the set I for β = i

√
2 but since I is symmetrical to

complex conjugation, the set for −i
√

2 is the same.
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Figure 5.2: OL property for numeration system (β, A2) with base β = i
√

2 and alphabet A2.

The results of preprocessing for numeration system (β, A2) and the corresponding list of rewriting
rules L are the following.
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Dmin = 0.274094 · · ·
#L = 6
H = 1.732050 · · ·

L : 101→ 001̄

111→ 011̄

11̄1→ 01̄1̄

Thus effective algorithms for parallel addition and on-line multiplication and division can be per-
formed. Notice that the parameters of the algorithms are very convenient, namely both the weight
function for parallel addition and the list of rewriting rules are very small especially considering how
the minimal parameter Dmin is large compared to other numeration systems treated in this chapter.
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5.3 Ring Z[1+i
√

3
2 ]

We will discuss the quadratic field Q(
√
−3). The set of all algebraic integers is according to Propo-

sition 2.4 equal to Z[ 1+i
√

3
2 ]. We denote ρ = 1+i

√
3

2 . The complete polygonal numeration systems (β, A)
in Z[ρ] which satisfy necessary condition for OL property are for base β = ±i

√
3 and alphabet A3 =

{0, 1, ρ2, ρ4} or for bases β ∈
{
±i
√

3, ±3±i
√

3
2 ,±2,±(1 + i

√
3)

}
and alphabet A6 = {0, 1, ρ, ρ2, ρ3, ρ4, ρ5}.

Notice that the numeration systems with alphabet A6 can be divided into two groups by the size of
the base since

|β| =


√

3 for β ∈
{
± i
√

3, ±3±i
√

3
2

}
,

2 for β ∈
{
± 2,±(1 + i

√
3)

}
.

This is an important fact since the results of preprocessing and the algorithm for parallel addition are
the same for numeration systems in each group as can be seen in Tables 5.5, 5.6 and 5.7.

5.3.1 Base ±i
√

3

Let us focus on two numeration systems with bases β = ±i
√

3, whose minimal polynomial is of
the form x2 +3. In [25] the author examined the possibility of expanding any complex number in the base
+i
√

3 and alphabet {0, 1, ρ} which is however not a polygonal system. We do not know much about
the numeration system (β, A3) with A3 = {0, 1, ρ2, ρ4} where ρ = 1+i

√
3

2 since we did not find a set
I proving that OL property is satisfied, nor did the Extending Window Method find an algorithm for
parallel addition.

From now on we will consider the numeration system (i
√

3, A6) with alphabet A6. An algorithm for
1-block parallel addition was found for this numeration system. The parameters of the algorithm can be
seen in Table 5.5.

The set I ensuring that OL property was already found in [9], see Figure 5.3. Preprocessing for
on-line division was performed using our computer program and the obtained results can be seen in Ta-
ble 5.6. The corresponding list of identities follows. Only two rules are listed bellow since the other 10
rules can be obtained by simply multiplying by ρ, ρ2 or −1.

L : 1ρ3 → 0ρ2

1ρ5 → 0ρ

5.3.2 Base +3±i
√

3
2

Let us focus on numeration system with base β = +3±i
√

3
2 with minimal polynomial x2+3x+3. We did

not find a set ensuring OL property for the numeration systems (β, A3) where A3 = {0, 1, ρ2, ρ4} where
ρ = 1+i

√
3

2 , nor did the EWM find an algorithm for parallel addition. Hence we focus on numeration
systems with alphabet A6 = {0, 1, ρ, ρ2, ρ3, ρ4, ρ5}.
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Figure 5.3: OL property for numeration system (β, A6) with base β = i
√

3 and alphabet A6.

This numeration system is very similar to the numeration system with base ±i
√

3. The algorithm for
parallel addition was found using the Extending Window Method. Its parameters can be seen in Table 5.5.

In order to prove that OL property is satisfied, we can use the same set I as in Figure 5.3 since

i
√

3 · I =
+3 ± i

√
3

2
· I

and the alphabet is the same for both numeration systems. Therefore we can use our program to compute
preprocessing for on-line division. Results of the preprocessing are in Table 5.6 and the list of identities
is the following.

L : 1ρ3 → 0ρ

1ρ4 → 01

The other 10 identities can be obtained by multiplying these rules by ρ, ρ2 and −1 since the alphabet
is closed under multiplication by these numbers.

5.3.3 Base −3±i
√

3
2 - Eisenstein number

The case for alphabet A3 = {0, 1, ρ2, ρ4} is the same as in the previous section for bases 3±i
√

3
2 . Let us

discuss the so-called redundant Eisenstein system, i.e. numeration system with the base β = −3±i
√

3
2 with
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minimal polynomial x2 + 3x + 3 and the alphabet A6 = {0, 1, ρ, ρ2, ρ3, ρ4, ρ5} where ρ = 1+i
√

3
2 .

The EWM found a 1-block algorithm for parallel addition. Details of this algorithm are in Table 5.5.
Note that the EWM method was already used in [22] to find an algorithm for parallel addition for this
numeration system. According to Proposition 4.6 the redundant Eisenstein system satisfies OL property,
see [9]. It was proven using a set I from Figure 4.1 which is similar to the set proving the OL property
for bases ±i

√
3 and +3±i

√
3

2 in Figure 5.3. The results of preprocessing are listed in Table 5.6 and the list
of rewriting rules considering the symmetry of the alphabet A6 follows.

L : 11→ 0ρ2

1ρ5 → 01̄

The previous six numeration systems we discussed with bases ±i
√

3, +3±i
√

3
2 and −3±i

√
3

2 and alphabet
A6 are very similar when you compare the results for parallel addition and preprocessing for on-line
division. The only difference among them are the rewriting rules for preprocessing since their minimal
polynomial is different. But symmetry can be seen even for the rewriting rules.

5.3.4 Base +2

Let us discuss the second group of numeration systems in Z[ 1+i
√

3
2 ] where the base is either ±2 or

±(1 + i
√

3) and the alphabet is A6 = {0, 1, ρ, ρ2, ρ3, ρ4, ρ5} where ρ = 1+i
√

3
2 . First let β = +2.

The necessary condition for parallel addition from Theorem 3.9 is satisfied but the algorithm itself
was not yet found using the Extending Window Method even though we search up to the k = 5 for k-block
algorithm for parallel addition. In [4] it was proven that addition is computable in parallel in the numer-
ation system (β, A6). The proof of existence of the algorithm uses a possibility of representation of any
number in the spectrum XA6(β) by an integer alphabet.

The numeration system (β, A6) has OL property as can be seen in Figure 5.4. Thus we can compute
preprocessing for on-line division. The results of preprocessing are in Table 5.9 and the list of rewriting
rules (considering symmetry of the alphabet A6) is the following.

L : 1ρ3 → 01

5.3.5 Base −2

Let the base be β = −2. We did not find the set I ensuring OL property for the numeration system
with alphabet A3 = {0, 1, ρ2, ρ4} where ρ = +1+i

√
3

2 and the Extending Window Method did not find
an algorithm for parallel addition. Therefore we focus on the alphabet A6 =

{
0, 1, ρ, ρ2, ρ3, ρ4, ρ5

}
.
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Figure 5.4: OL property for the numeration system with base β = 2 and alphabet A6.

The necessary condition for parallel addition is satisfied but the algorithm itself was not found using
the Extending Window Method. However we know that the algorithm for parallel addition exists since
we can use the similarity with numeration system (2, A6) and the transformation rules from Table 2.3.

The idea of the algorithm follows. We take two (−2, A6)-representation of the inputs of the algorithm
and transform them both into (2, A6)-representation. Then we compute the algorithm for parallel addition
which we know exists from the previous section. The last step is to transform the result back to (−2, A6)
numeration system. Since both the transformations are dependent only on particular digit, the resulting
algorithm for parallel addition with additional steps is still computable in parallel. There is one detail to
keep in mind and it is that we have to know on which position the digit is in order to transform it into
representation in different numeration system.

OL property is also satisfied for the same set I as in Figure 5.4 since the set is symmetrical to
multiplying by -1.

We can perform preprocessing for on-line division whose results are shown in Table 5.7. The list
of rewriting rules while considering that the alphabet is symmetric to multiplying by ρ, ρ2 and −1 is
the following.

L : 11→ 0ρ3
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5.3.6 Base +1 ± i
√

3

Let β = +1 + i
√

3 with minimal polynomial of the form x2 − 2x + 4. The case for alphabet A3 =

{0, 1, ρ2, ρ4}where ρ = 1+i
√

3
2 is similar to the previous section for base−2. Let A6 =

{
0, 1, ρ, ρ2, ρ3, ρ4, ρ5

}
be the alphabet. In order to prove that OL property is satisfied for the numeration system (β, A6) we can
use the set I from Figure 5.4 since

2 · I = (1 + i
√

3) · I

and both these numeration systems have the same alphabet A6. The results of the preprocessing are
similar to results of the numeration systems with bases ±2, see Table 5.7. The list containing rewriting
rules can be summarized by the following due to symmetry of the alphabet A6.

L : 1ρ4 → 0ρ

The Extending Window Method did not find an algorithm for parallel addition. Since there exists
the algorithm for the base 2 and these numeration systems are very similar (e.g. the results of prepro-
cessing) we believe there might exist a similar algorithm for numeration system (β, A6). The same idea
for creating parallel addition using the transformation from (2, A6)-numeration system from Table 2.3
described in the previous section can be also applied on numeration systems (1 ± i

√
3, A6).

5.3.7 Base −1 ± i
√

3

Let us consider the base β = −1 − i
√

3 with minimal polynomial x2 + 2x + 4 and the alphabet
A6 =

{
0, 1, ρ, ρ2, ρ3, ρ4, ρ5

}
. This numeration system is similar not only to the base +1 + i

√
3 but also to

bases ±2.

The OL property is satisfied for the same set I as the numeration system with base +1+i
√

3 which can
be seen in Figure 5.4, the set I is also symmetrical to complex conjugation. The results of preprocessing
can be found in Table 5.7 and the list of identities follows. The other rules can be derived from symmetry
of the alphabet A6.

L : 1ρ5 → 0ρ2

The situation for parallel addition is the same as in the previous section. The Extending Window
Method did not find an algorithm for parallel addition which is something that all the numeration systems
in the group have in common. There is a possibility that there exists a similar algorithm for parallel
addition as was described in [4] since all the numeration systems in this group are very similar and we
can obtain a (−1 ± i

√
3, A6)-representation of number using the transformation rules from Table 2.3.
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5.3.7.1 Summary

This section contains the results of preprocessing for on-line division and parameters of algorithms
for parallel addition for complete polygonal numeration systems in Z[ 1+i

√
3

2 ] which satisfy OL property.

k-block = 1
p = 3

# LuT = 6085

Table 5.5: Parameters of algorithms for parallel addition for complete polygonal numeration systems
(β, A6) where β ∈

{
±i
√

3, ±3±i
√

3
2

}
and A6 = {0, 1, ρ, ρ2, ρ3, ρ4, ρ5}.

Dmin = 0.136391 · · ·
#L = 12
H = 1.322875 · · ·

Table 5.6: Results of preprocessing for polygonal numeration system (β, A6) in Z[ 1+i
√

3
2 ], namely for

bases β ∈
{
±i
√

3, ±3±i
√

3
2

}
and alphabet A6 = {0, 1, ρ, ρ2, ρ3, ρ4, ρ5}.

Dmin = 0.183012 · · ·
#L = 6
H = 1.000000 · · ·

Table 5.7: Results of preprocessing for polygonal numeration system (β, A6) in Z[ 1+i
√

3
2 ], namely for

bases β ∈
{
±2,±(1 + i

√
3)

}
and alphabet A6 = {0, 1, ρ, ρ2, ρ3, ρ4, ρ5}.

5.4 Ring Z[1+i
√

7
2 ]

Let us focus on the quadratic field Q(
√
−7) and its set of all algebraic integers Z[ 1+i

√
7

2 ]. We will
discuss four complete polygonal numeration systems in Z[ 1+i

√
7

2 ] with bases β = ±1±i
√

7
2 and alphabet

A2 = {0,±1}. In order to prove the OL property of these systems, we cannot use Theorem 4.5, since
the condition #A2 > |β|

2 + |β + β̄| is not satisfied. Nevertheless, we have found the set I explicitly, see
Figures 5.5a and 5.5b.

5.4.1 Base +1±i
√

7
2

Let the base be β = +1+i
√

7
2 with minimal polynomial of the form x2 − x + 2 and the alphabet

A2 = {0,±1}. The necessary condition for parallel addition is satisfied. The EWM found a 2-block
algorithm for parallel addition whose parameters are given in Table 5.8.
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The set I proving the OL property was found explicitly, see Figure 5.5a. Note that for the base 1−i
√

7
2

we have to use the set I from Figure 5.5b since I is not closed under complex conjugation. Hence we
can use our program to compute preprocessing for on-line division. Results of the preprocessing are
in Table 5.9 and the list containing rewriting rules follows. We list only the rules starting on positive
number since the rest can be obtained by multiplying by −1.

L : 101→ 011̄

11̄1→ 001̄

Note also that the value of parameter H is chosen as a rough estimate of its exact value, since the ar-
gument of the base β is an irrational multiple of π and therefore the value β j for j ∈ N never has imaginary
part equal to 0.

5.4.2 Base −1±i
√

7
2

Let us focus on the base −1+i
√

7
2 with minimal polynomial x2 + x + 2 and the alphabet A2 = {0,±1}.

The necessary condition for parallel addition from Theorem 3.9 is not satisfied but the Extending Win-
dow Method found a 2-block algorithm for parallel addition. All parameters of the algorithm are given
in Table 5.8.

The set ensuring OL property can be seen in Figure 5.5b. For the base −1−i
√

7
2 we have to use the set I

from Figure 5.5b since I is not closed under complex conjugation as in the previous section.

If we compute preprocessing for on-line division, we obtain the following list of rewriting rules:

L : 101→ 01̄1̄

111→ 001̄

and other parameters of the algorithm are the same as for the previous numeration system and can be
seen in Table 5.9.

5.4.3 Summary

This section provides the results of preprocessing for on-line division and parameters of algorithms
for parallel addition for complete polygonal numeration systems in Z[ 1+i

√
7

2 ] which satisfy OL property.

k-block = 2
p = 4

# LuT = 11809

Table 5.8: Parameters of algorithms for parallel addition for complete polygonal numeration systems
(β, A2) where β = ±1±i

√
7

2 and A2 = {0,±1}.



80 CHAPTER 5. ARITHMETICS IN IMAGINARY QUADRATIC FIELDS

Dmin = 0.085665 · · ·
#L = 4
H = 1.757700 · · ·

Table 5.9: Results of preprocessing for polygonal numeration systems (β, A2) in Z[ 1+i
√

7
2 ], namely for

bases β = ±1±i
√

7
2 and alphabet A2 = {0,±1}.
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Figure 5.5a: OL property for numeration system with bases β =
±(1+i

√
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2 and alphabet A2.
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Figure 5.5b: OL property for numeration system with bases β =
±(1−i
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2 and alphabet A2.



Conclusion

This work deals with polygonal numeration systems in imaginary quadratic fields. We focused
on completeness and on feasibility of arithmetic operations including parallel addition and on-line di-
vision and multiplication in these non-standard numeration systems.

First we fully characterized the complete polygonal numeration systems in imaginary quadratic fields
by generalizing the results from [19] to non-integer alphabets. Later we introduced a necessary condi-
tion for OL property, i.e. for feasibility of on-line arithmetics. For several previously unresolved cases
of polygonal numeration systems, we explicitly found the set I ensuring OL property.

We used several computer programs. The first program by Legerský [20] implemented the Extend-
ing Window Method in order to find an algorithm for parallel addition for a given numeration system.
Another program implemented within the research assignment [29] computes preprocessing of divisors
for on-line division.

We applied the above mentioned computer programs on complete polygonal numeration systems
in imaginary quadratic fields which did satisfy the necessary condition for OL property. The results can
be seen in Table 5.10. The first two columns specify the numeration system. The following three columns
show the parameters of the algorithms found for parallel addition. Finally, the result of preprocessing for
on-line division including the number of rewriting rules and corresponding parameter Dmin are displayed.

β A k-block p = 1 + r # LuT #L Dmin

±1 ± i {0,±1} 2 5 60721 - -
{0,±1,±i} 1 6 2165713 36 0.148089 · · ·

±i
√

2 {0,±1} 1 4 289 6 0.274094 · · ·

i
√

3 · ρ j {0, 1, ρ, ρ2, ρ3, ρ4, ρ5} 1 3 6085 12 0.136391 · · ·

2 · ρ j {0, 1, ρ, ρ2, ρ3, ρ4, ρ5} * * * 6 0.183012 · · ·
±1±i

√
7

2 {0,±1} 2 4 11809 4 0.085665 · · ·

Table 5.10: Results for preprocessing for on-line division and parameters of algorithm for parallel addi-
tion for numeration systems from Table 5.1. We consider the constant ρ = 1+i

√
3

2 and j ∈ {0, 1, 2, 3, 4, 5}.
The symbol * means that we know that the algorithm for parallel addition exists from [16] but we did
not find it using the EWM.
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Among the questions remaining open is the problem of describing the OL property for the following
polygonal numeration systems in imaginary quadratic fields:

• bases β = ±1 ± i and alphabet A2 = {0,±1},

• bases β ∈ {±2,±2i} and alphabet A4 = {0,±1,±i},

• bases β ∈
{
±i
√

3, ±3±i
√

3
2

}
and alphabet A3 = {0, 1, ρ2, ρ4}.

More generally, OL property is rarely answered for any polygonal numeration systems in algebraic fields
of degree n ≥ 3.

Some of the complete polygonal numeration systems may not satisfy OL property but we can modify
them in order to obtain this property. Consider the base ±(1 + i

√
2) and the alphabet A4 = {0,±1,±i}

which is a polygonal extension of the original alphabet A2 = {0,±1}. This numeration system is still
polygonal, but the field containing this numeration system is no longer quadratic. In Figure 5.7 the set I
ensuring OL property is shown.

A similar set I can be applied for the numeration system with the base ±(1 − i
√

2) and the alphabet
A4 = {0,±1,±i} and it is rendered in Figure 5.8.
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Figure 5.7: OL property for numeration system with base β = +1 + i
√

2 and alphabet A4 = {0,±1,±i}.
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Figure 5.8: OL property for numeration system with base β = −1 + i
√

2 and alphabet A4 = {0,±1,±i}.
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[12] Frougny, Ch., Pelantová, E., and Svobodová, M. Minimal digit sets for parallel addition in non-
standard numeration systems. J. Integer Seq. 16 (2013), Article 13.2.17.

[13] Garsia, A. M. Arithmetic properties of Bernoulli convolutions. Trans. Amer. Math. Soc. 102, 3
(1962), 409–432.

[14] Gilbert, W. J. Radix representations of quadratic fields. J. Math. Anal. Appl. 83 (1981), 264–274.
85
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Appendices

In each row, the first figure shows the spectrum of the numeration system XA(β) and the second figure
displays the set of fractions WA(β).
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