7 research outputs found

    Undecidability and Finite Automata

    Full text link
    Using a novel rewriting problem, we show that several natural decision problems about finite automata are undecidable (i.e., recursively unsolvable). In contrast, we also prove three related problems are decidable. We apply one result to prove the undecidability of a related problem about k-automatic sets of rational numbers

    Automatic sets of rational numbers

    Full text link
    The notion of a k-automatic set of integers is well-studied. We develop a new notion - the k-automatic set of rational numbers - and prove basic properties of these sets, including closure properties and decidability.Comment: Previous version appeared in Proc. LATA 2012 conferenc

    The Critical Exponent is Computable for Automatic Sequences

    Full text link
    The critical exponent of an infinite word is defined to be the supremum of the exponent of each of its factors. For k-automatic sequences, we show that this critical exponent is always either a rational number or infinite, and its value is computable. Our results also apply to variants of the critical exponent, such as the initial critical exponent of Berthe, Holton, and Zamboni and the Diophantine exponent of Adamczewski and Bugeaud. Our work generalizes or recovers previous results of Krieger and others, and is applicable to other situations; e.g., the computation of the optimal recurrence constant for a linearly recurrent k-automatic sequence.Comment: In Proceedings WORDS 2011, arXiv:1108.341

    Deciding Properties of Automatic Sequences

    Get PDF
    In this thesis, we show that several natural questions about automatic sequences can be expressed as logical predicates and then decided mechanically. We extend known results in this area to broader classes of sequences (e.g., paperfolding words), introduce new operations that extend the space of possible queries, and show how to process the results. We begin with the fundamental concepts and problems related to automatic sequences, and the corresponding numeration systems. Building on that foundation, we discuss the general logical framework that formalizes the questions we can mechanically answer. We start with a first-order logical theory, and then extend it with additional predicates and operations. Then we explain a slightly different technique that works on a monadic second- order theory, but show that it is ultimately subsumed by an extension of the first-order theory. Next, we give two applications: critical exponent and paperfolding words. In the critical exponent example, we mechanically construct an automaton that describes a set of rational numbers related to a given automatic sequence. Then we give a polynomial-time algorithm to compute the supremum of this rational set, allowing us to compute the critical exponent and many similar quantities. In the paperfolding example, we extend our mechanical procedure to the paperfolding words, an uncountably infinite collection of infinite words. In the following chapter, we address abelian and additive problems on automatic sequences. We give an example of a natural predicate which is provably inexpressible in our first-order theory, and discuss alternate methods for solving abelian and additive problems on automatic sequences. We close with a chapter of open problems, drawn from the earlier chapters

    Automatic Sequences and Decidable Properties: Implementation and Applications

    Get PDF
    In 1912 Axel Thue sparked the study of combinatorics on words when he showed that the Thue-Morse sequence contains no overlaps, that is, factors of the form ayaya. Since then many interesting properties of sequences began to be discovered and studied. In this thesis, we consider a class of infinite sequences generated by automata, called the k-automatic sequences. In particular, we present a logical theory in which many properties of k-automatic sequences can be expressed as predicates and we show that such predicates are decidable. Our main contribution is the implementation of a theorem prover capable of practically characterizing many commonly sought-after properties of k-automatic sequences. We showcase a panoply of results achieved using our method. We give new explicit descriptions of the recurrence and appearance functions of a list of well-known k-automatic sequences. We define a related function, called the condensation function, and give explicit descriptions for it as well. We re-affirm known results on the critical exponent of some sequences and determine it for others where it was previously unknown. On the more theoretical side, we show that the subword complexity p(n) of k-automatic sequences is k-synchronized, i.e., the language of pairs (n, p(n)) (expressed in base k) is accepted by an automaton. Furthermore, we prove that the Lyndon factorization of k-automatic sequences is also k-automatic and explicitly compute the factorization for several sequences. Finally, we show that while the number of unbordered factors of length n is not k-synchronized, it is k-regular

    Combinatorial number theory through diagramming and gesture

    Get PDF
    Within combinatorial number theory, we study a variety of problems about whole numbers that include enumerative, diagrammatic, or computational elements. We present results motivated by two different areas within combinatorial number theory: the study of partitions and the study of digital representations of integers. We take the perspective that mathematics research is mathematics learning; existing research from mathematics education on mathematics learning and problem solving can be applied to mathematics research. We illustrate this by focusing on the concept of diagramming and gesture as mathematical practice. The mathematics presented is viewed through this lens throughout the document. Joint with H. E. Burson and A. Straub, motivated by recent results working toward classifying (s,t)(s, t)-core partitions into distinct parts, we present results on certain abaci diagrams. We give a recurrence (on ss) for generating polynomials for ss-core abaci diagrams with spacing dd and maximum position strictly less than msrms-r for positive integers ss, dd, mm, and rr. In the case r=1r =1, this implies a recurrence for (s,ms1)(s, ms-1)-core partitions into dd-distinct parts, generalizing several recent results. We introduce the sets Q(b;{d1,d2,,dk})Q(b;\{d_1, d_2, \ldots, d_k\}) to be integers that can be represented as quotients of integers that can be written in base bb using only digits from the set {d1,,dk}\{d_1, \ldots, d_k\}. We explore in detail the sets Q(b;{d1,d2,,dk})Q(b;\{d_1, d_2, \ldots, d_k\}) where d1=0d_1 = 0 and the remaining digits form proper subsets of the set {1,2,,b1}\{1, 2, \ldots, b-1\} for the cases b=3b =3, b=4b=4 and b=5b=5. We introduce modified multiplication transducers as a computational tool for studying these sets. We conclude with discussion of Q(b;{d1,dk})Q(b; \{d_1, \ldots d_k\}) for general bb and digit sets including {1,0,1}\{-1, 0, 1\}. Sections of this dissertation are written for a nontraditional audience (outside of the academic mathematics research community)
    corecore