
Automatic Sequences

and

Decidable Properties:

Implementation and Applications

by

Daniel Go£

A thesis
presented to the University of Waterloo

in ful�llment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2013

© Daniel Go£ 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144146857?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required �nal revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

In 1912 Axel Thue sparked the study of combinatorics on words when he showed that
the Thue-Morse sequence contains no overlaps, that is, factors of the form ayaya. Since
then many interesting properties of sequences began to be discovered and studied. In
this thesis, we consider a class of in�nite sequences generated by automata, called the k-
automatic sequences. In particular, we present a logical theory in which many properties
of k-automatic sequences can be expressed as predicates and we show that such predicates
are decidable.

Our main contribution is the implementation of a theorem prover capable of practi-
cally characterizing many commonly sought-after properties of k-automatic sequences. We
showcase a panoply of results achieved using our method. We give new explicit descriptions
of the recurrence and appearance functions of a list of well-known k-automatic sequences.
We de�ne a related function, called the condensation function, and give explicit descrip-
tions for it as well. We re-a�rm known results on the critical exponent of some sequences
and determine it for others where it was previously unknown. On the more theoretical side,
we show that the subword complexity ρ(n) of k-automatic sequences is k-synchronized, i.e.,
the language of pairs (n, ρ(n)) (expressed in base k) is accepted by an automaton. Further-
more, we prove that the Lyndon factorization of k-automatic sequences is also k-automatic
and explicitly compute the factorization for several sequences. Finally, we show that while
the number of unbordered factors of length n is not k-synchronized, it is k-regular.

iii

Acknowledgements

I would like to thank Je�rey Shallit for supervising the research presented in this thesis.
I am also very grateful to Luke Schae�er, Hamoon Mousavi and Kalle Saari with whom I
have collaborated on this research. Last but not least, I would like to thank Kevin Hare
and Timothy Chan for serving as readers for this thesis.

iv

Dedication

This thesis is dedicated to the one I love.

v

Table of Contents

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 History and Background . 2

1.2 Overview . 3

2 Preliminaries 5

2.1 Words . 5

2.2 Languages . 6

2.3 Morphisms and Codings . 6

2.4 Automata . 6

2.4.1 Nondeterministic Finite Automata 6

2.4.2 Deterministic Finite Automata . 7

2.4.3 Deterministic Finite Automata with Output 8

2.4.4 Transducers . 8

2.5 k-Automatic Sequences . 9

2.5.1 The Thue-Morse Sequence . 9

2.5.2 The Rudin-Shapiro Sequence . 10

2.5.3 The Regular Paperfolding Sequence 10

vi

2.5.4 The Period-doubling Sequence . 12

2.5.5 The Baum-Sweet Sequence . 12

2.5.6 The Mephisto Waltz Sequence . 13

2.5.7 The Stewart Choral Sequence . 13

2.5.8 The Leech Sequence . 14

2.5.9 k-Kernel . 15

2.6 k-Regular Sequences . 15

2.7 k-Synchronized Functions . 16

3 Decidability and Implementation 17

3.1 Logic . 17

3.2 Decidability . 19

3.3 Representing Natural Numbers . 20

3.3.1 Tuples . 21

3.4 Integer Expressions . 22

3.5 Expression Comparison . 23

3.6 Logical Connectives and Logical Negation 24

3.7 The Existential Quanti�er . 24

3.7.1 Trailing Zeroes . 25

3.8 Extrema: Minimum and Maximum . 25

3.9 Program Output . 26

3.10 Implementation Details and Statistics . 29

4 Recurrence 30

4.1 Introduction . 30

4.2 Rudin-Shapiro . 31

4.3 Thue-Morse . 33

4.4 Paperfolding . 35

vii

4.5 Period-Doubling . 37

4.6 Baum-Sweet . 39

4.7 Mephisto Waltz . 41

4.8 Stewart Choral . 43

5 Appearance 46

5.1 Introduction . 46

5.2 Thue-Morse . 47

5.3 Rudin-Shapiro . 48

5.4 Paperfolding . 50

5.5 Period-doubling . 52

5.6 Baum-Sweet . 53

5.7 Mephisto Waltz . 55

5.8 Stewart Choral . 57

6 Condensation 59

6.1 Introduction . 59

6.2 Thue-Morse . 60

6.3 Rudin-Shapiro . 62

6.4 Paperfolding . 64

6.5 Period-doubling . 66

6.6 Baum-Sweet . 68

6.7 Mephisto Waltz . 70

6.8 Stewart Choral . 72

7 Power Avoidance 74

7.1 Introduction . 74

7.2 Thue-Morse . 75

viii

7.3 Paperfolding . 77

7.4 Leech . 77

7.5 Rudin-Shapiro . 78

7.6 Period-doubling . 80

7.7 Stewart Choral . 82

7.8 Kurosaki's Sequence . 86

8 Least Periods and Quasi-periods 89

8.1 Least Periods . 89

8.2 Enumeration . 90

8.3 Computations . 91

8.4 More Enumeration . 93

8.5 Quasi-periods . 94

9 Borders and Unbordered Factors 96

9.1 Borders . 96

9.2 Additional Results on Unbordered Words 99

9.3 Unbordered Factor Complexity . 101

9.4 Proof of the Conjecture . 102

9.5 Determining the Relations . 105

9.6 The Growth Rate of f(n) . 106

9.7 Unbordered Factors of Other Sequences . 108

10 Primitive Words and Lyndon Words 109

10.1 Lyndon words . 109

10.2 Lyndon Factorization . 111

10.3 Enumeration . 115

10.4 Finite Factorizations . 117

ix

11 Subword Complexity 121

11.1 Subword Complexity . 122

11.2 Implementation . 128

11.3 Powers and Primitive Words . 130

11.4 Unsynchronized Sequences . 134

12 Conclusion and Open Problems 136

12.1 Keränen's Word . 136

12.2 Lempel-Ziv and Crochemore Factorizations 137

12.3 Further Work . 137

References 139

APPENDICES 148

A Program Output 149

A.1 Quasi-periods and the Usual Suspects . 149

A.2 Search for Quasi-periods . 151

x

List of Tables

8.1 Computation statistics of least periods of several automatic sequences . . 92

8.2 The number L(n) of distinct factors having a given least period of length n 93

9.1 A �rst few terms of f(n), the number of unbordered factors of t of length n 106

11.1 The �rst few terms of e(n) . 127

xi

List of Figures

1.1 A �nite automaton generating the Thue-Morse sequence 1

2.1 A �nite automaton accepting English sentences consisting of the word buffalo
(The symbol denotes the space character.) 7

2.2 A DFAO reading in (n)2 and outputting n (mod 3) 8

2.3 A �nite-state transducer that outputs
(
bx
2
c
)
2
on input (x)2 9

2.4 A DFAO generating t: the Thue-Morse sequence 10

2.5 A DFAO generating r: the Rudin-Shapiro sequence 10

2.6 A DFAO generating p: the paperfolding sequence 11

2.7 A DFAO generating d: the period-doubling sequence 12

2.8 A DFAO generating b: the Baum-Sweet sequence 13

2.9 A DFAO generating m: the Mephisto Waltz sequence 13

2.10 A DFAO generating s: the Stewart choral sequence 14

2.11 A DFAO generating l: the Leech sequence 15

2.12 A DFA encoding the 2-synchronized function f(n) = 2dlog2(n)e 16

3.1 An automaton generating the Baum-Sweet sequence in LSD representation 21

3.2 An automaton accepting (x, y) where x is even and y is odd (LSD represen-
tation) . 22

3.3 A transducer with input (x, y) encoding the expression `(x+ y)' 22

3.4 An automaton accepting input (x, y) such that `x ≤ y' 23

3.5 An input expression for computing A(n) 27

xii

3.6 Typical program output on the expression in Figure 3.5 28

4.1 The recurrence window of the Thue-Morse sequence containing all factors
of length 2 . 31

4.2 An automaton encoding Rr(n) . 32

4.3 An automaton encoding Rt(n) . 34

4.4 An automaton encoding Rp(n) . 36

4.5 An automaton encoding Rd(n) . 38

4.6 An automaton encoding the location and size of factors that do not occur
at a later position in the Baum-Sweet sequence 40

4.7 An automaton encoding Rm(n) . 42

4.8 An automaton encoding Rs(n) . 44

5.1 The appearance window of the Thue-Morse sequence containing all factors
of length 2 . 46

5.2 An automaton encoding At(n) . 47

5.3 An automaton encoding Ar(n) . 49

5.4 An automaton encoding Ap(n) . 51

5.5 An automaton encoding Ad(n) . 52

5.6 An automaton encoding Ab(n) . 54

5.7 An automaton encoding Am(n) . 56

5.8 An automaton encoding As(n) . 57

6.1 The condensation window of the Thue-Morse sequence containing all factors
of length 2 . 60

6.2 An automaton encoding Ct(n) . 61

6.3 An automaton encoding Cr(n) . 63

6.4 An automaton encoding Cp(n) . 65

6.5 An automaton encoding Cd(n) . 67

6.6 An automaton encoding Cb(n) . 69

xiii

6.7 An automaton encoding Cm(n) . 71

6.8 An automaton encoding Cs(n) . 72

7.1 An automaton encoding the location of overlaps in the Thue-Morse sequence 75

7.2 An automaton encoding the location of squares in the Thue-Morse sequence 76

7.3 Lengths of squares in the regular paperfolding sequence 77

7.4 An automaton encoding the location of (15
8

) powers in the Leech sequence . 78

7.5 An automaton encoding the location of 4+ powers in the Rudin-Shapiro
sequence . 79

7.6 An automaton encoding the location of 4 powers in the Rudin-Shapiro sequence 80

7.7 An automaton encoding the location of 4 powers in the period-doubling
sequence . 81

7.8 An automaton encoding the location and size of 4− powers in the period-
doubling sequence . 82

7.9 An automaton encoding the location of cubes in the Stewart choral sequence 83

7.10 An automaton encoding the location and size of 3− powers in the Stewart
choral sequence . 84

7.11 An automaton encoding the occurrences of xxyyxx in the Stewart choral
sequence . 85

7.12 A �nite automaton generating k: Kurosaki's sequence 86

7.13 An automaton encoding the location of (7
4
)+ powers in the Kurosaki sequence 86

7.14 An automaton encoding the location and size of 7
4
powers in the Kurosaki

sequence . 87

8.1 A �nite automaton accepting least periods of the regular paperfolding sequence 92

9.1 An automaton encoding the length of unbordered factors occurring in the
Thue-Morse sequence . 98

9.2 A �nite automaton for unbordered factors in the regular paperfolding sequence100

9.3 Automaton accepting (n, i)2 such that there is a novel unbordered factor of
length n at position i of t . 103

xiv

10.1 A �nite automaton accepting the base-2 representation of (n, i) such that
the Lyndon factorization of t[0..n− 1] ends in the term t[i..n− 1] 118

10.2 A �nite automaton accepting the base-2 representation of (i, j, l) such that
the Lyndon factorization of t[i..j − 1] ends in the term t[l..j − 1] 119

11.1 Evolution of novel occurrences of factors in the Thue-Morse sequence . . . 123

11.2 Automaton computing the subword complexity of the Thue-Morse sequence 127

11.3 Automaton computing number of contiguous blocks of novel occurrences of
length-n factors in the Thue-Morse sequence 128

11.4 Automaton computing the subword complexity of the paperfolding sequence 129

11.5 Automaton computing the subword complexity of the period-doubling se-
quence . 130

11.6 How the number of blocks changes . 133

xv

Chapter 1

Introduction

Remark 1. Parts of this chapter are taken verbatim and re-purposed from [55].

This thesis is concerned with certain natural questions about automatic sequences : that
is, sequences over a �nite alphabet where the n'th term of the sequence is expressible as a
�nite-state function of the base-k representation of n. In particular, we consider answering
these questions purely mechanically, in an automated fashion.

The prototypical example of a k-automatic sequence is the Thue-Morse sequence gen-
erated by the automaton in Figure 1.1.

0start 1

0
1

0

1

Figure 1.1: A �nite automaton generating the Thue-Morse sequence

Here, the n'th term in the Thue-Morse sequence is determined by `feeding in' n in base
2 into the automaton above and noting the label of the last state reached. For example,
the �fth term is 0 since upon reading 101 we end in the state labelled 0.

1

1.1 History and Background

For at least 25 years, researchers have been interested in the algorithmic decidability of
assertions about automatic sequences. For example, in one of the earliest results, Honkala
[63] showed that, given an automaton M , it is decidable if the sequence generated by M
is ultimately periodic.

Recently, Allouche et al. [9] found a di�erent proof of Honkala's result using a more
general technique. Using this technique, they were able to give algorithmic solutions to
many classical problems from combinatorics on words such as

Given an automaton, is the generated sequence squarefree? Or overlapfree?

The technique of Allouche et al. is at its core, very similar to work of Büchi, Bruyère,
Michaux, Villemaire, and others, involving formal logic; see, e.g., [19]. The basic idea is
as follows: given the automaton M , and some predicate P (n) we want to check, we alter
M by a series of transformations to obtain a new automaton M ′ that accepts the base-k
representations of those integers n for which P (n) is true. Then we can check the assertion
�∃n P (n)� simply by checking if M ′ accepts anything (which can be done by a standard
depth-�rst search on the underlying directed graph of the automaton). We can check the
assertion �∀n P (n)� by checking if M ′ accepts everything. And we can check assertions
like �P (n) holds for in�nitely many n� by checking if M ′ has a reachable cycle from which
a �nal state is reachable.

Using this idea, Allouche et al. were able to reprove, purely mechanically using a com-
puter program, Thue's classic result on the overlapfreeness of the Thue-Morse sequence.

More recently, the technique has been applied to give decision procedures for other
properties of automatic sequences. For example, Charlier et al. [28] showed that it can be
used to decide if a given k-automatic sequence

� contains powers of arbitrarily large exponent;

� is recurrent;

� is uniformly recurrent.

More recently, variations of the technique have been used to

� compute the critical exponent;

2

� compute the initial critical exponent;

� decide if a sequence is linearly recurrent;

� compute the Diophantine exponent.

1.2 Overview

One of the main contributions of the author of this thesis was the implementation and
optimization of a theorem solver able to decide precisely the sort of predicates described
above. Unlike previous applications which tended to be more ad hoc, this theorem solver
rather versatile in that it takes the predicate in question as program input. The author is
also responsible for analysing and cataloguing the results presented in this thesis. Further-
more, the author contributed many important non-trivial insights necessary to formulate
the predicates describing the desired properties in question.

Chapters 2 and 3 of this thesis lay the groundwork for many of the concepts and
ideas used throughout the thesis. Chapter 2 gives preliminary de�nitions as well as a list
of various k-automatic sequences frequently referred to in the later chapters. Chapter 3
presents the main result of this thesis � mainly the implementation details of the theorem
solver.

In Chapters 4, 5, and 6 present respectively a catalogue of the recurrence, appearance
and condensation functions of a list of well-known k-automatic sequences. Chapter 7 stays
the course by giving a list of the critical exponents for various sequences. The critical
exponent of a sequence is the largest power that occurs as a factor in the sequence. Some
of the results in Chapter 7 were previously known and are here re-con�rmed, while others
are novel.

Chapter 8 restates a result regarding the least periods of k-automatic sequences previ-
ously published in [55] and also presents novel results regarding quasi-periods. In Chap-
ter 9 we consider bordered and unbordered factors of k-automatic sequences and we give a
description of the number of unbordered factors of length n as a k-regular sequence. Chap-
ter 10 concerns itself with Lyndon factors and factorizations of k-automatic sequences.

A function f is called k-synchronized if the pairs (n, f(n)) are accepted by an automa-
ton. For example, in Chapters 4, 5, and 6 we show that the recurrence, appearance and
condensation functions of k-automatic sequences are k-synchronized. Chapter 11 demon-
strates that the subword complexity of k-automatic sequences is also k-synchronized. The

3

subword complexity of a sequence is a function ρ(n) that counts the number of unique
factors of length n that occur in the sequence. Furthermore, as we shall see in this chapter,
the number of factors that are primitive (or powers) is k-synchronized as well. In Chap-
ter 11 we also demonstrate that the number of unbordered factors, previously discussed in
Chapter 9, is not k-synchronized in general.

Chapters 9, 10, and 11, present material previously published in [56], [57], and [58],
respectively; only the contributions of the author of this thesis are included here.

As is customary, Chapter 12 summarizes the results and presents a list of open problems
as well as potential further research.

4

Chapter 2

Preliminaries

2.1 Words

An alphabet is a (typically) �nite set of symbols. For example, the English lower-case
alphabet ∆ = {a, b, c, . . . , z} consists of 26 symbols. The Greek alphabet Γ = {α, β, . . . , ω}
only consists of 24 symbols. For our purposes, alphabets need not be based on real-world
examples. It is often useful to consider the binary alphabet Σ2 = {0, 1}. In the rest of
this paper we will refer to a generalized version of the binary alphabet, the k-ary alphabet
Σk = {0, 1, . . . , k − 1}. We let (n)k denote the k-ary representation of n starting with the
most signi�cant digit and omitting any leading zeroes.

A word over Σ is a member of Σ∗ where Σ∗ =
⋃
i≥0 Σi. For example, the English word

hi is a member of ∆2, and the word four is a member of ∆4. In this way, all the lower-case
English words belong to ∆∗. We extend the notion of a word to right-in�nite words. A
right-in�nite word x over Σ is de�ned as a sequence x = (xi)i≥0 where each xi ∈ Σ. One
can, of course, also de�ne left-in�nite words or bi-in�nite words in a similar matter, but
they are not necessary for this thesis. In the rest of this thesis, an in�nite word will be
used to mean a right-in�nite word, and we will use a bold typeface to di�erentiate them
from �nite words.

A factor of a �nite word w is a contiguous subsequence of the word. For example, duct
is a factor of the word introduction. To refer to the character at position i of w we write
w[i]. Note that the �rst character is at position 0, rather than 1. We let w[i..j] denote
the factor of w starting at position i and ending at j. In this example, if we let v = duct,
and w = introduction, we have that v = w[5..8]. A factor of w that starts at the �rst

5

position is called a pre�x of w. To illustrate, the word intro is a pre�x of introduction.
We say that v is a proper pre�x of w if v 6= w. Similarly, a su�x of a word w is a factor
that ends on the last position of w. The word ion is a proper su�x of introduction.

The notion of a factor can be extended to factors of in�nite words. We only need to
extend the indexes to N∪{∞}. For example, we let x[i..∞] denote the su�x of an in�nite
word x starting at position i.

2.2 Languages

A language is simply a set of �nite words. We say that L is a language over the alphabet
Σ if each word in L is also a member of Σ∗. In fact, Σ∗ is itself a language.

2.3 Morphisms and Codings

A morphism is a map φ from Σ∗ to ∆∗ such that φ(xy) = φ(x)φ(y) for all x, y ∈ Σ∗. We
call a morphism φ a k-uniform morphism if for all a ∈ Σ we have |φ(a)| = k. For example,
the morphism

0→ 01

1→ 10

is 2-uniform. We call a word x a �xed point of φ if x = φ(x).

A coding is simply a map µ from an alphabet Σ to alphabet ∆ (possibly the same).

2.4 Automata

2.4.1 Nondeterministic Finite Automata

Formally, a nondeterministic �nite automaton (NFA) is de�ned as a �ve-tuple (Q,Σ, δ, I, F)
where Q is a �nite set of states, Σ is an alphabet,

δ : Q× Σ→ 2Q

6

is the transition function, I is the set of initial states, and F ⊆ Q is the set of accepting
states. Essentially, an automaton performs `work' on an input word and decides whether
or not to `accept' the word. Formally an automaton M accepts a word w i� there exists a
path from an initial state to a �nal state labelled w. We let L(M) denote the set of words
accepted by M , which is called the language accepted by M . A language is called regular
if there exists a NFA that accepts it.

It is well-known that the English word buffalo is an noun adjunct, noun and a verb.
As such, the word buffalo has the interesting property that any number of repetitions
of the followed by a period forms a grammatically correct English sentence (if one ignores
upper-case letters.) Below in Figure 2.1 we depict an automaton that will accept precisely
such sentences.

q0start

q1

q2

q3

q4

q5

q6

q7

q8
b

u f f a l o

 .

Figure 2.1: A �nite automaton accepting English sentences consisting of the word buffalo

(The symbol denotes the space character.)

2.4.2 Deterministic Finite Automata

In fact, the example in Figure 2.1 is a deterministic �nite automaton (DFA). A DFA is
a restriction on an NFA where there is only one start state I = {q0} and the transition
function δ only maps to one destination. In fact, any NFA can be turned into an equivalent
DFA � a DFA that accepts the same set of words. However, the process of conversion can
increase the number of states exponentially. In other words, the equivalent minimal DFA
for an NFA with n states might have as many as 2n states. We say that the number of
states of the minimal DFA accepting a regular language L is the state complexity of L.

7

2.4.3 Deterministic Finite Automata with Output

Traditionally, automata are restricted to two possible outputs: accept and reject. For
the purposes of our discussion in this thesis, we �nd it useful to extend a DFA to have
a �nite number of outputs. We shall refer to such a machine as a deterministic �nite
automaton with output (DFAO). Formally a DFAO is a six-tuple (Q,Σ, δ, q0,∆, τ) where
where Q is a �nite set of states, Σ is an alphabet as before, δ : Q×Σ→ Q is the transition
function restricted to be deterministic, q0 is the initial state and ∆ is output alphabet, and
τ : Q→ ∆ is the output function. A DFAO is particularly useful when representing disjoint
classes of properties of the output, for example to output n (mod 3), as in Figure 2.2.

q0/0start q1/1 q2/2

0

1 0

1 0

1

Figure 2.2: A DFAO reading in (n)2 and outputting n (mod 3)

Note that the output associated with each state of a DFAO is typically printed after a
forward slash (/) in the state label.

2.4.4 Transducers

Alternatively, instead of one output at the end of the computation, an automaton can
produce output at each step in the computation. One such class of automata is the class
of a transducers. A transducer is formally de�ned as six-tuple (Q,Σ, δ, q0,∆, λ) where Q,
Σ, δ, q0, and ∆ are as in a DFAO and

λ : Q× Σ→ ∆∗

is the output function. We think of the transducer as a function from Σ∗ into ∆∗; a
transducer output a word in ∆∗ upon reading an input from Σ∗. For example, in Figure 2.3
the transducer reads binary encodings of natural numbers and `divides' the input number
x by 2.

8

q0start q1

0/0
1/0

1/1

0/1

Figure 2.3: A �nite-state transducer that outputs
(
bx
2
c
)
2
on input (x)2

2.5 k-Automatic Sequences

Let x = (a(n))n≥0 be an in�nite sequence over a �nite alphabet ∆, and let k ≥ 2 be an
integer. Then x is said to be k-automatic if there is a deterministic �nite automaton M
taking as input the base-k representation of n, and having a(n) as the output associated
with the last state encountered [10]. In this case, we say that M generates the sequence x.

Alternatively, an a sequence is k-automatic if and only if it is the the �xed point of a
k-uniform morphism, or the image, under a coding, of such a �xed point. We will see some
examples of that below.

2.5.1 The Thue-Morse Sequence

The Thue-Morse sequence t = t0t1t2 · · · = 01101001100101101001011001101001 · · · also
sometimes called Prouhet-Thue-Morse sequence was �rst studied by Eugène Prouhet in
1851, although it was Axel Thue who formally described it in 1912 [104]. In fact, the
�eld of combinatorics on words, the proper subject of this thesis, was founded when Thue
studied this famous sequence.

There are many equivalent descriptions of the Thue-Morse sequence, one such is to let
t be the �xed point of the morphism

0→ 01

1→ 10

starting with with the string `0'.

Another way to de�ne Thue-Morse is to start with 0 and repeatedly append the com-
plement of the string thus far [7].

9

The Thue-Morse sequence is 2-automatic and in Figure 2.4 we give, as an example, an
automaton generating the sequence. The input is n, expressed in base 2, and the output
is the number contained in the state last reached. Thus t(n) is the sum, modulo 2, of the
binary digits of n.

q0/0start q1/1

0

1

0

1

Figure 2.4: A DFAO generating t: the Thue-Morse sequence

2.5.2 The Rudin-Shapiro Sequence

The Rudin-Shapiro sequence [89, 98] r = 000100100001110100010010111000 · · · is yet
another famous 2-automatic sequence. It can be de�ned as the count, modulo 2, of the
number of (possibly overlapping) occurrences of 11 in (n)2.

q0/0start q1/0 q2/1 q3/1

0

1

0

1 0

1

0

1

Figure 2.5: A DFAO generating r: the Rudin-Shapiro sequence

2.5.3 The Regular Paperfolding Sequence

The regular paperfolding sequence [34] p = 11011001110010011101100011001001 · · · is a
sequence generated by iteratively folding a piece of paper right and then uncurling it and
noting down the sequence of turns. For example, we may assign 0 to left turns and 1 to
right turns.

Thus each consecutive iteration is de�ned as the previous iteration followed by 1 and
again the previous iteration, but in reverse and complemented, i.e., p = lim

n→∞
p(n) where

10

p(0) = ε and
p(n) = p(n− 1) 1 p(n− 1)R.

for all n ≥ 1 where x �ips the bits in x and R denotes reversal. To illustrate, the sequence
would be generated as follows:

1

1 1 0

1 1 0 1 1 0 0

1 1 0 1 1 0 0 1 1 1 0 0 1 0 0

and so on.

The paperfolding sequence can also be described by the formula

pn =

{
1, if m ≡ 1 (mod 4);
0, if m ≡ 3 (mod 4),

where n+ 1 = m · 2r and m is odd. (We note that the `n+ 1' is a modi�cation of the usual
de�nition which is due to our convention of indexing sequences starting at 0.)

p is also the �xed point of the map

00→ 1000

01→ 1001

10→ 1100

11→ 1101

starting with with the string `11'. The paperfolding sequence is a 2-automatic sequence
and is, for example, generated by the automaton in Figure 2.6.

q0/1start q1/1 q2/0 q3/0

0

1 0

1

0

1

0

1

Figure 2.6: A DFAO generating p: the paperfolding sequence

11

2.5.4 The Period-doubling Sequence

The period-doubling sequence [33] d = 10111010101110111011101010111010 · · · is a se-
quence related to the Thue Morse sequence and de�ned by

dn =

{
1, if tn = tn+1;
0, otherwise,

where t0t1t2 · · · is the Thue-Morse word t.

Note that d is the �xed point of the morphism

0→ 01

1→ 00

starting with with the string `0'. The period doubling sequence is a 2-automatic sequence
and is, for example, generated by the automaton in Figure 2.7.

q0/0start q1/1

0

1

0,1

Figure 2.7: A DFAO generating d: the period-doubling sequence

2.5.5 The Baum-Sweet Sequence

The Baum-Sweet sequence b = 11011001010010011001000001001001 · · · takes on the value
1 if the binary representation of n contains no block of consecutive 0's of odd length, and
0 otherwise [10]. Alternatively, this sequence is de�ned by

bn =

{
0, if m is even;
b(m−1)/2, if m is odd,

where n = m · 4` and m is not divisible by 4.

12

There is a 4-state automaton over Σ2 generating the Baum-Sweet sequence, as can be
seen in Figure 2.8 demonstrating it to be yet another 2-automatic sequence.

q0/1start q1/1 q2/0 q3/0

0

1
0

1

0

1

0,1

Figure 2.8: A DFAO generating b: the Baum-Sweet sequence

2.5.6 The Mephisto Waltz Sequence

The Mephisto waltz sequence, m = 00100111000100111011011000100100 · · · so-called for
its alleged resemblance of Franz Liszt's famous Mephisto waltzes, is de�ned as the �xed
point of the morphism

0→ 001

1→ 110

starting with with the string `0'.

The Mephisto waltz sequence is a 3-automatic sequence and is generated by the au-
tomaton in Figure 2.9.

q0/0start q1/1

0,1

2

2

0,1

Figure 2.9: A DFAO generating m: the Mephisto Waltz sequence

2.5.7 The Stewart Choral Sequence

The Stewart choral sequence, s = 00100101100100101100101101100100 · · · was introduced
by Ian Stewart in an article in the Scienti�c American in 1995 [102]. This sequence is

13

de�ned as the �xed point of the morphism

0→ 001

1→ 011

starting with with the string `0'. More recently, it was picked up and studied by J. R.
Roche [86] who showed that the sequence can also be de�ned by

sn =

{
1, if ∃ i, j ∈ Z∗ such that n = 3i+1j + 1

2
(5 · 3i − 1);

0, if ∃ i, j ∈ Z∗ such that n = 3i+1j + 1
2
(3i − 1).

The Stewart choral sequence is also 3-automatic sequence and is generated by the
automaton in Figure 2.10.

q0/0start q1/1

0,1

2

0

1,2

Figure 2.10: A DFAO generating s: the Stewart choral sequence

2.5.8 The Leech Sequence

The Leech sequence, also known as the Leech word, is a 13-automatic sequence described
in 1957 by John Leech [69]. It is de�ned as the �xed point of the following morphism,

0→ 0121021201210

1→ 1202102012021

2→ 2010210120102

starting with the string `0'.

The Leech word is generated by a 3 state automaton over Σ13 as can be seen in Fig-
ure 2.11.

14

q0/0start

q1/1

q2/2

0,4,8,12

1,3,6,9,11

2,5,7,10

2,5,7,10

0,4,8,12

1,3,6,9,11

1,3,6,9,11

2,5,7,10

0,4,8,12

Figure 2.11: A DFAO generating l: the Leech sequence

2.5.9 k-Kernel

A subsequence y of x of the form y[i] = x[ika + l] where a ≥ 1, l ≥ 0 is called a k-kernel of
x. A distinguishing aspect of k-automatic sequences is that the k-kernel of a k-automatic
sequence is �nite [10].

2.6 k-Regular Sequences

The k-automatic sequences are de�ned over �nite alphabets. A natural extension is to
extend to an in�nite alphabet. Formally, we say that a sequence (a(n))n≥0 is k-regular if
for every i ≥ 0 and 0 ≤ b ≤ ki there exist c1, c2, . . . , cs ∈ Z such that for all integers n ≥ 0
we have

a(kin+ b) =
∑
1≤j≤s

cja(n)

Here we borrow a typical example of a k-regular sequence from [10]. Let s2(n) be the
function counting the sum of the binary digits of n. Whenever i ≥ 0 and 0 < b < 2i we

15

have that
s2(2

in+ b) = s2(n) + s2(b).

It follows that s2 is 2-regular.

See [11] for more details.

2.7 k-Synchronized Functions

Another way to extend the notion of `automatic' to an in�nite alphabet is via k-synchronized
functions. We say a function f : N → N is k-synchronized if there exists an automaton
accepting

{(n, f(n))k for all n ≥ 0}.

This notion is taken from Carpi and more information and examples can be found
in [22, 23, 25]. Below in Figure 2.12 we give an example of a 2-synchronized function
f(n) = 2dlog2(n)e. The representation used here is most signi�cant digit �rst and is further
explained in Section 3.3.

q0start q1 q2 q3

q4

[0, 0]

[1, 1]

[0, 1] [1, 0]

[0, 0]

[1, 0]

[0, 0], [1, 0]

[0, 0]

Figure 2.12: A DFA encoding the 2-synchronized function f(n) = 2dlog2(n)e

16

Chapter 3

Decidability and Implementation

Many interesting properties of k-automatic sequences expressible in our proposed logical
theory. Charlier, Rampersad and Shallit [28] showed that this theory is decidable. The
linchpin on this thesis rests on the fact that many of the properties of common sequences
such as Thue-Morse or Rudin-Shapiro are also practically computable. We will see lots of
examples of properties we computed in the later sections of this thesis.

3.1 Logic

Formally, the logical predicates presented in this paper can be hierarchically de�ned as
follows:

� Variables are symbols from a set V and they represent natural numbers.

� Integer expressions (addition, multiplication by constants) are either

� c, a constant,

� x, or

� (A+B);

where c ∈ N, x ∈ V , and A and B are integer expressions. Once we de�ne (A + B)
we can also express c · x for any c ∈ N and x ∈ V as

c · x = (x+ (x+ · · · (x+ x) · · ·)︸ ︷︷ ︸
c times

).

17

We will use this short-hand in the rest of this thesis.

For example: `((2x+ 3) + 4z)' is an integer expression.

� Comparison predicates (CP) are predicates comparing integer expressions and are of
the form

� A = B,

� A ≤ B, or

� A < B;

where A and B are integer expressions. For example: `(x + y) < z' is a comparison
predicate.

� Indexing predicates (IP) are predicates indexing into a k-automatic sequence and are
of the form

� x[A] = x[B],

� x[A] ≤ x[B], or

� x[A] < x[B];

where A and B are integer expressions and some sort of ordering is imposed on ∆
the �nite alphabet over which the sequence x is de�ned. An example of an indexing
predicate would be `t[i] = t[2i]' where t is the Thue-Morse sequence.

� Formulae are essentially boolean functions on variables. A formula is either

� P

� ¬φ,
� (φ ∧ ψ),

� (φ ∨ ψ), or

� ∃x, φ;

where P is either IP or CP and φ and ψ are formulae. We let ¬φ denote the logical
negation of φ. We also let (φ∧ψ) denote the conjunction and (φ∨ψ) the disjunction
of the formulae φ and ψ.

The existential quanti�er ∃x requires that x is a variable not already quanti�ed in φ.

18

The identity
¬∀x, φ = ∃x,¬φ

which is a form of De Morgan's law gives us a way of expressing the universal quan-
ti�er and for the rest of this paper we will use ∀x, φ as a short form for ¬∃x,¬φ.

3.2 Decidability

Many of the logical concepts present in this thesis can be thought of as an extension of
Presburger arithmetic. Presburger arithmetic is a �rst-order theory of the natural numbers
with addition [82]. In 1929 a 25-year old Jewish-Polish mathematician Moj»esz Presburger
showed that Presburger arithmetic is decidable. In fact, in 1974 Fischer and Rabin showed
that the computational complexity of this decision problem is doubly exponential [45].

In order to e�ectively talk about various logical theories we �rst need to formally de�ne
a few things. Let S be a set of structure in the sense of [19]. The theory of S is the set of
logical sentences true for S and we denote it Th(S).

Thus, using the notation of Bruyère et al. in [19], Presburger arithmetic can be also
identi�ed as Th(〈N,+, <, 0〉). This refers to the �rst order logical theory de�ned over
natural numbers with the predicates + and < and the constant 0.

Furthermore, we say that a decision problem is decidable if there exists a program that
will halt to return a true or false value (instead of looping forever) and furthermore, the
value returned answers the decision problem correctly. We say a logical theory Th(S) is
decidable if the inclusion of a logical sentence over S in Th(S) is decidable.

For a given k-automatic sequence x, the logical structures described in Section 3.1 can
be expressed as

〈N,+, <, 0, Pa, Vk〉

where Pa(i) is the predicate `x[i] = a' and Vk(x) = y where y is the largest power of k that
divides x.

Notably, the predicates x[i] = x[j] and x[i] < x[j] mentioned in Section 3.1 are missing
from this list. However, it is immediately obvious that they can be expressed using a clever
arrangement of Pa(i).

In fact, as Bruyère et al. show in [19], the logical structure 〈N,+, <, 0, Pa, Vk〉 is equiv-
alent to 〈N,+, Vk〉. Essentially, < and 0 can be expressed using existential quanti�ers and
+ and Vk are powerful enough to simulate any k-automatic sequence.

19

Much like Presburger arithmetic, the theory 〈N,+, Vk〉 is also decidable. In the rest of
this chapter we give details on how the validity of a sentence in 〈N,+, Vk〉 is computed.
The following theorem formally describes the decidability result, which we quote essentially
verbatim from [57].

Theorem 2. Let P (n) be a predicate associated with a k-automatic sequence x, expressible
using addition, subtraction, comparisons, logical operations, indexing into x, and existential
and universal quanti�ers. In other words, let P (n) be over 〈N,+, <, 0, Pa, Vk〉.

Then there is a computable �nite automaton accepting the base-k representations of
those n for which P (n) holds. Furthermore, we can decide if P (n) holds for at least one
n, or for all n, or for in�nitely many n.

Sketch of proof. Let φ be a sentence given over 〈N,+, >, 0, Pa, Vk〉
First, we create a parse tree for φ. Starting at the leaf nodes we replace the logical

predicates with equivalent automata.

We proceed to collapse the tree evaluating an expression whenever its child nodes have
been evaluated.

For example, if our current step looks as follows:

∧

A B

we perform the direct product construction for intersection on the automata A and B.
(Similarly for disjunction, negation or the existential quanti�er.)

Eventually, we end up with an automaton `encoding' φ as promised.

3.3 Representing Natural Numbers

Any natural number can be readily expressed in base k starting with either the least
digit (LSD) or the most signi�cant digit (MSD). For example, the number eleven reads
as 1101 in base 2 in MSD representation. To facilitate design decisions mentioned in
Section 3.4 we chose the LSD representation throughout the computation steps of our

20

decision procedure. We can easily convert between LSD and MSD representations via
language reversal. We should note an important caveat, the worst case scenario for language
reversal is an exponential increase in state complexity. Fortunately, none of the automata
in our experiments achieved this pathological behaviour.
Remark 3. In order to best illustrate the underlying processes all the automata in this
section assume LSD representation. However, the �nal automata presented in the following
section of this thesis have been `reversed' into the MSD representation.

In Figure 3.1 we can see an LSD representation automaton generating the Baum-Sweet
sequence. Compare with the MSD representation found in Figure 2.8.

q0/1start q1/1 q2/0

0

1

0

1

0,1

Figure 3.1: An automaton generating the Baum-Sweet sequence in LSD representation

3.3.1 Tuples

We can also represent several natural numbers `simultaneously' by using symbols in Σn
k

where n is the number of natural numbers being represented. For example, the pair (13, 5)
can be represented in base 2 (in LSD representation) by the word[

1
1

] [
0
0

] [
1
1

] [
1
0

]
.

We omit the trailing zeroes. This way an automaton with input alphabet Σn
k can be

thought of as accepting n integers in base k. Due to the limitations of the graphing software
we will represent the vectors as row vectors. Thus, we will more commonly represent the
pair (13, 5) as

[1, 1], [0, 0], [1, 1], [1, 0].

Below, in Figure 3.3.1 is an automaton on two base-2 variables x and y accepting only
pairs (x, y) such that x is even and y is odd. The automaton is in LSD representation. We
say that the automaton encodes the predicate

(n) : ∃m such that 2m = n.

21

q0start q1
[0, 1]

[0, 0], [0, 1], [1, 0], [1, 1]

Figure 3.2: An automaton accepting (x, y) where x is even and y is odd (LSD representa-
tion)

3.4 Integer Expressions

Integer expressions involving n variables can be expressed by automata. More formally,
given an integer expression A (as de�ned in the Section 3.1) in a predicate involving n
variables x1, x2, . . . , xn we can create a transducer with input (x1, x2, . . . , xn) and output
in Σk where the output is understood encode the integer expression A in base k.

For example, the automaton in Figure 3.4 encodes the expression `(x+ y)'.

q0start q1

[0, 0]/0, [0, 1]/1, [1, 0]/1

[1, 1]/0

[0, 1]/0, [1, 0]/0, [1, 1]/1

[0, 0]/1

Figure 3.3: A transducer with input (x, y) encoding the expression `(x+ y)'

The above expression is encoded by a transducer in LSD representation and in fact,
there is no MSD transducer that would express it. To see this consider adding (2m− 1, 1),
an MSD transducer would have to `wait' until it sees the last digit before being able to
output anything. A simple argument with the pumping lemma then refutes the existence
of such a transducer.

Alternatively, we can avoid transducers altogether and choose to express integer ex-
pressions with an automaton on n+ 1 inputs where the last input encodes the result of the
expression. This would allow us to work using both MSD and LSD representations.

22

For example, for the expression `(x+ y)' we create the language of (x, y, z)k such that
x+ y = z.

A neat aspect of this alternative encoding is that addition can be expressed in non
base-k systems such as the Ostrowski numeration. These other exotic numerations can be
used to automatically prove theorems about certain non-automatic sequences such as the
Sturmian words [94].

On the other hand, the transducer approach does not require the introduction of another
free variable into the predicate, instead we `pipe' the expression directly where needed. In
practice, the number of free variables is a limiting factor on the feasibility of the computa-
tion; each extra variable e�ectively increases the number of transitions k-fold. And thus,
for reasons of e�ciency and convenience we have chosen to implement the �rst alternative.
Perhaps future research exploring the alternative approach is warranted.

3.5 Expression Comparison

Comparing variables or integer expressions in base-k is likewise readily done with automata.
Below in Figure 3.5, we give an example of a base-2 comparer of inputs (x, y) ensuring
that x ≤ y. Similarly, by altering the set of accepting states and automata ensuring x < y,
x = y, x ≥ y, etc. can be made.

< =start >

[0, 0], [0, 1], [1, 1]
[1, 0]

[0, 0], [1, 1]

[0, 1]

[1, 0]

[0, 0], [1, 0], [1, 1]

[0, 1]

Figure 3.4: An automaton accepting input (x, y) such that `x ≤ y'

In order to compare two integer expressions A and B, we take the cross product of
their corresponding automata resulting in an automaton on inputs (x1, x2, . . . , xn) and

23

outputting (A,B). Finally, we compose this automaton with the appropriate base-k com-
parison automaton.

3.6 Logical Connectives and Logical Negation

Perhaps the most straightforward to implement are the logical connectives. Suppose we
have two automata MP and MQ for their respective predicates P and Q on n variables
(x1, x2, . . . , xn). The predicate (P ∧Q) corresponds to the intersection of MP and MQ and
similarly the predicate (P ∨Q) corresponds to the union of MP and MQ.

Similarly, given an automatonMP for a predicate P we create the complement automa-
ton MP for the predicate (¬P).

3.7 The Existential Quanti�er

Suppose we have an automaton MP for a predicate P on variables x1, x2, . . . , xn. Let
Γn : Σn → Σn−1 be the projection dropping the last coordinate, i.e.,

Γn([a1, a2, . . . , an]) = [a1, a2, . . . , an−1].

Such a projection naturally implies a map from n-variable automata to (n−1)-variable
automata. In particular, let MP = (Q,Σn, δ, q0, F) then the operation implied by Γn maps
MP to M ′ = (Q,Σn−1, δ′, q0, F) where

δ′(q, a) = {r | ∃b ∈ Σn such that Γn(b) = a and δ(q, b) = r}.

This operation corresponds to applying the existential quanti�er on the variable xn.
In other words the automaton M ′ encodes the predicate `∃xnP '. To see this consider a
valuation Θ on the variables x1, x2, . . . , xn where Θ(xi) = mi. The predicate ∃xnP is
satis�ed whenever, having �xed the valuation for all j 6= i, there exists some assignment m
for xn such that P is satis�ed under the new valuation Θ[xn/m]. However, the predicate
P is encoded with the automaton MP and whenever such an assignment exists then there
will exist a path from the start state to a �nal state labelled (m1,m2, . . . ,mn−1,m)k.
Thus, in the new automaton M ′ there exists a path from a start state to a �nal state
labelled (m1,m2, . . . ,mn−1)k. We conclude that M ′ accepts precisely those assignments to
x1, x2, . . . , xn−1 that satisfy ∃xnP and so M ′ encodes ∃xnP .

24

We should note that the operation will generally result in a nondeterministic automa-
ton that subsequently has to be determinized before a logical negation operation may be
applied.

The author of this thesis has made the design decision to determinize and minimize
the encoding automaton at each step in the predicate parse. This protocol is meant to
keep the automata small and easy to work with, although it may introduce an unnecessary
workload such as in the case of two consecutive existential quanti�ers.

As mentioned in the introductory section, the universal quanti�er is implemented as
¬∃¬ and the the automaton must be determinized immediately after our projection.

3.7.1 Trailing Zeroes

A crucial aspect of representing predicates with automata is to ensure the automaton treats
all representation of the same number assignment equally. For example, suppose P (13)
evaluates to true and we are working in base 2, then the automaton MP accepts 1011 but
also need accept 10110, 101100, or 101100000, etc.

Formally, we say that an n-variable automaton M is zero-input stable if whenever M
accepts w ∈ Σn if and only if M also accepts w0 where 0 is the letter (0, 0, . . . , 0︸ ︷︷ ︸

n times

) ∈ Σn.

The automata described in the previous sections satisfy this property. However, after
applying the Γn map to MP the new automaton M ′ may not be zero-input stable. To
see this, consider that ΓN maps (0, 0, . . . , 0, 1) to (0, 0, . . . , 0). In order to ensure that
M ′ is zero-input stable we must modify the automaton slightly after the above described
operation. Speci�cally, if there exists a path in M ′ labelled by 0's from a state q ∈ Q to
a state f ∈ F then we add q to the set of �nal states F . In this way we ensure that our
automata always properly encode their respective predicates.

3.8 Extrema: Minimum and Maximum

Often, a property expressible in our logical theory will demand for the minimum or maxi-
mum value such that a certain predicate, say P , is satis�ed. Suppose we desire to compute
min{xn | P (x1, x2, . . . , xn)}. We can rewrite this as the predicate

P (x1, x2, . . . , xn) and ∀y > xn we have ¬P (x1, x2, . . . , y).

25

This observation is enough to show that the predicate `min{xn | P (x1, x2, . . . , xn)}' is
also decidable by our methods. However, for the sake of e�ciency the author has decided
to implement extrema as a primitive operation. It is implemented as follows: given an
automaton MP for a predicate P we apply the map

Λn([a1, a2, . . . , an]) = {[a1, a2, . . . , an, b] | b ∈ Σ}

toMP in a manner similar to the one described in the previous Section. This new automa-
ton M ′ accepts (x1, x2, . . . , xn, y) such that P (x1, x2, . . . , xn) is satis�ed.

3.9 Program Output

Throughout this thesis we will refer to the computation results of a particular predicate in
question. As such, it seems expedient to give a few details about what such output might
mean, and how it relates to the original predicate.

Our program logs the state complexity and computation time of each step in the parsed
logical predicate. To illustrate we will provide an example. Suppose we are interested in
computing the following function:

A(n) = min{m : such that x[0..m− 1] contains all factors of x of length n }
= min{m : ∀j ≥ 0 ∃`, 0 ≤ ` ≤ m− n, such that x[j..j + n− 1] = x[`..`+ n− 1]}.

However, functions are not one of the implemented primitives; instead we will encode
the function as the predicate P where P (n,m) if and only if m = A(n).

The predicate is then rewritten in custom in�x notation that our program can parse.
The above predicate would be expressed as follows:

26

Here is a summary of the computation:

(\min, m,

(\forall, j,

(\exists, l,

(\and,

(\factor, n, l, j),

(>=, m, n+l)

)

)

)

)

Figure 3.5: An input expression for computing A(n)

In fact, `\factor' and `\forall' are not one our building blocks either. We have built
in several oft-used predicates which are replaced with a corresponding expression composed
of primitives. Thus, the parser immediately replaces the expression in Figure 3.5 with the
expression:

Here is a summary of the computation:

(\min, m,

(\forall, j,

(\exists, l,

(\and,

(\forall, i0

(\or,

(>=, i0, n),

(\out=, l+i0, j+i0)

)

),

(>=, m, n+l)

)

)

)

)

and yet again replaced with the expression: Here is a summary of the computation:

(\min, m,

(\not,

(\exists, j,

(\not,

(\exists, l,

27

(\and,

(\not,

(\exists, i0,

(\not,

(\or,

(>=, i0, n),

(\out=, l+i0, j+i0)

)

)

)

),

(>=, m, n+l)

)

)

)

)

)

)

which is then �nally evaluated.

A typical output of the evaluation of the above expression can be seen in Figure 3.6
below. In the program output, the indentation of the line indicates its nesting within the
predicate. Each step records the initial state complexity after the operation is performed
as well as the minimal state for the resulting automaton. Finally, the total time for the
computation is also recorded.

Here is a summary of the computation:

[>= i0 n] (3 => 2 states) in 0.032s

[\out= l+i0 j+i0] (8 => 8 states) in 0.093s

[\or] (16 => 16 states) in 0.099s

[\not] (17 => 16 states) in 0.104s

[\exists i0] (16 => 22 states) in 0.069s

[\not] (23 => 21 states) in 0.079s

[>= m n+l] (6 => 3 states) in 0.031s

[\and] (40 => 40 states) in 0.094s

[\exists l] (40 => 42 states) in 0.050s

[\not] (43 => 42 states) in 0.087s

[\exists j] (42 => 11 states) in 0.035s

[\not] (12 => 11 states) in 0.054s

[\min m] (9 => 9 states) in 0.122s

[total] (9 states) in 1.002s

Figure 3.6: Typical program output on the expression in Figure 3.5

28

3.10 Implementation Details and Statistics

Our framework rests on top of an automata toolbox library named FSA6.2xx: Finite

State Automata Utilities (FSA). FSA was originally created by Gertjan van Noord
of University of Groningen who released it under the GNU General Public License. The
library is written mainly in Prolog and was chosen for its �exibility and relative e�ciency.
For example, the library natively handles the use of arrays as the input alphabet. Fur-
thermore, it can routinely handle automata with thousands or tens of thousands of states.
You may �nd the sources of FSA at http://www.let.rug.nl/~vannoord/Fsa/.

Our framework was written by the author of this thesis with the guidance of Je�rey
Shallit and occasional brilliant insight of Luke Schae�er. The vast majority of it is written
in PHP, a language known for its �exibility allowing for rapid �eshing-out of prototype
applications. Of course, this �exibility comes at a cost of performance. Perhaps, a more
ideal implementation in a statically typed language such as C++ or Java can be made
in the future. Overall the source code (excluding the FSA library) amounts to 2786 lines
spread across 5 �les.

One of the bottlenecks in program execution turned out to be reading and parsing the
automata output by the FSA library after an operation was performed. To address this
problem the author implemented a small e�cient parser in Java. The parser reads the
automata which it then outputs in JSON, a format natively supported by PHP. However,
this addition has only been needed for sequences over a large input alphabet such as the
Leech word which is 13-automatic.

A neat feature of our implementation is the caching of intermediate results. At each step
in the computation the resulting automaton is cached. The results are stored using a hash
on the expression tree and the particular k-automatic sequence in question. This allows for
e�cient retrieval of already computed results and, furthermore, saves computation time
even if two predicates with identical sub-expressions are computed.

29

http://www.let.rug.nl/~vannoord/Fsa/

Chapter 4

Recurrence

Remark 4. Excerpts of the next 3 chapters are taken essentially verbatim from [56].

4.1 Introduction

A sequence is said to be recurrent if every factor that occurs, occurs in�nitely often. A
sequence x is said to be uniformly recurrent if it is recurrent and furthermore for each �nite
factor w occurring in x, there is a constant c(w) such that two consecutive occurrences of
w are separated by at most c(w) positions.

The recurrence function Rx(n) of a sequence x is the smallest integer m such that every
factor of x of length m contains as a factor all the factors of length n. Formally, we de�ne
the recurrence function as follows:

Rx(n) = min{m : such that ∀k x[k..k +m− 1] contains all factors of x of length n}
= min{m : ∀ k, j ≥ 0 ∃`, k ≤ ` ≤ k +m− n,

such that x[j..j + n− 1] = x[`..`+ n− 1]}.

This predicate is expressible over 〈N,+, <, 0, Pa, Vk〉 and so it can be decided by our meth-
ods. Thus we obtain

Theorem 5. If x is k-automatic, then the sequence (Rx(n))n≥0 is k-synchronized.

In Figure 4.1 we illustrate the recurrence window of the Thue-Morse sequence t for
n = 2. In this example we see that Rt(2) = 9.

30

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 . . .

Figure 4.1: The recurrence window of the Thue-Morse sequence containing all factors of
length 2

The recurrence quotient of a sequence x is de�ned as

sup
n≥1

Rx(n)

n
.

In this chapter we restate the recurrence function and quotient of the Rudin-Shapiro
sequence, �rst presented in [55]. Next, we rea�rm one of the earliest results regarding the
recurrence function of the Thue-Morse sequence. The remaining results presented in this
chapter are novel contributions of this thesis.

4.2 Rudin-Shapiro

Recall that r = (r(n))n≥0 denotes the Rudin-Shapiro sequence. In 1994 Allouche and
Bousquet-Mélou gave the estimate for the recurrence quotient of the Rudin-Shapiro se-
quence as Rr(n + 1) < 172n for n ≥ 1 [3]. (Actually, their result was more general, as it
applies to any �generalized� Rudin-Shapiro sequence.) We used our method to compute a
new explicit expression for the recurrence function Rr(n) and recurrence quotient:

Theorem 6. Then

Rr(n) =

5, if n = 1;

19, if n = 2;

25, if n = 3;

20 · 2t + n− 1, if n ≥ 4 and t = dlog2(n− 1)e.

Furthermore, the recurrence quotient is equal to 41; it is not attained.

Proof. First we created a DFA to encoding the recurrence function of the Rudin-Shapiro
sequence. The resulting automaton can be seen below in Figure 4.2.

31

0 [0,0]

1

[0,1]

2

[0,0]

3

[0,1]

4

[0,0]

5

[0,1]

6

[1,1]

7

[0,0]

8

[1,1]

9

[0,0]

1 0

[1,0]

[0 ,1]

1 1

[0,0]

1 2

[1,0]

1 3

[1,1]

[1 ,1] 1 4

[1,1]

1 5

[0,1]1 6

[0,0]

[0 ,0]

[1 ,0]

1 7

[1,1]

1 8

[0,1]

[1 ,0]

[0 ,0]

[0,0] [1,1]

[1 ,0]

[0 ,1]

Figure 4.2: An automaton encoding Rr(n)

Here is a summary of the computation:

[>= i0 n] (3 => 2 states) in 0.021s

[\out= l+i0 j+i0] (28 => 28 states) in 0.248s

[\or] (56 => 56 states) in 0.284s

[\not] (57 => 56 states) in 0.303s

[\exists i0] (56 => 99 states) in 1.269s

32

[\not] (100 => 98 states) in 0.196s

[>= m+k n+l] (12 => 4 states) in 0.023s

[\and] (273 => 273 states) in 0.336s

[>= l k] (3 => 2 states) in 0.014s

[\and] (425 => 425 states) in 0.537s

[\exists l] (425 => 1818 states) in 22.553s

[\not] (1819 => 1818 states) in 2.573s

[\exists j] (1818 => 323 states) in 2.518s

[\not] (324 => 323 states) in 0.193s

[\not] (324 => 323 states) in 0.183s

[\exists k] (323 => 27 states) in 0.043s

[\not] (28 => 27 states) in 0.026s

[\min m] (16 => 16 states) in 0.075s

[total] (16 states) in 31.996s

We then created a DFA to accept

{(n)2 : ∃ m such that m = 20 · 2t + n− 1 and m = Rr(n) and t = dlog2(n− 1)e}.

We then veri�ed that the resulting DFA accepted all (n)2 for n ≥ 4.

For the recurrence quotient, the local maximum is evidently achieved when n = 2r + 2
for some r ≥ 1; here it is equal to (41 · 2r + 2)/(2r + 2). As r →∞, this clearly approaches
41 from below.

4.3 Thue-Morse

The recurrence function of the Thue-Morse sequence was �rst studied by M. Morse and
G.A. Hedlund in their 1938 article entitled Symbolic Dynamics [77]. In section 8 of the
article they laboriously derive the recurrence function and give the recurrence quotient.
Below, we con�rm their results using our automated method.

Theorem 7. For the Thue-Morse sequence, we have

Rt(n) =

3, if n = 1;

9, if n = 2;

9 · 2t−1 + n− 1, if n ≥ 3 and t = dlog2(n− 1)e.

Furthermore, the recurrence quotient is equal to 10; it is not attained.

33

Proof. The resulting automaton encoding the recurrence function of the Thue-Morse se-
quence can be seen below in Figure 4.3.

0 [0,0]

1

[0,1]

2

[0,0]

3

[1,1]4

[0,1]

5

[1,0]

6

[1,1]

7

[1,0]

[0 ,1] [1 ,1]

8

[0,0]9

[0,1]

[0 ,0]

[1 ,0]

1 0

[1,1]

1 1

[0,1]

[1 ,0]

[0 ,0]

[0,0] [1,1]

[1 ,0]

[0 ,1]

Figure 4.3: An automaton encoding Rt(n)

The local maximum of the recurrence quotient is achieved when n = 2r + 2 for some
r ≥ 1; here it is equal to

9 · 2r + (2r + 2)− 1

2r + 1
=

10 · 2r + 1

2r + 1
.

As r →∞, this clearly approaches 10 from below.
Here is a summary of the computation:

[>= i0 n] (3 => 2 states) in 0.041s

[\out= l+i0 j+i0] (8 => 8 states) in 0.147s

34

[\or] (16 => 16 states) in 0.153s

[\not] (17 => 16 states) in 0.171s

[\exists i0] (16 => 22 states) in 0.111s

[\not] (23 => 21 states) in 0.120s

[>= m+k n+l] (12 => 4 states) in 0.057s

[\and] (61 => 61 states) in 0.162s

[>= l k] (3 => 2 states) in 0.032s

[\and] (97 => 97 states) in 0.249s

[\exists l] (97 => 268 states) in 0.588s

[\not] (269 => 268 states) in 0.517s

[\exists j] (268 => 68 states) in 0.200s

[\not] (69 => 68 states) in 0.094s

[\not] (69 => 68 states) in 0.103s

[\exists k] (68 => 18 states) in 0.039s

[\not] (19 => 18 states) in 0.052s

[\min m] (13 => 13 states) in 0.153s

[total] (13 states) in 3.165s

4.4 Paperfolding

Theorem 8. For the regular paperfolding sequence, we have

Rp(n) =

4, if n = 1;

9, if n = 2;

8 · 2t + n− 1, if n ≥ 3 and t = dlog2(n)e.

Furthermore, the recurrence quotient is equal to 17; it is not attained.

Proof. The resulting automaton encoding the recurrence function of the paperfolding se-
quence can be seen below in Figure 4.4.

35

0 [0,0]

1

[0,1]

2

[0,0]

3

[0,0]

4

[1,0]

5

[0,0]

6

[1,0]

7

[0,1]

8

[1,1]

9

[0,1]

[0,0] [1,1]

1 0

[1,0] [0 ,1]

[0 ,1]

Figure 4.4: An automaton encoding Rp(n)

The local maximum of the recurrence quotient is achieved when n = 2r + 1 for some
r ≥ 1; here it is equal to

8 · 2(r+1) + (2r + 1)− 1

2r + 1
=

17 · 2r

2r + 1
.

As r →∞, this ratio approaches 17 from below.
Here is a summary of the computation:

[>= i0 n] (3 => 2 states) in 0.047s

[\out= l+i0 j+i0] (33 => 15 states) in 0.400s

[\or] (31 => 31 states) in 0.268s

[\not] (32 => 30 states) in 0.257s

[\exists i0] (30 => 61 states) in 0.398s

[\not] (62 => 60 states) in 0.214s

[>= m+k n+l] (12 => 4 states) in 0.042s

36

[\and] (157 => 157 states) in 0.295s

[>= l k] (3 => 2 states) in 0.033s

[\and] (241 => 241 states) in 0.428s

[\exists l] (241 => 433 states) in 3.170s

[\not] (434 => 433 states) in 0.867s

[\exists j] (433 => 155 states) in 0.678s

[\not] (156 => 155 states) in 0.175s

[\not] (156 => 155 states) in 0.168s

[\exists k] (155 => 15 states) in 0.047s

[\not] (16 => 15 states) in 0.045s

[\min m] (9 => 9 states) in 0.156s

[total] (9 states) in 7.992s

4.5 Period-Doubling

Theorem 9. For the period-doubling sequence, we have

Rd(n) =

{
4, if n = 1;

7 · 2t−1 + n− 1, if n ≥ 2 and t = dlog2(n)e.

Furthermore, the recurrence quotient is equal to 8; it is not attained.

Proof. The resulting automaton encoding the recurrence function of the period-doubling
sequence can be seen below in Figure 4.5.

37

0 [0,0]

1

[0,1]

2

[0,0]

3

[0,0]

4

[1,0]

5

[1,0]

6

[0,0][0,0] [1,1]

[1 ,0]

[0 ,1]

Figure 4.5: An automaton encoding Rd(n)

The local maximum of the recurrence quotient is achieved when n = 2r + 1 for some
r ≥ 1; here it is equal to

7 · 2r + (2r + 1)− 1

2r + 1
=

8 · 2r

2r + 1
.

As r →∞, this ratio approaches 8 from below.
Here is a summary of the computation:

[>= i0 n] (3 => 2 states) in 0.037s

[\out= l+i0 j+i0] (13 => 6 states) in 0.235s

[\or] (13 => 13 states) in 0.142s

[\not] (14 => 12 states) in 0.132s

[\exists i0] (12 => 11 states) in 0.049s

[\not] (12 => 10 states) in 0.089s

[>= m+k n+l] (12 => 4 states) in 0.047s

[\and] (30 => 30 states) in 0.107s

[>= l k] (3 => 2 states) in 0.037s

[\and] (50 => 50 states) in 0.141s

[\exists l] (50 => 73 states) in 0.105s

[\not] (74 => 73 states) in 0.176s

[\exists j] (73 => 66 states) in 0.070s

38

[\not] (67 => 66 states) in 0.096s

[\not] (67 => 66 states) in 0.102s

[\exists k] (66 => 12 states) in 0.041s

[\not] (13 => 12 states) in 0.053s

[\min m] (11 => 11 states) in 0.143s

[total] (11 states) in 1.896s

4.6 Baum-Sweet

Theorem 10. The Baum-Sweet sequence is not uniformly recurrent. In fact, let Nx(i) be
the smallest integer n such that x[i..i+ n− 1] does not occur later in x. Then

Nb(i) =

{
2 · 2t − n+ 2, if t = dlog2(n+ 1)e is even;

2 · 2t − n+ 1, if t = dlog2(n+ 1)e is odd.

Proof. We computed the set of pairs (i, n) such that the factor of length n at position i
doesn't occur anywhere later in the sequence and furthermore, n is the shortest such length
at position i. Here is the function expressed in our logical theory:

Nb(i) = min{n : such that ¬ ∃ ` > i where b[i..i+ n− 1] = b[`..`+ n− 1]}

The resulting automaton encoding the the function Nb(i) can be seen below in Fig-
ure 4.6. Thus, for example, b[1..5] = 1011 does not occur anywhere else in this sequence.

39

0 [0,0]

1

[0,1]

2

[0,0]

3

[1,0]

4

[1,1]

5

[0,0] 6

[1,0]

7

[0,1] [1,0]

8

[1,1]

[1 ,1]

[0 ,0]

[0 ,0]

[0,1] [1,0]

[1 ,1]

[0 ,0]

[0,1] [1,0]

Figure 4.6: An automaton encoding the location and size of factors that do not occur at a
later position in the Baum-Sweet sequence

Here is a summary of the computation:

[>= i0 n] (3 => 2 states) in 0.020s

[\out= l+i0 i+i0] (36 => 25 states) in 0.126s

[\or] (49 => 49 states) in 0.119s

[\not] (50 => 48 states) in 0.113s

[\exists i0] (48 => 301 states) in 2.323s

[\not] (302 => 301 states) in 0.277s

[> l i] (3 => 2 states) in 0.025s

[\and] (357 => 357 states) in 0.331s

[\exists l] (357 => 15 states) in 0.071s

[\not] (16 => 15 states) in 0.063s

[\min n] (12 => 12 states) in 0.128s

[total] (12 states) in 3.691s

40

To con�rm that the function Nb(i) matches the description given in the theorem, we
computed the DFA for the predicate

{i : ∃ n such that n = Nb(i) and, either n = 2 · 2t − n+ 2 and t is even;
or n = 2 · 2t − n+ 1 and t is odd

where t = dlog2(n− 1)e}.

We then veri�ed that the resulting DFA accepted all i ≥ 0.

4.7 Mephisto Waltz

Theorem 11. For the Mephisto waltz sequence, we have

Rm(n) =

{
4, if n = 1;

11 · 3t + n− 1, if n ≥ 2 and t = dlog3(n− 1)e.

Furthermore, the recurrence quotient is equal to 34; it is not attained.

Proof. The resulting automaton encoding the recurrence function of the Mephisto waltz
sequence can be seen below in Figure 4.7.

41

0 [0,0]

1

[0,1]

2

[0,0]

3

[0,1]

4

[1,1]

5

[0,2]

6

[1,2]

[2 ,0] 7

[1,0]

[2 ,1] 8

[1,1]

9

[2,2]

1 0

[0,2]

[1 ,0]

[0 ,0]

[1 ,0]

[0 ,0]

[1,1] [2,2]

[2 ,1] [0,0] [1,1] [2,2]

[1,0] [2,1]

[0 ,2]

Figure 4.7: An automaton encoding Rm(n)

The local maximum of the recurrence quotient is achieved when n = 3r + 2 for some
r ≥ 1; here it is equal to

11 · 3(r+1) + (3r + 2)− 1

3r + 2
=

34 · 3r + 1

3r + 2
.

As r →∞, this ratio approaches 34 from below.
Here is a summary of the computation:

[>= i0 n] (3 => 2 states) in 0.158s

[\out= l+i0 j+i0] (8 => 8 states) in 1.117s

[\or] (16 => 16 states) in 1.577s

[\not] (17 => 16 states) in 1.755s

[\exists i0] (16 => 20 states) in 0.742s

[\not] (21 => 19 states) in 0.459s

[>= m+k n+l] (12 => 4 states) in 0.180s

42

[\and] (56 => 56 states) in 0.806s

[>= l k] (3 => 2 states) in 0.077s

[\and] (89 => 89 states) in 1.244s

[\exists l] (89 => 226 states) in 2.066s

[\not] (227 => 226 states) in 2.328s

[\exists j] (226 => 81 states) in 0.607s

[\not] (82 => 81 states) in 0.250s

[\not] (82 => 81 states) in 0.256s

[\exists k] (81 => 15 states) in 0.072s

[\not] (16 => 15 states) in 0.056s

[\min m] (9 => 9 states) in 0.186s

[total] (9 states) in 14.994s

4.8 Stewart Choral

Theorem 12. For the Stewart choral sequence, we have

Rs(n) =

{
3, if n = 1;

3 · 3t + n− 1, if n ≥ 2 and t = dlog3(n)e.

Furthermore, the recurrence quotient is equal to 10; it is not attained.

Proof. The resulting automaton encoding the recurrence function of the Stewart choral
sequence can be seen below in Figure 4.8.

43

0 [0,0]

1

[0,1]

2

[0,0]

3

[1,0]

[2 ,1] 4

[1,1] [2,2]

[0 ,2]

[1,0] [2,1]

[0,0] [1,1] [2,2]

Figure 4.8: An automaton encoding Rs(n)

The local maximum of the recurrence quotient is achieved when n = 3r + 1 for some
r ≥ 1; here it is equal to

3 · 3(r+1) + (3r + 1)− 1

3r + 1
=

10 · 3r

3r + 1
.

As r →∞, this ratio approaches 10 from below.
Here is a summary of the computation:

[>= i0 n] (3 => 2 states) in 0.161s

[\out= l+i0 j+i0] (22 => 11 states) in 2.130s

[\or] (23 => 23 states) in 2.261s

[\not] (24 => 22 states) in 2.138s

[\exists i0] (22 => 14 states) in 0.661s

[\not] (15 => 13 states) in 0.344s

[>= m+k n+l] (12 => 4 states) in 0.177s

[\and] (46 => 46 states) in 0.634s

[>= l k] (3 => 2 states) in 0.076s

[\and] (72 => 72 states) in 1.012s

[\exists l] (72 => 110 states) in 1.160s

[\not] (111 => 110 states) in 1.075s

[\exists j] (110 => 64 states) in 0.343s

[\not] (65 => 64 states) in 0.203s

[\not] (65 => 64 states) in 0.202s

[\exists k] (64 => 8 states) in 0.047s

44

[\not] (9 => 8 states) in 0.053s

[\min m] (6 => 6 states) in 0.162s

[total] (6 states) in 13.700s

45

Chapter 5

Appearance

5.1 Introduction

The appearance function Ax(n) of a sequence x is the smallest integer m such that the
pre�x x[0 . . .m−1] contains as a factor all the factors of length n. The appearance function
was �rst introduced and studied by Allouche and Shallit in Section 10.10 of [10]. Formally,
we de�ne the appearance function as follows:

Ax(n) = min{m : such that x[0..m− 1] contains all factors of x of length n}
= min{m : ∀j ≥ 0 ∃`, 0 ≤ ` ≤ m− n, such that x[j..j + n− 1] = x[`..`+ n− 1]}.

This predicate is also expressible over 〈N,+, <, 0, Pa, Vk〉 and so it can be decided by our
methods. Thus we obtain

Theorem 13. If x is k-automatic, then the sequence (Ax(n))n≥0 is k-synchronized.

In Figure 5.1 we illustrate the appearance window of the Thue-Morse sequence t for
n = 2. In this example we see that At(2) = 7.

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 . . .

Figure 5.1: The appearance window of the Thue-Morse sequence containing all factors of
length 2

In Example 10.10.3 of [10] Allouche and Shallit give a formal description of the appear-
ance function of the Thue-Morse sequence. The remainder of the appearance functions
presented in this chapter were not previously known.

46

5.2 Thue-Morse

Theorem 14. For the Thue-Morse sequence, we have

At(n) =

2, if n = 1;

7, if n = 2;

3 · 2t + n− 1, if n ≥ 3 and t = dlog2(n− 1)e.

Proof. First we created a DFA to encode the appearance function of the Thue-Morse
sequence. The resulting automaton can be seen below in Figure 5.2.

We then created a DFA to accept

{(n)2 : ∃ m such that m = 3 · 2t + n− 1 and m = At(n) and t = dlog2(n− 1)e}.

We then veri�ed that the resulting DFA accepted all (n)2 for n ≥ 4.

0 [0,0]

1

[0,1]

2

[0,0]

3

[0,1]

4

[1,0]

5

[1,1]

6

[1,0]

7

[1,1]

8

[0,1]

[1 ,0]

[0 ,0]

[1 ,0]

[0 ,0]

9

[1,1]

[0 ,1]

[1 ,0]

[0,0] [1,1]

Figure 5.2: An automaton encoding At(n)

Here is a summary of the computation:

47

[>= i0 n] (3 => 2 states) in 0.032s

[\out= l+i0 j+i0] (8 => 8 states) in 0.093s

[\or] (16 => 16 states) in 0.099s

[\not] (17 => 16 states) in 0.104s

[\exists i0] (16 => 22 states) in 0.069s

[\not] (23 => 21 states) in 0.079s

[>= m n+l] (6 => 3 states) in 0.031s

[\and] (40 => 40 states) in 0.094s

[\exists l] (40 => 42 states) in 0.050s

[\not] (43 => 42 states) in 0.087s

[\exists j] (42 => 11 states) in 0.035s

[\not] (12 => 11 states) in 0.054s

[\min m] (9 => 9 states) in 0.122s

[total] (9 states) in 1.002s

5.3 Rudin-Shapiro

Theorem 15. For the Rudin-Shapiro sequence, we have

Ar(n) =

4, if n = 1;

13, if n = 2;

16, if n = 3;

13 · 2t + n− 1, if n ≥ 4 and t = dlog2(n− 1)e.

Proof. We applied the same technique for the Rudin-Shapiro sequence.

The resulting automaton encoding the appearance function of the Rudin-Shapiro se-
quence can be seen below in Figure 5.3.

48

0 [0,0]

1

[0,1]

2

[0,0] 3

[0,1]

4

[0,0]

5

[1,0]

6

[0,0]

7

[0,1]

8

[1,0]

9

[1,0]

1 0

[0,1]

1 1

[1,1]

1 2

[1,0]

[0 ,1]

[1 ,0]

1 3

[1,1]

1 4

[0,1]1 5

[0,0]

[0 ,0]

[1 ,0]

1 6

[1,1]

1 7

[0,1]

[1 ,0]

[0 ,0]

[0,0] [1,1]

[1 ,0]

[0 ,1]

Figure 5.3: An automaton encoding Ar(n)

Here is a summary of the computation:

[>= i0 n] (3 => 2 states) in 0.029s

[\out= l+i0 j+i0] (28 => 28 states) in 0.221s

[\or] (56 => 56 states) in 0.234s

[\not] (57 => 56 states) in 0.229s

[\exists i0] (56 => 99 states) in 1.239s

[\not] (100 => 98 states) in 0.173s

[>= m n+l] (6 => 3 states) in 0.025s

[\and] (184 => 184 states) in 0.196s

[\exists l] (184 => 199 states) in 0.223s

[\not] (200 => 199 states) in 0.195s

[\exists j] (199 => 20 states) in 0.056s

49

[\not] (21 => 20 states) in 0.051s

[\min m] (16 => 16 states) in 0.147s

[total] (16 states) in 3.141s

5.4 Paperfolding

Theorem 16. For the regular paperfolding sequence, we have

Ap(n) =

3, if n = 1;

7, if n = 2;

24, if n = 3;

25, if n = 4;

6 · 2t + n− 1, if n ≥ 5 and t = dlog2(n)e.

Proof. The resulting automaton encoding the appearance function of the paperfolding
sequence can be seen below in Figure 5.4.

50

0 [0,0]

1

[0,1]

2

[0,1]

3

[1,1]

4

[0,0]

5

[1,0]

6

[0,1]

7

[1,0]

8

[1,1]

9

[0,0]

1 0

[0,1]

[1 ,0]

1 1

[0,0] [1,1]

1 2

[1,0][0 ,1] [0 ,1]

[0,0] [1,1]

1 3

[1,0][0 ,1]

[0 ,1]

Figure 5.4: An automaton encoding Ap(n)

Here is a summary of the computation:

[>= i0 n] (3 => 2 states) in 0.028s

[\out= l+i0 j+i0] (33 => 15 states) in 0.219s

[\or] (31 => 31 states) in 0.150s

[\not] (32 => 30 states) in 0.138s

[\exists i0] (30 => 61 states) in 0.221s

[\not] (62 => 60 states) in 0.120s

[>= m n+l] (6 => 3 states) in 0.040s

[\and] (107 => 107 states) in 0.123s

[\exists l] (107 => 51 states) in 0.070s

[\not] (52 => 51 states) in 0.089s

[\exists j] (51 => 19 states) in 0.041s

[\not] (20 => 19 states) in 0.043s

[\min m] (13 => 13 states) in 0.146s

[total] (13 states) in 1.497s

51

5.5 Period-doubling

Theorem 17. For the period-doubling sequence, we have

Ad(n) =

{
2, if n = 1;

3 · 2t−1 + n− 1, if n ≥ 2 and t = dlog2(n)e.

Proof. The resulting automaton encoding the appearance function of the period-doubling
sequence can be seen below in Figure 5.5.

0 [0,0]

1

[0,1]

2

[0,0]

3

[1,0]

4

[1,0]

5

[0,0][0,0] [1,1]

[1 ,0]

[0 ,1]

Figure 5.5: An automaton encoding Ad(n)

Here is a summary of the computation:

[>= i0 n] (3 => 2 states) in 0.033s

[\out= l+i0 j+i0] (13 => 6 states) in 0.131s

[\or] (13 => 13 states) in 0.081s

[\not] (14 => 12 states) in 0.100s

[\exists i0] (12 => 11 states) in 0.036s

[\not] (12 => 10 states) in 0.063s

[>= m n+l] (6 => 3 states) in 0.027s

[\and] (20 => 20 states) in 0.068s

[\exists l] (20 => 13 states) in 0.030s

[\not] (14 => 13 states) in 0.052s

52

[\exists j] (13 => 9 states) in 0.024s

[\not] (10 => 9 states) in 0.047s

[\min m] (9 => 9 states) in 0.124s

[total] (9 states) in 0.857s

5.6 Baum-Sweet

Theorem 18. For the Baum-Sweet sequence, we have

Ab(n) =

3, if n = 1;

7, if n = 2;

23, if n = 3;

26, if n = 4;

27, if n = 5;

46, if n = 6;

49, if n = 7;

50, if n = 8;

89, if n = 9;

98, if n = 10;

99, if n = 11;

100, if n = 12;

23 · 2t + n− 1, if n ≥ 13, 2t = (n− 8) and t is odd;

23 · 2t−1 + n− 1, otherwise, where t = dlog2(n− 8)e .

Proof. The resulting automaton encoding the appearance function of the Baum-Sweet
sequence can be seen below in Figure 5.6.

53

0 [0,0]

1

[0,1]

2

[0,0]

3

[0,1]

4

[1,1]

5

[0,1]

6

[0,0]

7

[1,0]

8

[0,1]

9

[1,1]

1 0

[0,0]

1 1

[1,0]

1 2

[1,1]

1 3

[0,0]

1 4

[0,1]1 5

[0,0]

1 6

[1,1]

1 7

[1,0]

1 8

[0,0]

1 9

[0,1]

2 0

[1,0] 2 1

[1,1]

2 2

[1,0]

2 3

[0,1]

[0,0] [1,1]

[0 ,0]

[0 ,0]

2 4

[0,0]

2 5

[1,0]

2 6

[1,1]

[1 ,1]

2 7

[0,1]

[1 ,1]

2 8

[0,0]

2 9

[1,0]

[1 ,1]

[0 ,0][0 ,1]

3 0

[0,0] [1,1]

3 1

[1,0]

[0 ,0]

[0 ,0]

[1 ,1]

3 2

[1,0][0 ,1]

[1 ,0]

3 3

[0,0] [1,1]

3 4

[0,1]

3 5

[0,0]

3 6

[1,0]

3 7

[1,1]

[0 ,1]

[1 ,0]

[0 ,1]

[0 ,1]

[1 ,0]

3 8

[0,0] [1,1]

3 9

[0,1]

[1 ,1]4 0

[0,0]

4 1

[1,0][0 ,1]

[1 ,0]

[0,0] [1,1]

[0,0] [1,1]

[1 ,0]

[0 ,1]

[0 ,0]

[1 ,1]

4 2

[1,0]

[0 ,1]

[0 ,1]

Figure 5.6: An automaton encoding Ab(n)

54

Here is a summary of the computation:

[>= i0 n] (3 => 2 states) in 0.022s

[\out= l+i0 j+i0] (36 => 25 states) in 0.214s

[\or] (49 => 49 states) in 0.203s

[\not] (50 => 48 states) in 0.195s

[\exists i0] (48 => 301 states) in 4.514s

[\not] (302 => 301 states) in 0.569s

[>= m n+l] (6 => 3 states) in 0.039s

[\and] (589 => 589 states) in 1.214s

[\exists l] (589 => 1231 states) in 2.412s

[\not] (1232 => 1231 states) in 1.196s

[\exists j] (1231 => 71 states) in 0.467s

[\not] (72 => 71 states) in 0.085s

[\min m] (30 => 30 states) in 0.233s

[total] (30 states) in 11.805s

5.7 Mephisto Waltz

Theorem 19. For the Mephisto waltz sequence, we have

Am(n) =

3, if n = 1;

7, if n = 2;

17 · 3t−1 + n− 1, if n ≥ 3, t = dlog3(n− 1)e and n− 2 begins with a 1;

18 · 3t−1 + n− 1, otherwise.

Proof. The resulting automaton encoding the appearance function of the Mephisto waltz
sequence can be seen below in Figure 5.7.

55

0 [0,0]

1

[0,1]

2

[0,2]

3

[1,0][2 ,1]

4

[0,0]

5

[1,0]

6

[1,1]

[2 ,1]

7

[1,0] [2,2]

8

[2,0]

[0 ,1][0 ,2] [1 ,0]

[0 ,0][0 ,0]

[1 ,0]

9

[1,1] [2,2]

1 0

[2,1]

[0 ,2]

[0,0] [1,1] [2,2]

[1,0] [2,1]

[0 ,2]

Figure 5.7: An automaton encoding Am(n)

Here is a summary of the computation:

[>= i0 n] (3 => 2 states) in 0.074s

[\out= l+i0 j+i0] (8 => 8 states) in 0.356s

[\or] (16 => 16 states) in 0.485s

[\not] (17 => 16 states) in 0.483s

[\exists i0] (16 => 20 states) in 0.233s

[\not] (21 => 19 states) in 0.171s

[>= m n+l] (6 => 3 states) in 0.051s

[\and] (37 => 37 states) in 0.166s

[\exists l] (37 => 46 states) in 0.096s

[\not] (47 => 46 states) in 0.163s

[\exists j] (46 => 14 states) in 0.052s

[\not] (15 => 14 states) in 0.067s

[\min m] (12 => 12 states) in 0.192s

[total] (12 states) in 2.759s

56

5.8 Stewart Choral

Theorem 20. For the Stewart choral sequence, we have

As(n) =

3, if n = 1;

5 · 3t − 1

2
+ n, if n ≥ 2, t = dlog3(n)e.

Proof. The resulting automaton encoding the appearance function of the Stewart choral
sequence can be seen below in Figure 5.8.

0 [0,0]

1

[0,1]

2

[0,2]

3

[0,0] 4

[1,0]

5

[1,2]

[1,0] [2,1]

6

[2,0]

[0 ,1]

[0 ,2]

[0 ,1]

[1 ,2]

[0 ,2]

[0,1] [1,2]

Figure 5.8: An automaton encoding As(n)

Here is a summary of the computation:

[>= i0 n] (3 => 2 states) in 0.067s

[\out= l+i0 j+i0] (22 => 11 states) in 0.617s

[\or] (23 => 23 states) in 0.662s

[\not] (24 => 22 states) in 0.637s

[\exists i0] (22 => 14 states) in 0.210s

[\not] (15 => 13 states) in 0.135s

[>= m n+l] (6 => 3 states) in 0.057s

[\and] (33 => 33 states) in 0.155s

[\exists l] (33 => 24 states) in 0.064s

57

[\not] (25 => 24 states) in 0.107s

[\exists j] (24 => 10 states) in 0.035s

[\not] (11 => 10 states) in 0.055s

[\min m] (7 => 7 states) in 0.156s

[total] (7 states) in 3.131s

In order to con�rm that the appearance function is as described above, we created a
DFA to accept

{(n)3 : ∃ m such that 2m = 5 · 3t + 2n− 1 and m = As(n) where t = dlog3(n)e}.

We then veri�ed that the resulting DFA accepted all (n)2 for n ≥ 2.

58

Chapter 6

Condensation

6.1 Introduction

An in�nite word x is linearly recurrent if there is a constant C such that every word of
length n appears as a factor of every factor of w of length Cn. Thus, for the optimal C,
the quantity Cn can be regarded as the maximum, over all �window sizes� beginning at
each position, that minimally contain all length-n factors (no smaller �window� works).

We could instead compute the minimum, over all starting positions and the size of all
windows that contain all length-n factors. We call this the condensation function of x and
formally de�ne it as follows:

Cx(n) = min{m : such that ∃k x[k..k +m− 1] contains all factors of x of length n}
= min{m : ∃ k ∀ j ∃`, k ≤ ` ≤ k +m− n,

such that x[j..j + n− 1] = x[`..`+ n− 1]}.

This predicate is expressible over 〈N,+, <, 0, Pa, Vk〉 and so it can be decided by our
methods. Thus we obtain

Theorem 21. If x is k-automatic, then the sequence (Cx(n))n≥0 is k-synchronized.

In Figure 6.1 we illustrate the condensation window of the Thue-Morse sequence t for
n = 2. In this example we see that Ct(2) = 5.

59

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 . . .

Figure 6.1: The condensation window of the Thue-Morse sequence containing all factors
of length 2

Furthermore, we computed the condensation function for some sequences of interest.
The condensation functions of the Thue-Morse, Rudin-Shapiro, paperfolding, and period-
doubling sequence were previously presented in [55], the remaining functions are novel.

6.2 Thue-Morse

Theorem 22. For the Thue-Morse sequence, we have

Ct(n) =

2, if n = 1;

5, if n = 2;

2t+1 + 2n− 2, if n ≥ 3 and t = dlog2(n− 1)e.

Proof. The resulting automaton encoding the condensation function of the Thue-Morse
sequence can be seen below in Figure 6.2.

60

0 [0,0]

1

[0,1]

2

[0,0]

3

[0,1]

4

[1,0]

5

[1,1]

6

[1,0]

7

[1,0]

8

[1,1]

9

[0,1]

1 0

[0,1]

[0 ,0]

[1 ,0]

[0 ,0]

[0 ,1]

[1 ,1]

[1 ,1]

1 1

[1,0]

[0 ,0]

[0 ,1]

[0 ,1]

[1 ,0]

[1 ,1]

[0 ,0]

Figure 6.2: An automaton encoding Ct(n)

Here is a summary of the computation:

[>= i0 n] (3 => 2 states) in 0.034s

[\out= l+i0 j+i0] (8 => 8 states) in 0.148s

[\or] (16 => 16 states) in 0.157s

[\not] (17 => 16 states) in 0.163s

[\exists i0] (16 => 22 states) in 0.110s

[\not] (23 => 21 states) in 0.108s

[>= m+k n+l] (12 => 4 states) in 0.047s

[\and] (61 => 61 states) in 0.168s

[>= l k] (3 => 2 states) in 0.049s

[\and] (97 => 97 states) in 0.242s

[\exists l] (97 => 268 states) in 0.600s

61

[\not] (269 => 268 states) in 0.526s

[\exists j] (268 => 68 states) in 0.188s

[\not] (69 => 68 states) in 0.110s

[\exists k] (68 => 11 states) in 0.047s

[\min m] (12 => 12 states) in 0.115s

[total] (12 states) in 2.987s

6.3 Rudin-Shapiro

Theorem 23. For the Rudin-Shapiro sequence, we have

Cr(n) =

2, if n = 1;

6, if n = 2;

10, if n = 3;

36, if n = 4;

38, if n = 5;

70, if n = 6;

75, if n = 7;

2t+3 + 2n− 2, if n ≥ 8 and t = dlog2(n− 1)e.

Proof. The resulting automaton encoding the condensation function of the Rudin-Shapiro
sequence can be seen below in Figure 6.3.

62

0 [0,0]

1

[0,1]

2

[0,0]

3

[1,0]

4

[1,1]

5

[0,0]

6

[0,1]

7

[1,1]

[0 ,0]

8

[0,0]

9

[0,1]

1 0

[1,1]

1 1

[1,0]

[1 ,0]

1 2

[1,1]

1 3

[1,0]

1 4

[1,1]

[0 ,0]

1 5

[0,1]

1 6

[0,0]

[1 ,1]

1 7

[0,0]

1 8

[0,1]

1 9

[1,1]

[1 ,1]2 0

[1,0]

[1 ,0]2 1

[0,1]

2 2

[0,0][0 ,0]

[0 ,1]

[1 ,1]

[1 ,1]

2 3

[1,0]

[1 ,1]

[0 ,1]

[0 ,1]

[1 ,1]

[0 ,0]

[0 ,0]

[0 ,1]

[1 ,0]

[0 ,0]

[1 ,0]

[0 ,1]

[1 ,1]

[0 ,0]

Figure 6.3: An automaton encoding Cr(n)

63

Here is a summary of the computation:

[>= i0 n] (3 => 2 states) in 0.019s

[\out= l+i0 j+i0] (28 => 28 states) in 0.248s

[\or] (56 => 56 states) in 0.292s

[\not] (57 => 56 states) in 0.311s

[\exists i0] (56 => 99 states) in 1.276s

[\not] (100 => 98 states) in 0.197s

[>= m+k n+l] (12 => 4 states) in 0.022s

[\and] (273 => 273 states) in 0.336s

[>= l k] (3 => 2 states) in 0.014s

[\and] (425 => 425 states) in 0.527s

[\exists l] (425 => 1818 states) in 22.503s

[\not] (1819 => 1818 states) in 2.560s

[\exists j] (1818 => 323 states) in 2.538s

[\not] (324 => 323 states) in 0.189s

[\exists k] (323 => 23 states) in 0.043s

[\min m] (25 => 25 states) in 0.078s

[total] (25 states) in 31.743s

6.4 Paperfolding

Theorem 24. For the regular paperfolding sequence, we have

Cp(n) =

2, if n = 1;

5, if n = 2;

13, if n = 3;

15, if n = 4;

29, if n = 5;

34, if n = 6;

3 · 2t + 2n− 1 if n ≥ 7 and t = dlog2 ne.

Proof. The resulting automaton encoding the condensation function of the paperfolding
sequence can be seen below in Figure 6.4.

64

0 [0,0]

1

[0,1]

2

[0,0]

3

[0,1]

4

[1,0]

5

[1,1]

6

[0,0]

7

[1,0]

8

[1,0]9

[1,1]

1 0

[0,1]

1 1

[0,1]

1 2

[1,0]

1 3

[1,1] 1 4

[0,1]

[1 ,1]

[0 ,0]

[0 ,1]

[0 ,1] 1 5

[0,0]

1 6

[1,1]

[1 ,1]

1 7

[1,0]

1 8

[0,1]

[0 ,1]

[0 ,0]

[1 ,1] [0 ,0][0 ,1]

[0 ,1]

[0 ,0]

1 9

[1,1]

[0 ,1]

[0 ,1]

Figure 6.4: An automaton encoding Cp(n)

Here is a summary of the computation:

[>= i0 n] (3 => 2 states) in 0.016s

[\out= l+i0 j+i0] (33 => 15 states) in 0.231s

[\or] (31 => 31 states) in 0.148s

[\not] (32 => 30 states) in 0.145s

65

[\exists i0] (30 => 61 states) in 0.221s

[\not] (62 => 60 states) in 0.117s

[>= m+k n+l] (12 => 4 states) in 0.023s

[\and] (157 => 157 states) in 0.172s

[>= l k] (3 => 2 states) in 0.013s

[\and] (241 => 241 states) in 0.266s

[\exists l] (241 => 433 states) in 1.722s

[\not] (434 => 433 states) in 0.560s

[\exists j] (433 => 155 states) in 0.381s

[\not] (156 => 155 states) in 0.094s

[\exists k] (155 => 21 states) in 0.023s

[\min m] (19 => 19 states) in 0.065s

[total] (19 states) in 4.373s

6.5 Period-doubling

Theorem 25. For the period-doubling sequence we have

Cd(n) =

{
2, if n = 1;

2t + 2n− 1, if n ≥ 2 and t = dlog2 ne − 1.

Proof. The resulting automaton encoding the condensation function of the period-doubling
sequence can be seen below in Figure 6.5.

66

0 [0,0]

1

[0,1]

2

[0,0]

3

[1,0]

4

[1,1]

5

[1,0]

6

[0,0]

[0 ,0]

[0 ,1]

[1 ,1]

[1 ,0]

[1 ,1]

[0 ,1]

Figure 6.5: An automaton encoding Cd(n)

Here is a summary of the computation:

[>= i0 n] (3 => 2 states) in 0.020s

[\out= l+i0 j+i0] (13 => 6 states) in 0.150s

[\or] (13 => 13 states) in 0.074s

[\not] (14 => 12 states) in 0.069s

[\exists i0] (12 => 11 states) in 0.027s

[\not] (12 => 10 states) in 0.036s

[>= m+k n+l] (12 => 4 states) in 0.022s

[\and] (30 => 30 states) in 0.051s

[>= l k] (3 => 2 states) in 0.013s

[\and] (50 => 50 states) in 0.076s

[\exists l] (50 => 73 states) in 0.055s

[\not] (74 => 73 states) in 0.087s

[\exists j] (73 => 66 states) in 0.038s

[\not] (67 => 66 states) in 0.047s

[\exists k] (66 => 9 states) in 0.014s

[\min m] (9 => 9 states) in 0.053s

[total] (9 states) in 0.883s

67

6.6 Baum-Sweet

Theorem 26. For the Baum-Sweet sequence, we have

Cb(n) =

2, if n = 1;

5, if n = 2;

16, if n = 3;

26, if n = 4;

27, if n = 5;

46, if n = 6;

49, if n = 7;

50, if n = 8;

89, if n = 9;

98, if n = 10;

99, if n = 11;

100, if n = 12;

23 · 2t + n− 1, if n ≥ 13, 2t = (n− 8) and t is odd;

23 · 2t−1 + n− 1, otherwise, where t = dlog2(n− 8)e .

Proof. The resulting automaton encoding the condensation function of the Baum-Sweet
sequence can be seen below in Figure 6.6.

68

0 [0,0]

1

[0,1]

2

[0,0] 3

[0,1]

4

[1,0]

5

[0,0]

6

[0,1]

7

[0,0]

8

[1,0]

9

[0,1]

1 0

[1,0]

1 1

[1,1]

1 2

[0,0]

1 3

[1,0]

1 4

[1,1]

1 5

[0,0]

1 6

[0,1]

[1 ,0]

1 7

[0,0]

1 8

[1,1]

1 9

[1,0]

2 0

[0,0]

2 1

[0,1]

2 2

[1,0]

2 3

[1,1]

2 4

[1,0]

[0 ,1]

[0,0] [1,1]

[0 ,0]

[0 ,0]

2 5

[0,0]

2 6

[1,0]

2 7

[1,1]

[1 ,1]

2 8

[0,1]

[1 ,1]

2 9

[0,0]

3 0

[1,0]

[1 ,1]

[0 ,0] [0 ,1]

[0,0] [1,1]

3 1

[1,0]

[0 ,0]

[1 ,1]

3 2

[1,0][0 ,1]

[1 ,0]

3 3

[0,0] [1,1]

3 4

[0,1]

3 5

[0,0]

3 6

[1,0]

3 7

[1,1]

[0 ,1]

[0 ,1]

[0 ,1]

[1 ,0]

3 8

[0,0] [1,1]

3 9

[0,1]

[1 ,1] 4 0

[0,0]

4 1

[1,0] [0 ,1]

[1 ,0]

[0,0] [1,1]

[0,0] [1,1]

[1 ,0]

[0 ,1]

[0 ,0]

[1 ,1]

4 2

[1,0]

[0 ,1]

[0 ,1]

Figure 6.6: An automaton encoding Cb(n)

69

Here is a summary of the computation:

[>= i0 n] (3 => 2 states) in 0.019s

[\out= l+i0 j+i0] (36 => 25 states) in 0.247s

[\or] (49 => 49 states) in 0.258s

[\not] (50 => 48 states) in 0.261s

[\exists i0] (48 => 301 states) in 4.733s

[\not] (302 => 301 states) in 0.823s

[>= m+k n+l] (12 => 4 states) in 0.026s

[\and] (879 => 879 states) in 2.554s

[>= l k] (3 => 2 states) in 0.015s

[\and] (1377 => 1377 states) in 2.237s

[\exists l] (1377 => 28442 states) in 9m50.703s

[\not] (28443 => 28442 states) in 19.963s

[\exists j] (28442 => 156 states) in 56.565s

[\not] (157 => 155 states) in 0.104s

[\exists k] (155 => 71 states) in 0.038s

[\min m] (31 => 31 states) in 0.176s

[total] (31 states) in 11m25.642s

6.7 Mephisto Waltz

Theorem 27. For the Mephisto waltz sequence we have

Cm(n) =

2, if n = 1;

5, if n = 2;

7 · 3t−1 + 2 · n− 2, if n ≥ 3, t = dlog3(n− 1)e and n− 2 begins with a 1;

9 · 3t−1 + 2 · n− 2, otherwise, where t = dlog3(n− 1)e.

Proof. The resulting automaton encoding the condensation function of the Mephisto waltz
sequence can be seen below in Figure 6.7.

70

0 [0,0]

1

[0,1]

2

[1,2]

[2 ,2]

3

[0,0]

4

[0,1]

5

[1,0]

6

[1,1]

7

[1,2]

[2 ,2]

8

[1,0]

9

[1,1]

1 0

[2,1]

[2 ,1]

[2 ,2]

[0 ,2][0 ,2]

[1 ,0]

[0 ,0]

[2 ,2]

[0 ,0]

[0 ,1]

[1 ,1]

1 1

[1,2] [1,0] [2,2]

[2 ,0]

[2 ,1]

[0 ,1]

[0 ,2][1,0] [2,2]

[0 ,1]

[1 ,1]

[0,0] [1,2]

Figure 6.7: An automaton encoding Cm(n)

Here is a summary of the computation:

[>= i0 n] (3 => 2 states) in 0.099s

[\out= l+i0 j+i0] (8 => 8 states) in 0.714s

[\or] (16 => 16 states) in 0.982s

[\not] (17 => 16 states) in 1.092s

[\exists i0] (16 => 20 states) in 0.429s

[\not] (21 => 19 states) in 0.295s

[>= m+k n+l] (12 => 4 states) in 0.115s

[\and] (56 => 56 states) in 0.477s

[>= l k] (3 => 2 states) in 0.042s

[\and] (89 => 89 states) in 0.741s

[\exists l] (89 => 226 states) in 1.223s

[\not] (227 => 226 states) in 1.520s

71

[\exists j] (226 => 81 states) in 0.359s

[\not] (82 => 81 states) in 0.154s

[\exists k] (81 => 15 states) in 0.028s

[\min m] (12 => 12 states) in 0.091s

[total] (12 states) in 8.967s

6.8 Stewart Choral

Theorem 28. For the Stewart choral sequence we have

Cs(n) =

2, if n = 1;

2 · 3t−1 + 2 · n− 1, if n ≥ 2, t = dlog3(n)e and n− 1 begins with a 1;

3 · 3t−1 + 2 · n− 1, otherwise, where t = dlog3(n)e.

Proof. The resulting automaton encoding the condensation function of the Stewart choral
sequence can be seen below in Figure 6.8.

0 [0,0]

1

[0,1]

2

[0,2]

3

[1,2]

[2 ,2]

4

[1,1]

5

[1,2]

[2 ,1]

[2 ,2]

[0 ,2]

[1 ,1]

[0,0] [1,2]

[0 ,1]

[2 ,0]

[2 ,1]

[1,0] [2,2]

Figure 6.8: An automaton encoding Cs(n)

Here is a summary of the computation:

72

[>= i0 n] (3 => 2 states) in 0.160s

[\out= l+i0 j+i0] (22 => 11 states) in 2.104s

[\or] (23 => 23 states) in 2.275s

[\not] (24 => 22 states) in 2.124s

[\exists i0] (22 => 14 states) in 0.675s

[\not] (15 => 13 states) in 0.335s

[>= m+k n+l] (12 => 4 states) in 0.174s

[\and] (46 => 46 states) in 0.657s

[>= l k] (3 => 2 states) in 0.081s

[\and] (72 => 72 states) in 0.998s

[\exists l] (72 => 110 states) in 1.142s

[\not] (111 => 110 states) in 1.085s

[\exists j] (110 => 64 states) in 0.344s

[\not] (65 => 64 states) in 0.205s

[\exists k] (64 => 8 states) in 0.056s

[\min m] (7 => 7 states) in 0.151s

[total] (7 states) in 13.412s

73

Chapter 7

Power Avoidance

Remark 29. Sections 7.3 and 7.4 of this chapter are also taken verbatim from [56].

7.1 Introduction

In 1912 Axel Thue proved that the Thue-Morse sequence is overlap-free [104]. It is widely
believed that this celebrated result launched the study of combinatorics on words itself.

A word w over an alphabet Σ is said to be an overlap if it is of the form ayaya where
a ∈ Σ is a letter and y ∈ Σ∗ is a word. For example, the English word alfalfa is an
overlap. If none of the factors of a sequence are an overlap the sequence is said to be
overlap-free.

An overlap can be thought of as two repetitions of the string ay followed by the �rst
letter of the string: a. Informally, such repetitions of a base word are called `powers'. For
example, if w = xx then w is called square. Thus, the English words tartar and cancan

are squares. Similarly, w of the form w = xxx is called a cube. In this chapter we are
concerned with avoiding powers in automatic sequences.

More generally, a word w is called an α power if

w = xα = x · x · · ·x · x′

where α = |w|
|x| > 1 and x′ is a pre�x of x. We say that |x| is the period of w and α is its

exponent ; we will say more on this in Chapter 8. The exponent need not be an integer.

74

For example, the English word
entanglem︸ ︷︷ ︸

9

ent

is a 4
3
power where the factor entanglem is repeated 12

9
= 4

3
times.

We let α+ powers denote the set of all β powers where β > α. For example an overlap
w = ayaya where the length of y is |y| = 5 is a 13

6
power. Since 13

6
> 2 it is a 2+ power.

In fact, all overlaps are 2+ powers. Conversely, we let α− powers denote the set of all β
powers where β < α.

Words and sequences can also avoid powers. A sequence is said to be α power free if
none of its factors are an α power. The Thue-Morse sequence is known to be overlap free,
thus is is 2+ power free.

In Sections 7.3 and 7.4 we restate the results of [56] regarding the paperfolding and
Leech sequences. In Section 7.2 we con�rm Thue's famous result that the Thue-Morse
word is overlap free. Section 7.8 con�rms a recent result of Rampersad's and the remaining
sections in this chapter present results regarding other k-automatic sequences novel to this
thesis.

7.2 Thue-Morse

First, we re-prove Thue's result using our automated method.

Theorem 30. The Thue-Morse sequence is overlap-free, or in other words, does not con-
tain any 2+ powers.

Proof. The following predicate accepts all indexes i at which an overlap occurs:

Ot(i) = {i : ∃ n > 0 and t[i..i+ n] = t[i+ n..i+ 2n+ 1]}.

This is expressible and below, in Figure 7.1, is the resulting automaton.

0

Figure 7.1: An automaton encoding the location of overlaps in the Thue-Morse sequence

75

Here is a summary of the computation:

[> n 0] (3 => 2 states) in 0.018s

[>= i0 n+1] (6 => 2 states) in 0.023s

[\out= i+i0 i+n+i0] (8 => 8 states) in 0.049s

[\or] (16 => 16 states) in 0.049s

[\not] (17 => 16 states) in 0.056s

[\exists i0] (16 => 2 states) in 0.030s

[\not] (3 => 1 states) in 0.051s

[\and] (1 => 1 states) in 0.036s

[\exists n] (1 => 1 states) in 0.029s

[total] (1 states) in 0.370s

In order to con�rm that 2+ is the lowest power avoided we give, in Figure 7.2, the
automaton accepting all indexes i at which a square occurs.

0 0

1

1

2

0

3

1

4

0

5

1

0

1

1

0

0 1

Figure 7.2: An automaton encoding the location of squares in the Thue-Morse sequence

Here is a summary of the computation:

[> n 0] (3 => 2 states) in 0.008s

[>= i0 n+1] (6 => 2 states) in 0.010s

[\out= i+i0 i+n+i0] (8 => 8 states) in 0.024s

[\or] (16 => 16 states) in 0.023s

[\not] (17 => 16 states) in 0.023s

[\exists i0] (16 => 2 states) in 0.010s

76

[\not] (3 => 1 states) in 0.016s

[\and] (1 => 1 states) in 0.016s

[\exists n] (1 => 1 states) in 0.008s

[total] (1 states) in 0.148s

7.3 Paperfolding

In 1979, Prodinger and Urbanek [83] characterized the squares in the regular paperfolding
sequence, using a case analysis. We veri�ed this by creating an automaton to accept the
language

{(n)2 : ∃ i p[i..i+ n− 1] = p[i+ n..i+ 2n− 1]}.
The resulting automaton (most signi�cant-digit �rst) is depicted below, from which we
recover the Prodinger-Urbanek result that the only squares xx in x have lengths |x| = 1, 3,
or 5.

0

10

11

Figure 7.3: Lengths of squares in the regular paperfolding sequence

7.4 Leech

Next, we considered an old construction of Leech [69]. Using a case analysis, he showed
that the the Leech sequence is squarefree. We used our method to verify this. In fact, we
proved something more:

Theorem 31. The Leech sequence

l = l0l1l2 · · · = 01210212012101202102012021 · · ·

is 15
8

+
-free, and this exponent is optimal. Furthermore, if x is a 15

8
power occurring in l,

then |x| = 15 · 13i for some i ≥ 0.

77

Proof. We used our method to verify that there are no powers > 15
8
. The largest in-

termediate automaton constructed had 360 states and the total computation time was
1140 seconds. The exponent is optimal because, for example, the factor l[25..39] =
120102101201021 is easily seen to be a 15

8
power.

We also computed a 4-state automaton that accepts the base-13 expansion of those
pairs (i, n) for which a 15

8
power of length n begins at position i. We give the automaton

in Figure 7.4 below.

0 [0,0] [2,0] [3,0] [4,0] [5,0] [6,0] [7,0] [8,0] [10,0] [11,0] [12,0]

1

[1,0] [9,0] [0,0] [2,0] [3,0] [4,0] [5,0] [6,0] [7,0] [8,0] [10,0] [11,0] [12,0]

[1,0] [9,0]

2

[12 ,8]

[0 ,0]

Figure 7.4: An automaton encoding the location of (15
8

) powers in the Leech sequence

The largest intermediate automaton had 360 states and the total computation time was
811 seconds. The set of all accepting paths can be represented asA∗{[1, 1], [9, 1]}[12, 2][0, 0]∗,
where A =

⋃
0≤j<13[j, 0], which corresponds to lengths of the form 15 · 13i.

7.5 Rudin-Shapiro

Theorem 32. The Rudin-Shapiro sequence avoids 4+ powers but not 4 powers.

Proof. The following predicate accepts all indexes i at which a 4+ power occurs:

P4+,r(i) = {i : ∃ n > 0 and r[i..i+ 3n] = r[i+ n..i+ 4n+ 1]}.

This is expressible and below, in Figure 7.5, is the resulting automaton.

78

0

Figure 7.5: An automaton encoding the location of 4+ powers in the Rudin-Shapiro se-
quence

Here is a summary of the computation:

[> n 0] (3 => 2 states) in 0.024s

[>= i0 3*n+1] (9 => 4 states) in 0.025s

[\out= i+i0 i+n+i0] (24 => 24 states) in 0.097s

[\or] (76 => 76 states) in 0.098s

[\not] (77 => 76 states) in 0.093s

[\exists i0] (76 => 2 states) in 0.042s

[\not] (3 => 1 states) in 0.044s

[\and] (1 => 1 states) in 0.042s

[\exists n] (1 => 1 states) in 0.015s

[total] (1 states) in 0.508s

In order to con�rm that 4+ is the lowest power avoided, in Figure7.6 is the automaton
accepting all indexes i at which a 4 power occurs.

79

0 0

1

1

2

0

3

1

0

4

1

0 5

1

1

0

0

1

Figure 7.6: An automaton encoding the location of 4 powers in the Rudin-Shapiro sequence

Here is a summary of the computation:

[> n 0] (3 => 2 states) in 0.022s

[>= i0 3*n+1-1] (9 => 4 states) in 0.024s

[\out= i+i0 i+n+i0] (24 => 24 states) in 0.108s

[\or] (76 => 76 states) in 0.099s

[\not] (77 => 76 states) in 0.092s

[\exists i0] (76 => 9 states) in 0.045s

[\not] (10 => 8 states) in 0.049s

[\and] (8 => 8 states) in 0.039s

[\exists n] (8 => 8 states) in 0.019s

[total] (8 states) in 0.531s

7.6 Period-doubling

Theorem 33. The period-doubling sequence avoids 4 powers but not 4− powers.

80

Proof. The following predicate accepts all indexes i at which a 4 power occurs:

P4,d(i) = {i : ∃ n > 0 and d[i..i+ 3n− 1] = d[i+ n..i+ 4n]}.

This is expressible and below, in Figure 7.7, is the resulting automaton.

0

Figure 7.7: An automaton encoding the location of 4 powers in the period-doubling se-
quence

Here is a summary of the computation:

[> n 0] (3 => 2 states) in 0.017s

[>= i0 3*n] (9 => 4 states) in 0.023s

[\out= i+i0 i+n+i0] (10 => 8 states) in 0.071s

[\or] (30 => 30 states) in 0.065s

[\not] (31 => 29 states) in 0.068s

[\exists i0] (29 => 2 states) in 0.026s

[\not] (3 => 1 states) in 0.033s

[\and] (1 => 1 states) in 0.033s

[\exists n] (1 => 1 states) in 0.017s

[total] (1 states) in 0.384s

In order to con�rm that 4 is the lowest power avoided, we also compute the location of
4− powers. In Figure 7.8 we give the automaton accepting pairs (i, n) where a 4− power
of period n occurs at position i. Furthermore, we can see that arbitrarily large 4− power
occur at arbitrarily large indexes in this sequence.

81

0 [0,0]

1

[1,0] [0,0] [1,0]

2

[0,1]

[0 ,0]

Figure 7.8: An automaton encoding the location and size of 4− powers in the period-
doubling sequence

Here is a summary of the computation:

[> n 0] (3 => 2 states) in 0.023s

[>= i0 3*n-1] (12 => 6 states) in 0.026s

[\out= i+i0 i+n+i0] (10 => 8 states) in 0.074s

[\or] (31 => 31 states) in 0.070s

[\not] (32 => 30 states) in 0.056s

[\exists i0] (30 => 5 states) in 0.025s

[\not] (6 => 4 states) in 0.044s

[\and] (4 => 4 states) in 0.034s

[total] (4 states) in 0.377s

7.7 Stewart Choral

Recently, Samsonov and Shur showed that the Stewart choral sequences is cube-free and
that it avoids the pattern xxyyxx [76]. Here, we con�rm these results using our methods.

Theorem 34. The Stewart choral sequence avoids cubes but not 3− powers arbitrarily close
to 3.

Proof. The following predicate accepts all indexes i at which a cube occurs:

P3,s(i) = {i : ∃n > 0 such that s[i..i+ 2n− 1] = s[i+ n..i+ 3n− 1]}

82

This is also expressible in our logical theory and below, in Figure 7.9, is the resulting
automaton.

0

Figure 7.9: An automaton encoding the location of cubes in the Stewart choral sequence

Here is a summary of the computation:

[> n 0] (3 => 2 states) in 0.020s

[>= i0 2*n] (6 => 3 states) in 0.030s

[\out= i+i0 i+n+i0] (19 => 13 states) in 0.116s

[\or] (32 => 32 states) in 0.126s

[\not] (33 => 31 states) in 0.116s

[\exists i0] (31 => 2 states) in 0.030s

[\not] (3 => 1 states) in 0.045s

[\and] (1 => 1 states) in 0.040s

[\exists n] (1 => 1 states) in 0.019s

[total] (1 states) in 0.576s

In order to con�rm that 3− power are not avoided, we computed the location of 7
4

powers in the Stewart choral sequence. In Figure 7.10 we give the automaton accepting
pairs (i, n) where a repetition of length 3n−1 of period n occurs at position i. Furthermore,
we can see that powers arbitrarily close to 3 occur in this sequence.

83

0 [0,0]

1

[0,1]

2

[1,0]

3

[2,0]

4

[2,1]

[0 ,0]

[0 ,1]

[1 ,0]

[2 ,0]

[1 ,1]

[0 ,0]

[2 ,0]

[0,1] [2,1]5

[1,0]

[2 ,0]

[1 ,0][1 ,1]

[0 ,0]

[2 ,0]

[0 ,1]

[1 ,0]

Figure 7.10: An automaton encoding the location and size of 3− powers in the Stewart
choral sequence

Here is a summary of the computation:

[> n 0] (3 => 2 states) in 0.034s

[>= i0 2*n-1] (9 => 5 states) in 0.039s

[\out= i+i0 i+n+i0] (19 => 13 states) in 0.121s

[\or] (34 => 34 states) in 0.120s

[\not] (35 => 33 states) in 0.116s

[\exists i0] (33 => 7 states) in 0.036s

[\not] (8 => 6 states) in 0.041s

[\and] (6 => 6 states) in 0.034s

[total] (6 states) in 0.580s

Theorem 35. The Stewart choral sequence avoids patterns of the form xxyyxx.

Proof. The following predicate accepts all pairs (|x|, |y|) such that pattern of the form

84

xxyyxx occurs somewhere in the Stewart choral sequence:

Pxxyyxx,s(n,m) = {(n,m) : ∃ i such that n,m > 0

s[i..i+ n− 1] = s[i+ n..i+ 2n− 1]

s[i+ 2n..i+ 2n+m− 1] = s[i+ 2n+m..i+ 2n+ 2m− 1]

s[i..i+ 2n− 1] = s[i+ 2n+ 2m..i+ 4n+ 2m− 1]}.

This is expressible in our logical theory and below, in Figure 7.11, is the resulting
automaton.

0

Figure 7.11: An automaton encoding the occurrences of xxyyxx in the Stewart choral
sequence

Here is a summary of the computation:

[>= i0 n] (3 => 2 states) in 0.034s

[\out= i+i0 i+n+i0] (19 => 13 states) in 0.279s

[\or] (25 => 25 states) in 0.216s

[\not] (26 => 24 states) in 0.199s

[\exists i0] (24 => 8 states) in 0.068s

[\not] (9 => 7 states) in 0.054s

[>= i0 m] (3 => 2 states) in 0.039s

[\out= i+2*n+i0 i+2*n+m+i0] (35 => 23 states) in 0.892s

[\or] (43 => 43 states) in 0.369s

[\not] (44 => 42 states) in 0.346s

[\exists i0] (42 => 16 states) in 0.101s

[\not] (17 => 15 states) in 0.082s

[\and] (24 => 24 states) in 0.050s

[>= i0 2*n] (6 => 3 states) in 0.051s

[\out= i+i0 i+2*n+2*m+i0] (42 => 21 states) in 0.581s

[\or] (56 => 56 states) in 0.498s

[\not] (57 => 55 states) in 0.446s

[\exists i0] (55 => 22 states) in 0.246s

[\not] (23 => 21 states) in 0.087s

[> n 0] (3 => 2 states) in 0.023s

[\and] (21 => 21 states) in 0.070s

[\and] (1 => 1 states) in 0.050s

[\exists i] (1 => 1 states) in 0.021s

[total] (1 states) in 5.031s

85

7.8 Kurosaki's Sequence

In 2008 in the paper [68] Kurosaki de�ned a ternary sequence that avoids squares. In
Figure 7.12 we give the DFAO in MSD representation generating the sequence. Recently,
Rampersad and Camungol [21] showed that this sequence is (7

4
)+ power-free and we con�rm

this result below.

q0/1startq1/1

q2/2

q3/3

q4/2 q5/3

0
1

20

1,2

0

1
2

0,1
2

0
1.2 0,1

2

Figure 7.12: A �nite automaton generating k: Kurosaki's sequence

Theorem 36. The Kurosaki sequence avoids (7
4
)+ powers but not (7

4
) powers.

Proof. The following predicate accepts all indexes i at which a (7
4
)+ power occurs:

P 7
4
,k(i) = {i : ∃ m,n > 0 such that 4m > 7n and k[i..i+m− n− 1] = k[i+ n..i+m]}.

This is also expressible in our logical theory and below, in Figure 7.13, is the resulting
automaton.

0

Figure 7.13: An automaton encoding the location of (7
4
)+ powers in the Kurosaki sequence

Here is a summary of the computation:

86

[> n 0] (3 => 2 states) in 0.024s

[> 4*m 7*n] (84 => 11 states) in 0.115s

[\and] (16 => 16 states) in 0.086s

[>= j m-n] (6 => 4 states) in 0.054s

[\out= i+j i+n+j] (36 => 36 states) in 1.449s

[\or] (126 => 126 states) in 1.195s

[\not] (127 => 126 states) in 1.283s

[\exists i0] (126 => 170 states) in 1.809s

[\not] (171 => 169 states) in 0.373s

[\and] (1 => 1 states) in 0.093s

[\exists m] (1 => 1 states) in 0.037s

[\exists n] (1 => 1 states) in 0.021s

[total] (1 states) in 6.884s

In order to con�rm that 7
4
power are not avoided, we computed the location of 7

4
powers

in the Kurosaki sequence. In Figure 7.14 we give the automaton accepting pairs (i, n) where
a 7

4
power of period n occurs at position i. Furthermore, we can see that arbitrarily large

such power occur at arbitrarily large indexes in this sequence.

0 [0,0]

1

[1,0] [2,0]

2

[2,1]

[0,0] [2,0]

[1 ,0]

[1 ,1]

3

[1,1]

[0 ,0]

Figure 7.14: An automaton encoding the location and size of 7
4
powers in the Kurosaki

sequence

Here is a summary of the computation:

[> n 0] (3 => 2 states) in 0.027s

[= 4*m 7*n] (84 => 10 states) in 0.108s

[\and] (11 => 11 states) in 0.058s

[>= j m-n] (6 => 4 states) in 0.053s

[\out= i+j i+n+j] (36 => 36 states) in 1.450s

[\or] (126 => 126 states) in 1.189s

87

[\not] (127 => 126 states) in 1.260s

[\exists i0] (126 => 170 states) in 1.811s

[\not] (171 => 169 states) in 0.376s

[\and] (5 => 5 states) in 0.065s

[\exists m] (5 => 5 states) in 0.028s

[total] (5 states) in 6.753s

88

Chapter 8

Least Periods and Quasi-periods

Remark 37. Sections 8.1, 8.2, 8.3, and 8.4 of this chapter are also taken essentially verbatim
from [56].

8.1 Least Periods

In a recent paper, Currie and Saari [32] initiated the study of the least periods of in�nite
words. If x = a1 · · · an is a �nite word, then we say x has period p ≥ 1 if ai = ai+p for
1 ≤ i ≤ n− p. Sometimes, abusing terminology, the word �period� is also used to refer to
the word a1a2 · · · ap itself; there should be no confusion. For example, alfalfa has period
3 and entanglement has period 9.

Currie and Saari were interested in the set of all positive integers that can be the least
period of some �nite nonempty factor of x. They explicitly computed the set of least
periods for some famous in�nite words, such as the Thue-Morse sequence. In particular,
they proved that every positive integer can be the least period of the Thue-Morse sequence.

In this chapter, we prove that if x is k-automatic, then so is the characteristic sequence
of the least periods of x. Our method gives an explicit way to construct the automaton
accepting the base-k representation of the least periods of x. We then reprove the Currie-
Saari result for Thue-Morse using a short �nite computation, and we �nd similar results
for three other classic sequences.

Theorem 38. If x is a k-automatic sequence, then the characteristic sequence of least
periods of x is (e�ectively) k-automatic.

89

Proof. Again, using the method developed in [9, 28], it su�ces to construct a predicate L(n)
that is true if n is a least period and false otherwise, using a logical language restricted to
addition, subtraction, indexing into x, comparisons, logical operations, and the existential
and universal quanti�ers.

It is easy to express the predicate P that n is a period of the factor x[i..j], as follows:

P (n, i, j) means x[i..j − n] = x[i+ n..j]

= ∀t with i ≤ t ≤ j − n we have x[t] = x[t+ n].

Using this, we can express the predicate LP that n is the least period of x[i..j]:

LP (n, i, j) = P (n, i, j) and ∀n′ < n ¬P (n′, i, j).

Finally, we can express the predicate that n is a least period as follows

L(n) = ∃i, j ≥ 0 with 0 ≤ i+ n ≤ j − 1 such that LP (n, i, j).

The construction is e�ective, and there is an algorithm that, given the automaton gener-
ating x, will produce an automaton generating the characteristic sequence of least periods
of x.

8.2 Enumeration

Given an in�nite word x we can consider counting the number Qx(n) of distinct factors
(of arbitrary length) having least period of length n. In some cases this quantity can be
in�nite. For example, if an in�nite word contains arbitrarily large factors of the form an,
then Qx(1) =∞.

We can also count the number Sx(n) of distinct factors of length n that are the least
periods of some factor of x.

We will show that both of these quantities are k-regular. A sequence (f(n))n≥0 is
k-regular if there exist vectors v, w and a matrix-valued morphism µ such that f(n) =
vµ(x)w, where x is the base-k representation of n. Actually, to be more precise, we will
prove that Qx(n) is (N∞, k)-regular and that Sx(n) is (N, k)-regular. This means that the
entries in the vector and matrix are chosen from N∞ = N

⋃
{∞} in the �rst case, and N

in the second.

Theorem 39. The sequence Qx(n) is (N∞, k)-regular, and the sequence Sx(n) is (N, k)-
regular.

90

Proof. Using the ideas in [28], it su�ces to show that the predicates

Q(n, i, l) = the factor x[i..i+ l − 1] has least period equal to n
and x[i..i+ l − 1] 6= x[i′..i′ + l − 1] for all i′ < i

and

P (n, i) = ∃l such that the factor x[i..i+ l − 1] is of least period n
and x[i..i+ n− 1] 6= x[i′..i′ + n− 1] for all i′ < i

are expressible in our logical language.

8.3 Computations

Currie and Saari [32, Thm. 2] proved

Theorem 40. For each integer n ≥ 1, the Thue-Morse word has a factor of least period
n.

Using our theorem solver, we were able to verify the result above using a short compu-
tation. (In contrast, Currie and Saari used four pages of rather intricate case reasoning.)

We also carried out the same computation for three other famous in�nite words. Our
results can be summarized as follows:

Theorem 41. For each integer n ≥ 1, the period-doubling sequence and the Rudin-Shapiro
sequence have a factor of least period n.

For the regular paperfolding sequence, the least periods are given by the integers whose
base-2 representations are accepted by the automaton below. The least omitted least period
is 18, and there are in�nitely many. In the limit, exactly 57/64 of all integers are least
periods of the regular paperfolding sequence.

Proof. The �rst results were obtained through our algorithm. A summary of our compu-
tations appears below:

91

Sequence Number of states in largest Number of states in Seconds of
name intermediate automaton �nal automaton CPU time

Thue-Morse 264 1 5.882
Rudin-Shapiro 1029 1 27.797
Period-doubling 89 1 4.327
Paper-folding 393 12 11.597

Table 8.1: Computation statistics of least periods of several automatic sequences

1

1

0

5

6

4

7891011

3210
0

0

0

1 1

1

0

1

0

1

0

0
1

0

1 0

1

00

1

1

Figure 8.1: A �nite automaton accepting least periods of the regular paperfolding sequence

For the result about the regular paperfolding sequence, we take the automaton com-
puted by the algorithm (displayed in Figure 8.1) and compute the transition matrices Ma,
a ∈ {0, 1}, containing a 1 in row i and column j if there is a transition on a from state i to
state j. Then (Mn)i,j, whereM := M0+M1, gives the number of words taking the automa-
ton from state i to state j. A short computation gives that each row of limn→∞ 2−nMn

equals
1

64
[0, 16, 8, 4, 2, 10, 5, 4, 4, 2, 6, 3].

All states except 7 and 11 are accepting, so the density of least periods is given by (64−
4− 3)/64 = 57/64, as claimed.

92

8.4 More Enumeration

Kalle Saari suggested (personal communication) counting the number Lx(n) of distinct
factors of x having a given least period of length n. Of course, this number could be
in�nite � for example, if x is ultimately periodic.

Theorem 42. Let x be a k-automatic sequence. Then the number L(n) of distinct factors
having a given least period of length n is (N∞, k)-regular.

Proof. It su�ces to show that the language

{(n, i, l)k : there exists a factor of length l beginning at position

i with least period n and this factor does not occur at any earlier position }

is regular. Then we apply the results of [28] to conclude that L(n) is k-regular.

Above we created a predicate LP (n, i, j) that asserts that n is the least period of x[i..j].
So LP (n, i, i + l − 1) asserts that n is the least period of the factor of length l beginning
at position i. So the predicate we want is

FOLP (n, i, j) := LP (n, i, i+ l − 1) ∧ ∀ i′ < i x[i′..i′ + l − 1] 6= x[i..i+ l − 1],

which adds the condition that x[i..i + l − 1] is the �rst occurrence of that factor. Then
L(n) is just

|{(n, i, j)k : FOLP (n, i, j)}|,

which is k-regular.

As an example, we computed the linear representation of the k-regular sequence L(n)
for the Thue-Morse sequence. It is of dimension 52, and we omit it here. The �rst few
values of L(n) for Thue-Morse are given in the following table.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L(n) 4 6 16 16 14 48 10 56 22 40 8 168 8 40 20 208

Table 8.2: The number L(n) of distinct factors having a given least period of length n

The Thue-Morse sequence is known to be overlap-free, so any factor with least period
n must be of length l, with n ≤ l ≤ 2n. Also, the Thue-Morse sequence, like all automatic

93

sequences, has linear subword complexity. Putting this together, we see that for the Thue-
Morse sequence we have L(n) = O(n2).

On the other hand, let v,M0,M1, w be the vectors and matrices arising from the linear
representation of L. We computed the characteristic polynomial of M0, which turns out
to be P (x) := (x − 4)(x − 2)3(x + 1)4(x − 1)7x37. Since every matrix satis�es its own
characteristic polynomial, we know that the coe�cients of Mn

0 individually satisfy a linear
recurrence of order 52 whose characteristic polynomial is P . Since L(2n) := (vM1)M

n
0 (w)

is a linear combination of the entries of Mn
0 , this means that L(2n) also satis�es the

same linear recurrence. The roots of P are 0, 1,−1, 2, 4, so this means that L(2n) can be
written as an exponential polynomial in terms of powers of 0, 1,−1, 2, 4. From our linear
representation it easily follows that L(n) = 3

4
n2 + n for n ≥ 4 that is a power of two; this

matches the upper bound given above.

On the other hand, it is also easy to deduce from the matrix representation that
L(22n+1 + 3) = 8 for n ≥ 1, so L does not grow quadratically in a uniform way.

8.5 Quasi-periods

A quasi-period of a sequence x is a word w that `covers' any position in the sequence. For
example, 010 is a quasi-period of 01001010 since it covers the word. Formally, w is the
quasi-period of x if for all i there is some position j such that w = x[j..k] and j ≤ i ≤ k.

We call a sequence x periodic if it has a period, i.e., if there exists a p > 0 such
that x[i] = x[i + p] for all i ≥ 0. Similarly, a sequence is called quasi-periodic if it
has a quasi-period. This notion was originally introduced by Marcus in 2004 [74]. More
recently Levé, Richomme and others have been interested in the properties of in�nite quasi-
periodic sequences and have published several papers on the subject [72, 71, 51]. Below,
we summarize a few results regarding quasi-periodic k-automatic sequences.

Theorem 43. The quasi-periodicity of a k-automatic sequence is decidable.

Proof. Consider the predicate QPx(i, n) accepting all pair (i, n) such that the factor x[i..i+
n− 1] is a quasi-period of x. Then QPx(i, n) can be expressed in our logical theory as

QPx(i, n) = {(i, n) : ∀` ∃j such that j ≤ `, j + n > `

and x[i..i+ n− 1] = x[j..j + n− q].

94

Naturally, we consider whether any sequence in our list of `usual suspects' is quasi-
periodic. Below are our �ndings.

Theorem 44. None of the following sequences is quasi-periodic: Thue-Morse, Rudin-
Shapiro, regular paperfolding, period-doubling, Mephisto waltz, and the Stewart choral se-
quence.

Proof. We have constructed the automaton accepting QPx(i, n) for each sequence and
con�rmed that no pairs (i, n) are accepted. The program output can be seen in Ap-
pendix A.1.

Furthermore, we performed a survey on the �xed points 4-uniform morphisms over Σ2.
We looked for periodic and quasi-periodic sequences. For each morphism, we �rst created
the DFAO generating its �xed point, call it x. Next, we computed Px(n) a predicate that
accepts n if and only if x is periodic with period n. If no such period existed, we computed
QPx(i, n). Out of 128 sequences, 23 were periodic and 3 were quasi-periodic without being
periodic.

The full results are listed in Appendix A.2.

95

Chapter 9

Borders and Unbordered Factors

Remark 45. Sections of this chapter are taken verbatim from the papers [55] and [56].

9.1 Borders

A word w is bordered if it begins and ends with the same word x with 0 < |x| ≤ |w|/2;
Otherwise it is unbordered. An example in English of a bordered word is entanglement.
A bordered word is also called bi�x in the literature, and unbordered words are also called
bi�x-free or primary.

Bordered and unbordered words have been actively studied in the literature, particularly
with regard to the Ehrenfeucht-Silberger problem; see, for example, [42, 80, 38, 39, 60, 61,
30, 62, 84, 41], just to name a few.

Currie and Saari [32] studied the unbordered factors of the Thue-Morse sequence t.
They proved that if n 6≡ 1 (mod 6), then t has an unbordered factor of length n. (Also see
[90], Lemma 4.10 and Problem 4.1.) However, this is not a necessary condition, as

t[39..69] = 0011010010110100110010110100101,

which is an unbordered factor of length 31. Currie and Saari left it as an open problem to
give a complete characterization of the integers n for which t has an unbordered factor of
length n.

The following theorem and proof, quoted practically verbatim from [28], shows that,
more generally, the characteristic sequence of n for which a given k-automatic sequence
has an unbordered factor of length n, is itself k-automatic:

96

Theorem 46. Let x = a(0)a(1)a(2) · · · be a k-automatic sequence. Then the associated
in�nite sequence b = b(0)b(1)b(2) · · · de�ned by

b(n) =

{
1, if x has an unbordered factor of length n;

0, otherwise;

is k-automatic.

Proof. The sequence x has an unbordered factor of length n

i�

∃ j ≥ 0 such that the factor of length n beginning at position j of x is unbordered

i�

there exists an integer j ≥ 0 such that for all possible lengths l with 1 ≤ l ≤ n/2, there is
an integer i with 0 ≤ i < l such that the supposed border of length l beginning and ending
the factor of length n beginning at position j of x actually di�ers in the i'th position

i�

there exists an integer j ≥ 0 such that for all integers l with 1 ≤ l ≤ n/2 there exists an
integer i with 0 ≤ i < l such that x[j + i] 6= x[j + n− l + i].

This predicate is expressible within our logical system. The characteristic sequence of
these integers n is therefore k-automatic.

Since the proof is constructive, one can, in principle, carry out the construction to get
an explicit description of the lengths for which the Thue-Morse sequence has an unbordered
factor.

Doing so results in the following theorem:

Theorem 47. There is an unbordered factor of length n in t if and only if the base-2
representation of n (starting with the most signi�cant digit) is not of the form 1(01∗0)∗10∗1.

Proof. In the original paper [55] an alternate implementation by the second author was
employed in the proof of this theorem. Here, we reprove the result using the implementation
described in this thesis.

97

The resulting automaton can be seen below in Figure 9.1;

0 0

1

1

2

0

3

10

1 0

4

1

5

0 1

0 1

Figure 9.1: An automaton encoding the length of unbordered factors occurring in the
Thue-Morse sequence

Here is a summary of the computation:

[> l i] (3 => 2 states) in 0.010s

[\out= j+i j+n-l+i] (12 => 12 states) in 0.039s

[\not] (13 => 12 states) in 0.026s

[\and] (20 => 20 states) in 0.035s

[\exists i] (20 => 39 states) in 0.033s

[> 2*l n] (6 => 3 states) in 0.010s

[\or] (40 => 40 states) in 0.034s

[> 1 l] (6 => 1 states) in 0.009s

[\or] (39 => 39 states) in 0.033s

[\not] (40 => 38 states) in 0.028s

[\exists l] (38 => 23 states) in 0.012s

[\not] (24 => 22 states) in 0.019s

[\exists j] (22 => 6 states) in 0.009s

[total] (6 states) in 0.318s

98

9.2 Additional Results on Unbordered Words

We also applied our decision procedure above to two other sequences: the Rudin-Shapiro
sequence and the regular paperfolding sequence.

For a word w ∈ 1(0 + 1)∗, we de�ne aw(n) to be the number of (possibly overlap-
ping) occurrences of w in the (ordinary, unreversed) base-2 representation of n. Thus, for
example, a11(7) = 2.

Theorem 48. The Rudin-Shapiro sequence has an unbordered factor of every length.

Proof. We applied the same technique discussed previously for the Thue-Morse sequence.
The resulting automaton accepted Σ∗.

Here is a summary of the computation:

[> l i] (3 => 2 states) in 0.014s

[\out= j+i j+n-l+i] (40 => 40 states) in 0.139s

[\not] (41 => 40 states) in 0.053s

[\and] (68 => 68 states) in 0.085s

[\exists i] (68 => 128 states) in 0.765s

[> 2*l n] (6 => 3 states) in 0.010s

[\or] (136 => 136 states) in 0.084s

[> 1 l] (6 => 1 states) in 0.009s

[\or] (135 => 135 states) in 0.079s

[\not] (136 => 134 states) in 0.061s

[\exists l] (134 => 99 states) in 0.060s

[\not] (100 => 98 states) in 0.035s

[\exists j] (98 => 1 states) in 0.010s

[total] (1 states) in 1.454s

Theorem 49. The regular paperfolding sequence has an unbordered factor of length n if
and only if the reversed representation (n)2 is rejected by the automaton given in Figure 9.2.

99

49

12
13

1
2

0

1

1

1

8

3

1

1

0

0

10

6

14

7

5

0

1

0

0

1
1

0

0

0

15

0,1

0
1

1

16

1

0

1

11

1

1

0

0

0

0

1

0,10

Figure 9.2: A �nite automaton for unbordered factors in the regular paperfolding sequence

Proof. We applied the same technique discussed previously for the Thue-Morse sequence.
Here is a summary of the computation:

[> l i] (3 => 2 states) in 0.010s

[\out= j+i j+n-l+i] (47 => 36 states) in 0.145s

[\not] (37 => 37 states) in 0.050s

[\and] (58 => 58 states) in 0.073s

[\exists i] (58 => 63 states) in 0.124s

[> 2*l n] (6 => 3 states) in 0.010s

[\or] (75 => 75 states) in 0.050s

[> 1 l] (6 => 1 states) in 0.009s

[\or] (75 => 75 states) in 0.055s

[\not] (76 => 74 states) in 0.040s

[\exists l] (74 => 61 states) in 0.028s

[\not] (62 => 60 states) in 0.027s

[\exists j] (60 => 16 states) in 0.010s

[total] (16 states) in 0.665s

100

9.3 Unbordered Factor Complexity

In Chapter 11 we study the subword complexity of k-automatic sequences and we show
that it is k-synchronized. On the other hand, the unbordered factor complexity, i.e., the
number of unbordered factors of k-automatic sequences is not synchronized in general. We
prove this formally in Section 11.4. In the following sections, we show that it is at least
k-regular.

In [28], the third author and co-authors made the following conjecture:

Conjecture 50. Let f(n) denote the number of unbordered factors of length n in t, the
Thue-Morse sequence. Then f is given by f(0) = 1, f(1) = 2, f(2) = 2, and the system of
recurrences

f(4n+ 1) = f(2n+ 1)

f(8n+ 2) = f(2n+ 1)− 8f(4n) + f(4n+ 3) + 4f(8n)

f(8n+ 3) = 2f(2n)− f(2n+ 1) + 5f(4n) + f(4n+ 2)− 3f(8n)

f(8n+ 4) = −4f(4n) + 2f(4n+ 2) + 2f(8n)

f(8n+ 6) = 2f(2n)− f(2n+ 1) + f(4n) + f(4n+ 2) + f(4n+ 3)− f(8n)

f(16n) = −2f(4n) + 3f(8n) (9.1)
f(16n+ 7) = −2f(2n) + f(2n+ 1)− 5f(4n) + f(4n+ 2) + 3f(8n)

f(16n+ 8) = −8f(4n) + 4f(4n+ 2) + 4f(8n)

f(16n+ 15) = −8f(4n) + 2f(4n+ 3) + 4f(8n) + f(8n+ 7).

for n ≥ 0.

Although this conjecture may appear unmotivated, it is characteristic of the kinds of
recurrences that naturally appear for k-regular sequences, and was obtained by comput-
ing a large number of values of f and then looking for possible linear relations among
subsequences of the form (f(2in+ j))n≥0.

This system su�ces to calculate f e�ciently, in O(log n) arithmetic steps.

In Section 9.4, we prove Conjecture 50. In Section 9.5, we discuss how to obtain
relations like those above for a given k-regular sequence. In Section 9.6 we discuss the
growth rate of f in detail. Finally, in Section 9.7, we give examples of other sequences with
interesting numbers of unbordered factors.

101

9.4 Proof of the Conjecture

We now outline our computational proof of Conjecture 50.

Proof. Step 1: Using the ideas in [55], we created an automaton A of 23 states that accepts
the language L of all words (n, i)2 such that there is a �novel� unbordered factor of length n
in t beginning at position i. Here �novel� means that this factor does not previously appear
in any position to the left. Thus, the number of such words with �rst component equal to
(n)2 equals f(n), the number of unbordered factors of t of length n. This automaton is
illustrated below in Figure 9.3 (rotated to �t the �gure more clearly).

Step 2: Using the ideas in [28], we now know that f is a 2-regular sequence, with a
�linear representation� that can be deduced from the structure of A. This gives matrices
M0,M1 of dimension 23 and vectors v, w such that f(n) = vMa1 · · ·Maiw where a1 · · · ai is
the base-2 representation of n, written with the most signi�cant digit �rst. They are given
below.

M0 =

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

102

Figure 9.3: Automaton accepting (n, i)2 such that there is a novel unbordered factor of
length n at position i of t

103

M1 =

0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0
0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.

v = [1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]

w = [0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T

Step 3: Now each of the identities in (9.1) corresponds to a certain identity in matrices.
For example, the identity f(16n) = −2f(4n) + 3f(8n) can be written as

vMM0M0M0M0w = −2vMM0M0w + 3vMM0M0M0w, (9.2)

whereM is the matrix product corresponding to the base-2 expansion of n. More generally,
we can think of M as some arbitrary product of the matrices M0 and M1, starting with at
least one M1; this corresponds to an arbitrary n ≥ 1. We can think of M as a matrix of
indeterminates. Then (9.2) represents an assertion about the entries of M which can be
veri�ed. Of course, the entries of M are not completely arbitrary, since they come about
asM1 times some product ofM0 andM1. We can compute the (positive) transitive closure
of M0 + M1 and then multiply on the left by M1; the entries that have 0's will be 0 in
any product of M1 times a product of the matrices M0 and M1. Thus we can replace the
corresponding indeterminates by 0, which makes verifying (9.2) easier.

Another approach, which is even simpler, is to consider vM in place ofM . This reduces
the number of entries it is required to check from d2 to d, where d is the dimension of the
matrices.

Step 4: Finally, we have to verify the identities for n = 0 and n = 1, which is easy.

104

We carried out this computation in Maple for the matrices M0 and M1 corresponding
to A, which completes the proof. The Maple program can be downloaded from

http://www.cs.uwaterloo.ca/~shallit/papers.html .

9.5 Determining the Relations

The veri�cation method of the previous section can be extended to a method to mechan-
ically �nd the relations for any given k-regular sequence g (instead of guessing them and
verifying them), given the linear representation of g.

Suppose we are given the linear representation of a k-regular sequence g, that is, vectors
v, w and matrices M0,M1, . . . ,Mk−1 such that

g(n) = vMa1Ma2 · · ·Majw,

where a1a2 · · · aj = (n)k.

Now letM be arbitrary and consider vM as a vector with variable entries, say [a1, a2, . . . , ad].
Successively compute vMMyw for words y of length 0, 1, 2, . . . over Σk = {0, 1, . . . , k− 1};
this will give an expression in terms of the variables a1, . . . , ad. After at most d+1 such re-
lations, we �nd an expression for vMMyw for some y as a linear combination of previously
computed expressions. When this happens, you no longer need to consider any expression
having y as a su�x. Eventually the procedure halts, and this corresponds to a system of
equations like that in (50).

Consider the following example. Let k = 2, v = [6, 1], w = [2, 4]T , and

M0 =

[
−3 1
1 4

]
M1 =

[
0 2
−3 1

]

Suppose M is some product of M0 and M1, and suppose vM = [a, b].

105

http://www.cs.uwaterloo.ca/~shallit/papers.html

We �nd

vMw = 2a+ 4b

vMM0w = −2a+ 18b

vMM1w = −8a− 2b

vMM0M0w = 24a+ 70b

vMM1M0w = 36a+ 24b

and, solving the linear systems, we get

vMM1w =
35

11
vMw − 9

11
vM0w

vMM0M0w = 13vMw + vM0w

vMM1M0w =
174

11
vMw − 24

11
vM0w.

This gives us

g(2n+ 1) =
35

11
g(n) +

9

11
g(2n)

g(4n) = 13g(n) + g(2n)

g(4n+ 2) =
174

11
g(n)− 24

11
g(2n)

for n ≥ 1.

9.6 The Growth Rate of f (n)

We now return to f(n), the number of unbordered factors of t of length n. Here is a brief
table of f(n):

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
f(n) 1 2 2 4 2 4 6 0 4 4 4 4 12 0 4 4 8 4 8 0 8 4 4 8 24 0 4 4

Table 9.1: A �rst few terms of f(n), the number of unbordered factors of t of length n

Kalle Saari (personal communication) asked about the growth rate of f(n). The fol-
lowing results characterizes it.

106

Theorem 51. We have f(n) ≤ n for n ≥ 4. Furthermore, f(n) = n in�nitely often.
Thus, lim supn≥1 f(n)/n = 1.

Proof. We start by verifying the following relations:

f(4n) = 2f(2n), (n ≥ 2) (9.3)
f(4n+ 1) = f(2n+ 1), (n ≥ 0) (9.4)
f(8n+ 2) = f(2n+ 1) + f(4n+ 3), (n ≥ 1) (9.5)
f(8n+ 3) = −f(2n+ 1) + f(4n+ 2) (n ≥ 2) (9.6)
f(8n+ 6) = −f(2n+ 1) + f(4n+ 2) + f(4n+ 3) (n ≥ 2) (9.7)
f(8n+ 7) = 2f(2n+ 1) + f(4n+ 3) (n ≥ 3) (9.8)

These can be veri�ed in exactly the same way that we veri�ed Conjecture 50 earlier.

We now verify, by induction on n, that f(n) ≤ n for n ≥ 4. The base case is n = 4,
and f(4) = 2. Now assume n ≥ 5. Otherwise,

� If n ≡ 0 (mod 4), say n = 4m and m ≥ 2. Then f(4m) = 2f(2m) ≤ 2 · 2m ≤ 4m by
(9.3) and induction.

� If n ≡ 1 (mod 4), say n = 4m+ 1 for m ≥ 1, then f(4m+ 1) = f(2m+ 1) by (9.4).
But f(2m + 1) ≤ 2m + 1 by induction for m ≥ 2. The case m = 1 corresponds to
f(5) = 4 ≤ 5.

� If n ≡ 2 (mod 8), say n = 8m + 2, then for m ≥ 2 we have f(8m + 2) = f(2m +
1) + f(4m + 3) ≤ 6m + 4 by induction, which is less than 8m + 2. If m = 1, then
f(10) = 4 < 10.

� If n ≡ 3 (mod 8), say n = 8m+3 for m ≥ 1, then f(8m+3) = −f(2m+1)+f(4m+
2) ≤ f(4m+ 2) ≤ 4m+ 2 by induction.

� If n ≡ 6 (mod 8), say n = 8m + 6, then f(8m + 6) = −f(2m + 1) + f(4m + 2) +
f(4m + 3) ≤ f(4m + 2) + f(4m + 3) ≤ 8m + 5 by induction, provided m ≥ 2. For
m = 0 we have f(6) = 6 and for m = 1 we have f(14) = 4.

107

� If n ≡ 7 (mod 8), say n = 8m + 7, then f(8m + 7) = 2f(2m + 1) + f(4m + 3) ≤
2(2m+ 1) + 4m+ 3 = 8m+ 5 for m ≥ 3, by induction. The cases m = 0, 1, 2 can be
veri�ed by inspection.

This completes the proof that f(n) ≤ n.

It remains to see that f(n) = n in�nitely often. We do this by showing that f(n) = n
for n of the form 3 · 2i, i ≥ 1. Let us prove this by induction on i. It is true for i = 1 since
f(6) = 6. Otherwise i ≥ 2, and using (9.3) we have f(3·2i+1) = 2f(3·2i) = 2·3·2i = 3·2i+1

by induction. This also implies the claim lim supn≥1 f(n)/n = 1.

9.7 Unbordered Factors of Other Sequences

We can carry out similar computations for other famous sequences. In some cases the
automata and the corresponding matrices are very large, which renders the computations
time-consuming and the asymptotic behavior less transparent. We report on some of these
computations, omitting the details.

Theorem 52. Let r = r0r1r2 · · · = 00010010 · · · denote the Rudin-Shapiro sequence, de-
�ned by rn = the number of occurrences, taken modulo 2, of `11' in the binary expansion of
n. Let fr(n) denote the number of unbordered factors of length n in r. Then fr(n) ≤ 21

8
n

for all n ≥ 1. Furthermore if n = 2i + 1, then f(n) = 21 · 2i−3 for i ≥ 4.

Theorem 53. For the period-doubling sequences we have that fd(n), the number of unbor-
dered factors of d of length n, is equal to 2 for all n ≥ 1.

108

Chapter 10

Primitive Words and Lyndon Words

Remark 54. Sections of this chapter are taken essentially verbatim from [57].

10.1 Lyndon words

Recall that in Chapter 7 we de�ned a word w to be a power if it is of the form w = xα

for some α > 1. Otherwise w is called primitive. Thus while murmur is a power, murder is
primitive.

Let Σ be an ordered alphabet. We recall the usual de�nition of lexicographic order on
the words in Σ∗. We write w < x if either

(a) w is a proper pre�x of x; or

(b) there exist words y, z, z′ and letters a < b such that w = yaz and x = ybz′.

For example, using the usual ordering of the alphabet, we have common < con < conjugate.
As usual, we write w ≤ x if w < x or w = x.

A word w is a conjugate of a word x if there exist words u, v such that w = uv and
w = vu. Thus, for example, enlist and listen are conjugates. A word is said to be
Lyndon if it is primitive and lexicographically least among all its conjugates. Thus, for
example, academy is Lyndon, while googol and googoo are not. Lyndon words have
received a great deal of attention in the combinatorics on words literature. For example,
a �nite word is Lyndon if and only if it is lexicographically less than each of its proper
su�xes [40] and this can be tested in linear time.

109

Theorem 55. Let x be a k-automatic sequence. The predicate P (i, j) de�ned by �x[i..j]
is primitive� is expressible.

Proof. (due to Luke Schae�er) It is easy to see that a word is a power if and only if it is
equal to some cyclic shift of itself, other than the trivial shift. Thus a word is a power
if and only if there is a d, 0 < d < j − i + 1, such that x[i..j − d] = x[i + d..j] and
x[j − d+ 1..j] = x[i..i+ d− 1]. A word is primitive if there is no such d.

Theorem 56. Let x be a k-automatic sequence. The predicate LL(i, j,m, n) de�ned by
�x[i..j] < x[m..n]� is expressible.

Proof. We have x[i..j] < x[m..n] if and only if either

(a) j − i < n−m and x[i..j] = x[m..m+ j − i]; or

(b) there exists t < min(j− i, n−m) such that x[i..i+ t] = x[m..m+ t] and x[i+ t+ 1] <
x[m+ t+ 1].

Theorem 57. Let x be a k-automatic sequence. The predicate L(i, j) de�ned by �x[i..j] is
a Lyndon word� is expressible.

Proof. It su�ces to check that x[i..j] is lexicographically less than each of its proper su�xes,
that is, that LL(i, j, i′, j) holds for all i′ with i < i′ ≤ j.

We can extend the de�nition of lexicographic order to in�nite words in the obvious
way. We can extend the de�nition of Lyndon words to (right-) in�nite words as follows:
an in�nite word x = a0a1a2 · · · is Lyndon if it is lexicographically less than all its su�xes
x[j..∞] = ajaj+1 · · · for j ≥ 1. Then we have the following theorems.

Theorem 58. Let x be a k-automatic sequence. The predicate LL∞(i, j) de�ned by
�x[i..∞] < x[j..∞]� is expressible.

Proof. This is equivalent to ∃t ≥ 0 such that x[i..i+ t− 1] = x[j..j + t− 1] and x[i+ t] <
x[j + t].

Theorem 59. Let x be a k-automatic sequence. The predicate L∞(i) de�ned by �x[i..∞]
is an in�nite Lyndon word� is expressible.

Proof. This is equivalent to LL∞(i, j) holding for all j > i.

110

10.2 Lyndon Factorization

Siromoney et al. [101] proved that every in�nite word x = a0a1a2 · · · can be factorized
uniquely in exactly one of the following two ways:

(a) as x = w1w2w3 · · · where each wi is a �nite Lyndon word and w1 ≥ w2 ≥ w3 · · · ; or

(b) as x = w1w2w3 · · ·wrx where wi is a �nite Lyndon word for 1 ≤ i ≤ r, and x is an
in�nite Lyndon word, and w1 ≥ w2 ≥ · · · ≥ wr ≥ x.

If (a) holds we say that the Lyndon factorization of x is in�nite; otherwise we say it is
�nite.

Ido and Melançon [75, 64] gave an explicit description of the Lyndon factorization of
the Thue-Morse word t and the period-doubling sequence (among other things). For the
Thue-Morse word, this factorization is given by

t = w1w2w3w4 · · · = (011)(01)(0011)(00101101) · · · ,

where each term in the factorization, after the �rst, is double the length of the previous.
Séébold [96] and �erný [27] generalized these results to other related automatic sequences.

In this section, generalizing the work of Ido, Melançon, Séébold, and �erný, we prove
that the Lyndon factorization of a k-automatic sequence is itself k-automatic. Of course,
we need to explain how the factorization is encoded. The easiest and most natural way to
do this is to use an in�nite word over {0, 1}, where the 1's indicate the positions where
a new term in the factorization begins. Thus the i'th 1, for i ≥ 0, appears at index
|w1w2 · · ·wi|. For example, for the Thue-Morse word, this encoding is given by

100101000100000001 · · · .

If the factorization is in�nite, then there are in�nitely many 1's in its encoding; otherwise
there are �nitely many 1's.

In order to prove the theorem, we need a number of results. We draw a distinction
between a factor f of x (which is just a word) and an occurrence of that factor (which
speci�es the exact position at which f occurs). For example, in the Thue-Morse word t,
the factor 0110 occurs as x[0..3] and x[11..15] and many other places. We call [0..3] and
[11..15], and so forth, the occurrences of 0110. An occurrence is said to be Lyndon if the
word at that position is Lyndon. We say an occurrence O1 = [i..j] is inside an occurrence

111

O2 = [i′..j′] if i′ ≤ i and j′ ≥ j. If, in addition, either i′ < i or j < j′ (or both), then we
say O1 is strictly inside O2. These de�nitions are easily extended to the case where j or j′

are equal to ∞, and they correspond to the predicates I (inside) and SI (strictly inside)
given below:

I(i, j, i′, j′) is i′ ≤ i and j′ ≥ j

SI(i, j, i′, j′) is I(i, j, i′, j′) and ((i′ < i) or (j′ > j))

An in�nite Lyndon factorization

x = w1w2w3 · · ·

then corresponds to an in�nite sequence of occurrences

[i1..j1], [i2..j2], · · ·

where wn = x[in..jn] and in+1 = jn + 1 for n ≥ 1, while a �nite Lyndon factorization

x = w1w2 · · ·wrx

corresponds to a �nite sequence of occurrences

[i1..j1], [i2..j2], . . . , [ir..jr], [ir+1..∞]

where wn = x[in..jn] and in+1 = jn + 1 for 1 ≤ n ≤ r.

Theorem 60. Let x be an in�nite word. Every Lyndon occurrence in x appears inside a
term of the Lyndon factorization of x.

Proof. We prove the result for in�nite Lyndon factorizations; the result for �nite factor-
izations is exactly analogous.

Suppose the factorization is x = w1w2w3 · · · . It su�ces to show that no Lyndon occur-
rence can span the boundary between two terms of the factorization. Suppose, contrary
to what we want to prove, that uwiwi+1 · · ·wjv is a Lyndon word for some u that is a
nonempty su�x of wi−1 (possibly equal to wi−1), and v that is a nonempty pre�x of wj+1

(possibly equal to wj+1), and i ≤ j + 1. (If i = j + 1 then there are no wi's at all between
u and v.)

Since u is a su�x of wi−1 and wi−1 is Lyndon, we have u ≥ wi−1. On the other hand,
by the Lyndon factorization de�nition we have wi−1 ≥ wi ≥ · · · ≥ wj ≥ wj+1. But v

112

is a pre�x of wj+1, so just by the de�nition of lexicographic ordering we have wj+1 ≥ v.
Putting this all together we get u ≥ v. So ux ≥ v for all words x.

On the other hand, since uwi · · ·wjv is Lyndon, it must be lexicographically less than
any proper su�x � for instance, v. So uwi · · ·wjv < v. Take x = wi · · ·wjv to get a
contradiction with the conclusion in the previous paragraph.

Corollary 61. The occurrence [i..j] corresponds to a term in the Lyndon factorization of
x if and only if

(a) [i..j] is Lyndon; and

(b) [i..j] does not occur strictly inside any other Lyndon occurrence.

Proof. Suppose [i..j] corresponds to a term wn in the Lyndon factorization of x. Then
evidently [i..j] is Lyndon. If it occurred strictly inside some other Lyndon occurrence, say
[i′..j′], then we know from Theorem 60 that [i′..j′] itself lies in inside some [im, jm], so [i..j]
must lie strictly inside [im, jm], which is clearly impossible.

Now suppose [i..j] is Lyndon and does not occur strictly inside any other Lyndon
occurrence. From Theorem 60 [i..j] must occur inside some term of the factorization [i′..j′].
If [i..j] 6= [i′..j′] then [i..j] lies strictly inside [i′..j′], a contradiction. So [i..j] = [i′..j′] and
hence corresponds to a term of the factorization.

Corollary 62. The predicate LF (i, j) de�ned by �[i..j] corresponds to a term of the Lyndon
factorization of x� is expressible.

Proof. Indeed, by Corollary 61, the predicate LF (i, j) can be de�ned by

L(i, j) and ∀ i′, j′ (SI(i, j, i′, j′) =⇒ ¬L(i′, j′)).

We can now prove the main result of this section.

Theorem 63. Using the encoding mentioned above, the Lyndon factorization of a k-
automatic sequence is itself k-automatic.

Proof. Using the technique of [9], we can create an automaton that on input i expressed
in base k, guesses j and checks if LF (i, j) holds. If so, it outputs 1 and otherwise 0. To
get the last i in the case that the Lyndon factorization is �nite, we also accept i if L∞(i)
holds.

113

We also have

Theorem 64. Let x be a k-automatic sequence. It is decidable if the Lyndon factorization
of x is �nite or in�nite.

Proof. The construction given above in the proof of Theorem 63 produces an automa-
ton that accepts �nitely many distinct i (expressed in base k) if and only if the Lyndon
factorization of x is �nite.

We computed the predicate described above and found the Lyndon factorization of the
Thue-Morse sequence t, the period-doubling sequence d, the paperfolding sequence p, and
the Rudin-Shapiro sequence r, and their negations. (The results for Thue-Morse and the
period-doubling sequence were already given in [64], albeit in a di�erent form.) The results
are given in the theorem below.

Remark 65. There is a typo in the original paper regarding the Lyndon factorization of
the Rudin-Shapiro sequence. The correct expression is given below.

Theorem 66. The occurrences corresponding to the Lyndon factorization of each word is
as follows:

� the Thue-Morse sequence t: [0..2], [3..4], [5..8], [9..16], . . . , [2i + 1..2i+1], . . .;

� the negated Thue-Morse sequence t: [0..0], [1..∞];

� the Rudin-Shapiro sequence r: [0..6], [7..30], . . . , [2i − 1..2i+2 − 2], . . .;

� the negated Rudin-Shapiro sequence r: [0..0], [1..1], [2..2], [3..10], [11..42], [43..46], . . . , [4i−
4i−1 − 4i−2 − 1..4i − 4i−1 − 2], [4i − 4i−1 − 1..4i+1 − 4i − 4i−1 − 1], . . .;

� the paperfolding sequence p: [0..6], [7..14], [15..30], . . . , [2i − 1..2i+1 − 2], . . .;

� the negated paperfolding sequence p: [0..0], [1..1], [2..4], [5..9], [10..20], [21..84], . . . , [(4i−
1)/3..4(4i − 1)/3], . . .;

� the period-doubling sequence d: [0..0], [1..4], [5..20], [21..84], . . .,
[(4i − 1)/3..4(4i − 1)/3], . . .;

� the negated period-doubling sequence d: [0..1], [2..9], [10..41], [42..169], . . .,
[2(4i − 1)/3..2(4i+1 − 1)/3− 1],

114

10.3 Enumeration

The subword complexity function ρ(n) of an in�nite sequence x counts the number of
distinct length-n factors of x. We study it in greater detail in Chapter 11. There are
also many variations, such as counting the number of palindromic factors or unbordered
factors. If x is k-automatic, then all three of these are k-regular sequences [9]. We now
show that the same result holds for the number ρPx (n) of primitive factors of length n and
for the number ρLx of Lyndon factors of length n. We refer to these two quantities as the
�primitive complexity� and �Lyndon complexity�, respectively.

Theorem 67. The function counting the number of length-n primitive (resp., Lyndon)
factors of a k-automatic sequence x is k-regular.

Proof. By the results of [28], it su�ces to show that there is an automaton accepting the
base-k representations of pairs (n, i) such that the number of i's associated with each n
equals the number of primitive (resp., Lyndon) factors of length n.

To do so, it su�ces to show that the predicate P (n, i) de�ned by �the factor of length
n beginning at position i is primitive (resp., Lyndon) and is the �rst occurrence of that
factor in x� is expressible. This is just

P (i, i+ n− 1) and ∀j < i x[i..i+ n− 1] 6= x[j..j + n− 1],

(resp.,
L(i, i+ n− 1) and ∀j < i x[i..i+ n− 1] 6= x[j..j + n− 1]).

We used our method to compute these sequences for the Thue-Morse sequence, and the
results are given below.

Theorem 68. Let ρLt (n) denote the number of Lyndon factors of length n of the Thue-
Morse sequence. Then

ρLt (n) =

1, if n = 2k or 5 · 2k for k ≥ 1 ;

2, if n = 1 or n = 5 or n = 3 · 2k for k ≥ 0;

0, otherwise.

115

Theorem 69. Let ρPt (n) denote the number of primitive factors of length n of the Thue-
Morse sequence. Then

ρPt (n) =

3 · 2t − 4, if n = 2t;

4n− 2t − 4, if 2t + 1 ≤ n < 3 · 2t−1;
5 · 2t − 6, if n = 3 · 2t−1;
2n+ 2t+1 − 2, if 3 · 2t−1 < n < 2t+1.

We can also state a similar result for the Rudin-Shapiro sequence.

Theorem 70. Let ρLr (n) denote the Lyndon complexity of the Rudin-Shapiro sequence.
Then ρLr (n) ≤ 8 for all n. This sequence is 2-automatic and there is an automaton of 2444
states that generates it.

Proof. The proof was carried out by machine computation, and we brie�y summarize how
it was done.

First, we created an automaton A to accept all pairs of integers (n, i), represented in
base 2, such that the factor of length n in r, starting at position i, is a Lyndon factor, and
is the �rst occurrence of that factor in r. Thus, the number of distinct integers i associated
with each n is ρLr (n). The automaton A has 102 states.

Using the techniques in [28], we then used A to create matricesM0 andM1 of dimension
102 × 102, and vectors v, w such that vMxw = ρLr (n), if x is the base-2 representation of
n. Here if x = a1a2 · · · ai, then by Mx we mean the product Ma1Ma2 · · ·Mai .

From this we then created a new automaton A′ where the states are products of the
form vMx for binary strings x and the transitions are on 0 and 1. This automaton was
built using a breadth-�rst approach, using a queue to hold states whose targets on 0 and
1 are not yet known. From Theorem 24 in [57], we know that ρLr (n) is bounded, so that
this approach must terminate. It did so at 2444 states, and the product of the vMx

corresponding to each state with w gives an integer less than or equal to 8, thus proving
the desired result and also providing an automaton to compute ρLr (n).

Remark 71. Note that the Lyndon complexity functions in Theorems 68 and 70 are
bounded.

116

10.4 Finite Factorizations

Of course, the original Lyndon factorization was for �nite words: every �nite nonempty
word x can be factored uniquely as a nonincreasing product w1w2 · · ·wm of Lyndon words.
We can apply this theorem to all pre�xes of a k-automatic sequence. It is then natural to
wonder if a single automaton can encode all the Lyndon factorizations of all �nite pre�xes.
The answer is yes, as the following result shows.

Theorem 72. Suppose x is a k-automatic sequence. Then there is an automaton A ac-
cepting

{(n, i)k : the Lyndon factorization of x[0..n− 1] is w1w2 · · ·wm
with wm = x[i..n− 1]}.

Proof. As is well-known [40], if w1w2 · · ·wm is the Lyndon factorization of x, then wm is
the lexicographically least su�x of x. So to accept (n, i)k we �nd i such that x[i..n− 1] <
x[j..n− 1] for 0 ≤ j < n and i 6= j.

Given A, we can �nd the complete factorization of any pre�x x[0..n− 1] by using this
automaton to �nd the appropriate i (as described in [58]) and then replacing n with i.

We carried out this construction for the Thue-Morse sequence, and the result is shown
below in Figure 10.1.

In a similar manner, there is an automaton that encodes the factorization of every
factor of a k-automatic sequence:

Theorem 73. Suppose x is a k-automatic sequence. Then there is an automaton A′

accepting

{(i, j, l)k : the Lyndon factorization of x[i..j − 1] is w1w2 · · ·wm
with wm = x[l..j − 1]}.

117

0 [0,0]

1

[1,0]

2

[1,1]

3

[0,0] [1,0]

4

[0,1]

[0 ,0]

5

[1,0] 6

[1,1]

[1 ,1] 7

[0,0] 8

[0,1]

[1 ,0]

9

[0,0]

1 0

[0,1]

[1 ,1]

[0 ,0]

[1 ,0]

[0,1] [1,1] 1 1

[0,0]

1 2

[0,1]

[0 ,1]

[1 ,0]

[0 ,1]

1 3

[1,1]

[1 ,1]

[0 ,0]

[0 ,1]

[0 ,0]

[0 ,1]

Figure 10.1: A �nite automaton accepting the base-2 representation of (n, i) such that the
Lyndon factorization of t[0..n− 1] ends in the term t[i..n− 1]

118

0 [0,0,0]

1

[0,1,0]

2

[0,1,1]3

[1,1,1]

4

[0,0,0] [0,1,0]

5

[0,0,1]

6

[1,0,1]

7

[0,0,0]

8

[0,1,0]

9

[0,1,1] [1,1,1]

1 0

[1,0,0]

1 1

[1,1,0]

[1,1,1]

[0,0,0]

1 2

[0,1,0]

1 3

[0,1,1]

[0,1,1] [1,1,1] 1 4

[0,0,0] [1,0,0] 1 5

[0,0,1] [1,0,1]

[1,0,1]

[0,1,1] [1,1,1] 1 6

[0,0,0]

1 7

[0,0,1]

[0,0,0] [1,0,0]

[0,1,0] [1,1,0]

[0,1,1] [1,1,1]

[0,1,0] [1,1,0]

1 8

[0,0,0] [1,0,0]

1 9

[0,0,1] [1,0,1]

[0,1,1] [1,1,1]

[0,0,0] [1,0,0]

[0,1,0] [1,1,0]

[1,0,0]

[0,0,0]

[0,1,0] [1,1,0]

[0,1,1] [1,1,1]

[0,1,0] [1,1,0] [0,0,0] [1,0,0] [0,0,1] [1,0,1]

[0,1,0]

2 0

[0,0,0]

2 1

[0,0,1]

2 2

[0,1,1]2 3

[1,0,1]

2 4

[1,1,1]

[0,1,1] [1,1,1]

[0,0,0]

[0,1,0]

2 5

[1,0,0]

2 6

[1,1,0]

[0,0,1] [0,1,1] [1,0,1] [1,1,1]2 7

[0,0,0] [1,0,0]

2 8

[0,0,1] [1,0,1]

[0,0,1] [0,1,1] [1,0,1] [1,1,1]

2 9

[0,0,0]

[1,0,1]

3 0

[0,0,1]

[0,0,1] [1,0,1]

[0,1,0] [1,1,0]

[0,0,1] [1,0,1]

3 1

[0,1,1] [1,1,1]

[0,0,1] [1,0,1]

[0,1,0]

[0,0,1] [1,0,1]

[1,1,1]3 2

[0,1,1]

[1,0,1] 3 3

[0,0,1]

[0,0,0]

[0,0,1]

[1,0,1]

[0,1,1]

[1,1,1]

[0,1,0]

[0,0,1][1,0,1]

[0,1,1] [1,1,1]

[0,0,0]

[1,0,0]

[0,1,0]

[1,1,0]

[0,0,0] [1,0,0] [1,1,0]

[0,0,1]

[1,0,1]

[0,1,1] [1,1,1]

[0,0,0] [1,0,0]

[0,0,1] [1,0,1]

[0,0,0] [1,0,0]

[0,1,1] [1,1,1]

[0,0,0]

[1,0,0]

[0,0,1] [1,0,1][0,0,0]

[0,0,1] [1,0,1]

[0,0,1] [1,0,1]

[1,0,0]

[0,0,0]

[1,0,0]

[0,0,0]

Figure 10.2: A �nite automaton accepting the base-2 representation of (i, j, l) such that
the Lyndon factorization of t[i..j − 1] ends in the term t[l..j − 1]

We calculated A′ for the Thue-Morse sequence using our method. It is a 34-state
machine and is displayed in Figure 9.2.

Another quantity of interest is the number of terms in the Lyndon factorization of each
pre�x.

Theorem 74. Let x be a k-automatic sequence. Then the sequence (f(n))n≥0 de�ned by

f(n) = the number of terms in the Lyndon factorization of x[0..n]

is k-regular.

Proof. We construct an automaton to accept

{(n, i) : ∃j ≤ n such that L(i, j) and if SI(i, j, i′, j′) and 0 ≤ i′ ≤ j′ ≤ n then ¬L(i′, j′)}.

119

For the Thue-Morse sequence the corresponding sequence satis�es the relations

f(4n+ 1) = −f(2n) + f(2n+ 1) + f(4n)

f(8n+ 2) = −f(2n) + f(4n) + f(4n+ 2)

f(8n+ 3) = −f(2n) + f(4n) + f(4n+ 3)

f(8n+ 6) = −f(2n)− f(4n+ 2) + 3f(4n+ 3)

f(8n+ 7) = −f(2n) + 2f(4n+ 3)

f(16n) = −f(2n) + f(4n) + f(8n)

f(16n+ 4) = −f(2n) + f(4n) + f(8n+ 4)

f(16n+ 8) = −f(2n) + f(4n+ 3) + f(8n+ 4)

f(16n+ 12) = −f(2n)− 2f(4n+ 2) + 3f(4n+ 3) + f(8n+ 4)

for n ≥ 1, which allows e�cient calculation of this quantity.

120

Chapter 11

Subword Complexity

Remark 75. This chapter is taken essentially verbatim from [58].

Theorem 76. Suppose (f(n))n≥0 is k-synchronized. Then there is an algorithm that, given
the base-k representation of n, will compute the base-k representation of f(n) in O(log n)
time.

Proof. We know there is a DFA M = (Q,Σk × Σk, δ, q0, F) accepting

L = {(n, f(n))k : n ≥ 0}.

Let w = (n)k. It is easy to construct a (|w| + 2)-state DFA that accepts words with
0∗w in the �rst coordinate and no leading [0, 0]'s. Such a DFA accepts the language
K = {(n,m)k : m ≥ 0}. We now construct a DFA H for the language K ∩ L, where
H has |Q|(|w| + 2) = Θ(|w|) states, using the familiar direct product construction from
automata theory.

The only word in K ∩ L is (n, f(n))k, so we apply a linear-time directed graph reach-
ability algorithm (such as breadth-�rst or depth-�rst search) to the underlying transition
graph of H. This �nds the unique path x ∈ (Σk × Σk)

∗ from the initial state in W to an
accepting state. Then x is labeled (n, f(n))k, so reading the second coordinate yields the
base-k representation of f(n).

In this chapter we show that if x is a k-automatic sequence, then the subword complexity
ρx(n) is k-synchronized. As an application, we generalize and simplify recent results of

121

Goldstein [53, 54]. Furthermore, we obtain analogous results for the number of length-n
primitive words and the number of length-n powers.

We remark that there are a number of quantities about k-automatic sequences already
known to be k-synchronized. These include the separator sequence [25], the repetitivity
index [22], the recurrence function [28], and the �appearance� function [28]. The latter
two examples were not explicitly stated to be k-synchronized in [28], but the result follows
immediately from the proofs in that paper.

11.1 Subword Complexity

Cobham [29] proved that if x is a k-automatic sequence, then ρx(n) = O(n). Cassaigne [26]
proved that any in�nite word x satisfying ρx(n) = O(n) also satis�es ρx(n+ 1)− ρx(n) =
O(1). Carpi and D'Alonzo [23] showed that the subword complexity function ρx(n) is a
k-regular sequence.

Charlier, Rampersad, and Shallit [28] found this result independently, using a somewhat
di�erent approach. They used the following idea. Call an occurrence of the factor t =
x[i..i + n − 1] �novel� if t does not appear as a factor of x[0..i + n − 2]. In other words,
the leftmost occurrence of t in x is at position i. Then the number of factors of length n
in x is equal to the number of novel occurrences of factors of length n. The property that
x[i..i+ n− 1] is novel can be expressed as a predicate, as follows:

{(n, i)k : ∀j, 0 ≤ j < i x[i..i+ n− 1] 6= x[j..j + n− 1]} =

{(n, i)k : ∀j, 0 ≤ j < i ∃m, 0 ≤ m < n x[i+m] 6= x[j +m]}. (11.1)

As shown in [28], the base-k representation of the integers satisfying any predicate of
this form (expressible using quanti�ers, integer addition and subtraction, indexing into
a k-automatic sequence x, logical operations, and comparisons) can be accepted by an
explicitly-constructable deterministic �nite automaton. From this, it follows that the se-
quence ρx(n) is k-regular, and hence can be computed explicitly in terms of the product
of certain matrices and vectors depending on the base-k expansion of n.

We show that, in fact, the subword complexity function ρx(n) is k-synchronized. The
main observation needed is the following (Theorem 78): in any sequence of linear com-
plexity, the novel occurrences of factors are �clumped together� in a bounded number of
contiguous blocks. This makes it easy to count them.

122

More precisely, let x be an in�nite word and for any n consider the set of novel oc-
currences Ex(n) := {i : the occurrence x[i..i + n− 1] is novel }. We consider how Ex(n)
evolves with increasing n.

As an example, consider the Thue-Morse sequence t = t0t1t2 · · · = 0110100110010110 · · · ,
de�ned by letting tn be the number of 1's in the binary expansion of n, taken modulo 2. The
gray squares in the rows of of Figure 11.1 depict the members of Et(n) for the Thue-Morse
sequence for 1 ≤ n ≤ 9.

Figure 11.1: Evolution of novel occurrences of factors in the Thue-Morse sequence

Lemma 77. Let x be an in�nite word. If the factor of length n beginning at position i is
a novel occurrence, so is

(a) the factor of length n+ 1 beginning at position i;

(b) the factor of length n+ 1 beginning at position i− 1 (for i ≥ 1).

Proof. (a) Suppose the factor of length n + 1 also occurs at some position j < i. Then
the factor of length n also occurs at position j, contradicting the fact that it was a novel
occurrence at i.

(b) Suppose the factor of length n+ 1 beginning at position i−1 occurs at some earlier
position j < i−1. We can write the factor as ax, where a is a single letter and x is a word,
so the factor of length n beginning at position i must also occur at position j + 1 < i. But
then it is not a novel occurrence.

123

Theorem 78. Let x be an in�nite word. For n ≥ 1, the number of contiguous blocks in
Ex(n) is at most ρx(n)− ρx(n− 1) + 1.

Proof. We prove the claim by induction on n. For n = 1 the claim says there are at most
ρx(1) contiguous blocks, which is evidently true, since there are at most ρx(1) novel factors
of length 1.

Now assume the claim is true for all n′ < n; we prove it for n. Consider the evolution of
the novel occurrences of factors in going from length n−1 to n. Every occurrence that was
previously novel is still novel, and furthermore in every contiguous block except the �rst, we
get novel occurrences at one position to the left of the beginning of the block. So if row n−1
has t contiguous blocks, then we get t−1 novel occurrences at the beginning of each block,
except the �rst. (Of course, the �rst block begins at position 0, since any factor beginning
at position 0 is novel, no matter what the length is.) The remaining ρx(n)−ρx(n−1)−(t−1)
novel occurrences could be, in the worst case, in their own individual contiguous blocks.
Thus row n has at most t+ ρx(n)− ρx(n− 1)− (t− 1) = ρx(n)− ρx(n− 1) + 1 contiguous
blocks.

In our Thue-Morse example, it is well-known that ρt(n)−ρt(n− 1) ≤ 4, so the number
of contiguous blocks in any row is at most 5. This is achieved, for example, for n = 6.

Example 79. We give an example of a recurrent in�nite word over a �nite alphabet where
the number of contiguous blocks in Ex(n) is unbounded. Consider the word

w =
∏
n≥1

(n)2 = 110111001011101111000 · · · .

Then for each n ≥ 5 the �rst occurrence of each of the words 0n−11, 0n−211, . . . , 021n−2

have a non-novel occurrence immediately following them, which shows there at at least
n− 2 blocks in Ew(n).

Corollary 80. If ρx(n) = O(n), then there is a constant C such that every row Ex(n) in
the evolution of novel occurrences consists of at most C contiguous blocks.

Proof. By the result of Cassaigne [26], we know that there exists a constant C such that
ρx(n) − ρx(n − 1) ≤ C − 1. By Theorem 78, we know there are at most C contiguous
blocks in any Ex(n).

124

Theorem 81. Let x be a k-automatic sequence. Then its subword complexity function
ρx(n) is k-synchronized.

Proof. Following [28], it su�ces to show how to accept the language

{(n,m)k : n ≥ 0 and m = ρx(n)}

with a �nite automaton. Here is a sketch of the argument. From our results above, we
know that there is a �nite constant C ≥ 1 such that the number of contiguous blocks in any
row of the factor evolution diagram is bounded by C. So we simply �guess� the endpoints
of every block and then verify that each factor of length n starting at the positions inside
blocks is a novel occurrence, while all other factors are not. Finally, we verify that m is
the sum of the sizes of the blocks.

To �ll in the details, we observe above in (11.1) that the predicate �the factor of length
n beginning at position i of x is a novel occurrence� is solvable by a �nite automaton.
Similarly, given endpoints a, b and n, the predicates �every factor of length n beginning
at positions a through b is a novel occurrence� and �no factor of length n beginning at
positions a through b is a novel occurrence� are also solvable by a �nite automaton. The
length of each block is just b− a+ 1, and it is easy to create an automaton that will check
if the sums of the lengths of the blocks equals m, which is supposed to be ρx(n).

Applying Theorem 76 we get

Corollary 82. Given a k-automatic sequence x, there is an algorithm that, on input n in
base k, will produce ρx(n) in base k in time O(log n).

As another application, we can recover and improve some recent results of Goldstein [53,
54]. He showed how to compute the quantities lim supn≥1 ρx(n)/n and lim infn≥1 ρx(n)/n
for the special case of k-automatic sequences that are the �xed points of k-uniform mor-
phisms related to certain groups. Corollary 83 below generalizes these results to all k-
automatic sequences.

Corollary 83. There is an algorithm, that, given a k-automatic sequence x, will compute
supn≥1 ρx(n)/n, lim supn≥1 ρx(n)/n, and infn≥1 ρx(n)/n, lim infn≥1 ρx(n)/n.

Proof. We already showed how to construct an automaton accepting {(n, ρx(n))k : n ≥ 1}.
Now we just use the results from [97, 93]. Notice that the lim sup corresponds to what is
called the largest �special point� in [93].

125

Example 84. Continuing our example of the Thue-Morse sequence, Figure 11.2 displays
a DFA accepting {(n, ρt(n))k : n ≥ 0}. Inputs are given with the most signi�cant digit
�rst; the �dead� state and transitions leading to it are omitted.

Given an in�nite word x, we can also count the number of contiguous blocks in each
Ex(n) for n ≥ 0. (For the Thue-Morse sequence this gives the sequence 1, 1, 2, 1, 3, 1, 5, 3, 3, 1,)
If x is k-automatic, then this sequence is also, as the following theorem shows:

Theorem 85. If x is k-automatic then the sequence (e(n))n≥0 counting the number of
contiguous blocks in the n'th step Ex(n) of the evolution of novel occurrences of factors in
x is also k-automatic.

Proof. Since we have already shown that the number of contiguous blocks is bounded by
some constant C if x is k-automatic, it su�ces to show for each i ≤ C we can create an
automaton to accept the language

{(n)k : Ex(n) has exactly i contiguous blocks }.

To do so, on input n in base k we guess the endpoints of the i contiguous nonempty
blocks, verify that the length-n occurrences at those positions are novel, and that all other
occurrences are not novel.

126

0 [0,0]

1

[0,1]

2

[0,0]

3

[1,0]

4

[1,1]

5

[1,0]

6

[1,1]

7

[0,0]8

[0,1]

[0 ,0]

[0 ,1]

[1 ,0]

9

[0,0] 1 0

[0,1]

1 1

[1,0] 1 2

[1,1]

[1 ,1]

1 3

[1,0]

[0 ,0]

[0 ,1]

[1 ,0]

[1 ,1]

[1 ,0]

[1 ,1]

[0 ,0]

[0 ,0]

[0 ,1]

[0 ,1]

[1 ,0]

[1 ,1]

[0 ,0]

Figure 11.2: Automaton computing the subword complexity of the Thue-Morse sequence

Example 86. Figure 11.3 below gives the automaton computing the number e(n) of con-
tiguous blocks of novel occurrences of length-n factors for the Thue-Morse sequence. Here
is a brief table:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
e(n) 1 1 2 1 3 1 5 3 3 1 5 5 5 3 3

Table 11.1: The �rst few terms of e(n)

127

1 1

2

1

3

1

5

3

5
0 0

1

0

1

0

1

0

1

0,1 0,1

0

1

0,1

1

Figure 11.3: Automaton computing number of contiguous blocks of novel occurrences of
length-n factors in the Thue-Morse sequence

11.2 Implementation

We wrote a program that, given an automaton generating a k-automatic sequence x, will
produce a deterministic �nite automaton accepting the language {(n, ρx(n))k : n ≥ 0}.
We used the following variant which does not require advance knowledge of the bound on
the �rst di�erence of ρx(n):

1. Construct an automaton R that accepts (n, s, e, `) if, for factors of length n, the next
contiguous block of novel occurrences after position s ends at position e and has
length `. If there are no blocks past s, accept (n, s, s, 0).

2. Construct an automaton M0 that accepts (n, 0, 0).

3. Construct an automaton Mj+1 that accepts (n, S, e) if there exist s and S ′ such that

(i) Mj accepts (n, S ′, s)

(ii) R accepts (n, s, e, S − S ′).

4. If Mj+1 = Mj then we are done. We create an automaton that accepts (n, S) if there
exists e such that Mj accepts (n, S, e).

Besides the automaton depicted in Figure 11.1, we ran our program on the paperfolding
sequence and the period-doubling sequence. The former gives a DFA of 20 states and the
latter of 7 states. In the original paper we omitted them for space considerations. Here,
the results are depicted below in Figures 11.4 and 11.5.

128

0 [0,0]

1

[0,1]

2

[0,0]

3

[0,1]

4

[1,0]

5

[1,1]

6

[1,0]

7

[1,1]

8

[1,0]

9

[1,1]

1 0

[0,0] 1 1

[0,0]

[1 ,0] 1 2

[0,0]

1 3

[0,1]

[0 ,1]

1 4

[0,0]

1 5

[1,1] [1 ,0]

1 6

[1,1]

[1 ,1]

1 7

[1,0]

[0 ,0]

[0 ,1]1 8

[0,0]

[0 ,1]

[1 ,0]

[0 ,0]

[1 ,1]

[1 ,0][0 ,1]

[0 ,1]

[0 ,0] [1 ,1]

1 9

[1,0]

[0 ,1]

[0 ,0]

[0 ,1]

[0 ,0]

Figure 11.4: Automaton computing the subword complexity of the paperfolding sequence

129

0 [0,0]

1

[0,1]

2

[1,1]

3

[1,0]

4

[0,1]

5

[0,0]

6

[1,1]

[0 ,0]

[0 ,1][1 ,0]

[1 ,1] [0,0] [1,1]

Figure 11.5: Automaton computing the subword complexity of the period-doubling se-
quence

11.3 Powers and Primitive Words

The following lemma says that if we consider the starting positions of length-n powers in a
word x, then there must be large gaps between contiguous blocks of such starting positions.

Lemma 87. Let z be a �nite or in�nite word, and let n ≥ 2 be an integer. Suppose there
exist integers i, j such that

(a) w1 := z[i..i+ n− 1] is a power;

(b) w2 := z[j..j + n− 1] is a power;

(c) i < j ≤ i+ n/3.

Then z[t..t− n− 1] is a power for i ≤ t ≤ j. Furthermore, if x1 is the Lyndon root of w1,
then x1 is also the Lyndon root of each word z[t..t− n− 1].

130

Proof. Let x1 be the primitive root of w1 and x2 be the primitive root of w2. Since x1 and
x2 are powers, there exist integers p1, p2 ≥ 2 such that w1 = xp11 and w2 = xp22 .

Since w1 and w2 are both of length n, and since their starting positions are related by
i < j ≤ i+ n/3, it follows that the word v := z[j..i+ n− 1] is common to both w1 and w2,
and |v| = i+ n− j ≥ i+ 2n/3 + n/3− j ≥ 2n/3.

Now there are three cases to consider:

(a) |x1| > |x2|; (b) |x1| < |x2|; (c) |x1| = |x2|.

Case (a): We must have p2 > p1 ≥ 2, so p2 ≥ 3. Since v is a su�x of w1, it has period
|x1| ≤ n/2. Since v is a pre�x of w2, it has period |x2| ≤ n/3. Then |v| ≥ 2n/3 ≥ |x1|+|x2|.
By a theorem of Fine and Wilf [44], it now follows that v, and hence x1, has period
p := gcd(|x1|, |x2|) ≤ |x2| < |x1|. Now p is less than |x1| and also divides it, so this means
x1 is a power, a contradiction, since we assumed x1 is primitive. So this case cannot occur.

Case (b) gives a similar contradiction.

Case (c): We have p1 = p2 ≥ 2. Then the last occurrence of x1 in w1 lies inside x22, and
so x1 is a conjugate of x2. Hence w1 is a conjugate of w2. It now follows that z[t..t+n− 1]
is a conjugate of w1 for every t, i ≤ t ≤ j. But the conjugate of a power is itself a power,
and we are done.

Remark 88. The bound of n/3 in the statement of Lemma 87 is best possible, as shown by
the following class of examples. Let h be the morphism that maps 1→ 21 and 2→ 22, and
consider the word hi(122122121212). This word is of length 12 · 2i, and contains squares of
length 3 · 2i+1 starting in the �rst 3 · 2i positions, and cubes of length 3 · 2i+1 ending in the
last 2i + 1 positions. This achieves a gap of n/3 + 1 in�nitely often.

Theorem 89. If x is a k-automatic sequence, then the appearance function Ax(n) = O(n).

Proof. First, recall from Theorem 13 that the appearance function is k-synchronized. From
[25, Prop. 2.5] we know k-synchronized functions are O(n).

As before, we now consider the occurrences of length-n powers in x:

131

Lemma 90. If x is k-automatic, then there are only a constant number of maximal blocks
of novel occurrences of length-n powers in x.

Proof. To begin with, we consider maximal blocks of length-n powers in x (not considering
whether they are novel occurrences). From Theorem 89 we know that every length-n factor
must occur at a position < Cn, for some constant C (depending on x). We �rst argue that
the number of maximal blocks of length-n powers, up to the position of the last length-n
power to occur for the �rst time, is at most 3C.

Suppose there ≥ 3C + 1 such blocks. Then Lemma 87 says that any two such blocks
must be separated by at least n/3 positions. So the �rst occurrence of the last factor to
occur occurs at a position ≥ (3C)(n/3) = Cn, a contradiction.

So using a constant number of blocks, in which each position of each block starts a
length-n factor that is a power, we cover the starting positions of all such factors. It now
remains to process these blocks to remove occurrences of length-n powers that are not
novel.

The �rst thing we do is remove from each block the positions starting length-n factors
that have already occurred in that block. This has the e�ect of truncating long blocks. The
new blocks have the property that each factor occurring at the starting positions in the
blocks never appeared before in that block.

Above we already proved that inside each block, the powers that begin at each position
are all powers of some conjugate of a �xed Lyndon word. Now we process the blocks
associated with the same Lyndon root together, from the �rst (leftmost) to the last. At
each step, we remove from the current block all the positions where length-n factors begin
that have appeared in any previous block. When all blocks have been processed, we need
to see that there are still at most a constant number of contiguous blocks remaining.

Suppose the associated Lyndon root is y, with |y| = d. Each position in a block is the
starting position of a power of a conjugate of y, and hence corresponds to a right rotation
of y by some integer i, 0 ≤ i < d. Thus each block Bj actually corresponds to some Ij that
is a contiguous subblock of 0, 1, . . . , d− 1 (thought of as arranged in a circle).

As we process the blocks associated with y from left to right we replace Ij with I ′j :=
Ij − (I1 ∪ · · · ∪ Ij−1). Now if I ⊆ {0, 1, . . . , d− 1} is a union of contiguous subblocks, let
#I be the number of contiguous subblocks making up I. We claim that

#I ′1 + #I ′2 + · · ·+ #I ′n + #(
⋃

1≤i≤n

I ′i) ≤ 2n. (11.2)

132

To see this, suppose that when we set I ′n := In − (I1 ∪ · · · ∪ In−1), the subblock In
has an intersection with t of the lower-numbered subblocks. Forming the union (

⋃
1≤i≤n I

′
i)

then obliterates t subblocks and replaces them with 1. But I ′n has t − 1 new subblocks,
plus at most 2 at either edge (see Figure 11.6). This means that the left side of (11.2)
increases by at most (1− t) + (t− 1) + 2 = 2. Doing this n times gives the result.

Figure 11.6: How the number of blocks changes

Now at the end of the procedure there will be at least one interval in the union of all
the Ii, so #I ′1 + #I ′2 + · · ·+ #I ′n ≤ 2n− 1, and we have proved (11.2).

Earlier we showed that there are at most 3C maximal blocks of length-n powers, up to
the position of the last length-n power to occur for the �rst time. Then, after processing
these blocks to remove positions corresponding to factors that occurred earlier, we will
have at most 2(3C) = 6C blocks remaining.

Corollary 91. If x is k-automatic, then

� the function counting the number of distinct length-n factors that are powers is k-
synchronized;

� the function counting the number of distinct length-n factors that are primitive words
is k-synchronized.

Proof. Suppose x is k-automatic, and generated by the DFAO M . From the Lyndon-
Schützenberger theorem [73], we know that a word x is a power if and only if there exist
nonempty words y, z such that x = yz = zy. Thus, we can express the predicate P (i, j) :=
�x[i..j] is a power� as follows: �there exists d, 0 < d < j − i + 1, such that x[i..j − d] =
x[i+ d..j] and x[j − d+ 1..j] = x[i..i+ d− 1]�. Furthermore, we can express the predicate
P ′(i, n) := �x[i..i+ n− 1] is a length-n power and the �rst occurrence of that power in x�,
as

P (i, i+ n− 1) ∧ (∀i′, 0 ≤ i′ < i, ¬P (i′, i′ + n− 1)).

133

From Lemma 90 we know that the novel occurrences of length-n powers are clustered
into a �nite number of blocks. Then, as in the proof of Theorem 81, we can guess the
endpoints of these blocks, and verify that the length-n factors beginning at the positions
inside the blocks are novel occurrences of powers, while those outside are not, and sum the
lengths of the blocks, using a �nite automaton built from M . Thus, the function counting
the number of length-n powers in x is k-synchronized.

The number of length-n primitive words in x is then also k-synchronized, since it is
expressible as the total number of words of length n, minus the number of length-n powers.

Remark 92. Using the technique above, we can prove analogous results for the functions
counting the number of length-n words that are α-powers, for any �xed rational number
α > 1.

11.4 Unsynchronized Sequences

It is natural to wonder whether other aspects of k-automatic sequences are always k-
synchronized. We give an example that is not.

Charlier et al. [28] showed that ux(n), the number of unbordered factors of length n of
a sequence x, is k-regular if x is k-automatic. They also gave a conjecture for recursion
relations de�ning ut(n) where t is the Thue-Morse sequence; this conjecture has recently
been veri�ed by Go£ and Shallit [56] and is presented in Chapter 9 of this Thesis.

We give here an example of a k-automatic sequence where the number of unbordered
factors of length n is not k-synchronized.

Consider the characteristic sequence of the powers of 2: c := 0110100010 · · · .

Theorem 93. The sequence c is 2-automatic, but the function uc(n) counting the number
of unbordered factors is not 2-synchronized.

Proof. It is not hard to verify that c is 2-automatic and that c has exactly r+2 unbordered
factors of length 2r+1, for r ≥ 2 � namely, the factors beginning at positions 2i for 0 ≤ i ≤
r, and the factor beginning at position 2r + 1. However, if uc(n) were 2-synchronized, then
reading an input where the �rst component looks like 0i10r1 (and hence a representation
of 2r−1 + 1) for large r would force the transitions to enter a cycle. If the corresponding
transitions for the second component contained a nonzero entry, this would force uc(n) to

134

grow linearly with n when n is of the form 2r+1. Otherwise, the corresponding transitions
for the second component are just 0's, in which case uc(n) is bounded above by a constant,
for n of the form 2r + 1. Both cases lead to a contradiction.

135

Chapter 12

Conclusion and Open Problems

In this thesis we considered various properties of k-automatic sequences. In Chapter 3 we
described a decidable logical theory in which many of these sequences are expressible. In
the following chapters we proceeded to show many examples of properties that feasibly
decidable in our system. We catalogued the results for a list of well-known k-automatic
sequences. Some of our results are novel, others improve on previous `hand derived' the-
orems and yet others con�rm known results. Not every property we embarked to decide
has been feasible and below we give a list of still open problems.

12.1 Keränen's Word

A word w is an abelian square if w = xy where |x| = |y| and x is a permutation of y. In [65]
Keränen gave a description of an 85-automatic sequence that avoids abelian squares over
a 4 letter alphabet. The sequence is de�ned as the �xed point of the following morphism:

a→abcacdcbcdcadcdbdabacabadbabcbdbcbacbcdcacbabdabacadcbcdcacdbcbacbcdcacdcbdcdadbdcbca

b→bcdbdadcdadbadacabcbdbcbacbcdcacdcbdcdadbdcbcabcbdbadcdadbdacdcbdcdadbdadcadabacadcdb

c→cdacabadabacbabdbcdcacdcbdcdadbdadcadabacadcdbcdcacbadabacabdadcadabacabadbabcbdbadac

d→dabdbcbabcbdcbcacdadbdadcadabacabadbabcbdbadacdadbdcbabcbdbcabadbabcbdbcbacbcdcacbabd

Shallit conjectured (personal communication with the author of this thesis) that the
appearance function of this Keränen sequence satis�es:

136

Ae(n) =

7, if n = 1;

21, if n = 2;

102, if n = 3;

1617, if n = 4;

340 · 5t + n− 85, if n ≥ 5 and t = dlog85(n− 1)e.

We were unable to con�rm this conjecture as the computation quickly became infeasible
due to the large out-degrees of each state of the intermediate automata.

12.2 Lempel-Ziv and Crochemore Factorizations

In Chapter 10 we show that the Lyndon factorization of a k-automatic sequence is itself
k-automatic. It is natural to ask if we can do the same for the Crochemore factorization.
The Crochemore factorization of an in�nite word x = z1z2z3 · · · satis�es that each zi is
either

(a) a single letter not seen before or

(b) the longest factor occurring already in an earlier position.

Another similar factorization is the Lempel-Ziv factorization. The Lempel-Ziv factor-
ization x = y1y2 · · · is de�ned by setting ym to be the shortest pre�x of ymym+1 · · · that
occurs only once in y1y2 · · · ym.

In order to show that the Lyndon factorization is k-automatic we took advantage of a
`local' property of the terms of Lyndon factorization. Perhaps similar local properties can
be proven about the terms of the Crochemore an Lempel-Ziv factorizations as well.

12.3 Further Work

In Subsection 2.5.3 we introduced the regular paperfolding sequence. Recall that the
regular paperfolding sequence corresponds to folding a piece of paper consistently in the
same direction over and over again. Instead, the general paperfolding sequence is a de�ned
on an (in�nite) sequence of folding instructions (fi) and therefore is actually an uncountable

137

class of sequences. The general paperfolding sequence can be de�ned as g = lim
n→∞

g(n)

where g(0) = f0 and
g(n) = g(n− 1) fn g(n− 1)R.

for all n ≥ 1.

Alternatively, the paperfolding sequence can be described by the formula

gn =

{
fr, if m = 1 (mod 4);
fr, if m = 3 (mod 4),

where n+ 1 = m · 2r and m is odd.

It turns out that we can build a DFAO that reads in (n)2 and a �nite pre�x of (fi) to
generate gn. In principle, this could mean that many of the interesting properties such as
the appearance function could be computed for this uncountable class of sequences. The
implementation has proven to be di�cult, in particular because the treatment of trailing
zeroes we describe in Subsection 3.7.1 is no longer applicable. Perhaps an approach where
the basic building block consisted of Büchi automata (�rst described here [20]) would be
more fruitful. Certainly, it merits further research.

138

References

[1] A. M. Shur. A. V. Samsonov. Binary patterns in binary cube-free words: Avoidability
and growth. Proc. 14th Mons Days of Theoretical Computer Science, pages 1�7, 2012.

[2] J.-P. Allouche, M. Baake, J. Cassaigne, and D. Damanik. Palindrome complexity.
Theoret. Comput. Sci., 292:9�31, 2003.

[3] J.-P. Allouche and M. Bousquet-Mélou. Facteurs des suites de Rudin-Shapiro général-
isées. Bull. Belgian Math. Soc., 1:145�164, 1994.

[4] J.-P. Allouche, N. Rampersad, and J. Shallit. Periodicity, repetitions, and orbits of
an automatic sequence. Theoret. Comput. Sci., 410:2795�2803, 2009.

[5] J.-P. Allouche, K. Scheicher, and R. F. Tichy. Regular maps in generalized number
systems. Math. Slovaca, 50:41�58, 2000.

[6] J.-P. Allouche and J. O. Shallit. The ring of k-regular sequences. Theoret. Comput.
Sci., 98:163�197, 1992.

[7] J.-P. Allouche and J. O. Shallit. The ubiquitous Prouhet-Thue-Morse sequence. In
C. Ding, T. Helleseth, and H. Niederreiter, editors, Sequences and Their Applications,
Proceedings of SETA '98, pages 1�16. Springer-Verlag, 1999.

[8] J.-P. Allouche and J. O. Shallit. The ring of k-regular sequences, II. Theoret. Comput.
Sci., 307:3�29, 2003.

[9] Allouche, J.-P., N. Rampersad, and J. Shallit. Periodicity, repetitions, and orbits of
an automatic sequence. Theoret. Comput. Sci., 410:2795�2803, 2009.

[10] Allouche, J.-P. and J. Shallit. Automatic Sequences: Theory, Applications, General-
izations. Cambridge University Press, 2003.

139

[11] Allouche, J.-P. and J. O. Shallit. The ring of k-regular sequences. Theoret. Comput.
Sci., 98:163�197, 1992.

[12] J. Bell, E. Charlier, A. Fraenkel, and M. Rigo. A decision problem for ultimately
periodic sets in non-standard numeration systems. Internat. J. Algebra Comput.,
19:809�839, 2009.

[13] J. Berstel. Axel Thue's Papers on Repetitions in Words: a Translation. Number 20
in Publications du Laboratoire de Combinatoire et d'Informatique Mathématique.
Université du Québec à Montréal, February 1995.

[14] J. Berstel. An exercise on Fibonacci representations. RAIRO Inform. Théor. App.,
35:491�498, 2001.

[15] J. Berstel and C. Reutenauer. Rational Series and Their Languages. Springer-Verlag,
1988.

[16] J. Berstel and C. Reutenauer. Noncommutative Rational Series With Applications,
volume 137 of Encyclopedia of Mathematics and Its Applications. Cambridge Uni-
versity Press, 2011.

[17] S. Brown, N. Rampersad, J. Shallit, and T. Vasiga. Squares and overlaps in the
Thue-Morse sequence and some variants. RAIRO Inform. Théor. App., 40:473�484,
2006.

[18] V. Bruyère and G. Hansel. Bertrand numeration systems and recognizability. Theo-
ret. Comput. Sci., 181:17�43, 1997.

[19] Véronique Bruyère, Georges Hansel, Christian Michaux, and Roger Villemaire. Logic
and p-recognizable sets of integers. Bull. Belg. Math. Soc, 1:191�238, 1994.

[20] J. R. Büchi. On a decision method in restricted second-order arithmetic. In In-
ternational Congress on Logic, Methodology, and Philosophy of Science, pages 1�11.
Stanford University Press, 1962.

[21] Serina Camungol and Narad Rampersad. Concerning kurosakiâ��s squarefree word.
Submitted, 2013.

[22] A. Carpi and V. D'Alonzo. On the repetitivity index of in�nite words. Internat. J.
Algebra Comput., 19:145�158, 2009.

140

[23] A. Carpi and V. D'Alonzo. On factors of synchronized sequences. Theoretical Com-
puter Science, 411(44â��46):3932 � 3937, 2010.

[24] A. Carpi and V. D'Alonzo. On factors of synchronized sequences. To appear, Theor.
Comput. Sci., 2011.

[25] A. Carpi and C. Maggi. On synchronized sequences and their separators. RAIRO
Inform. Théor. App., 35:513�524, 2001.

[26] J. Cassaigne. Special factors of sequences with linear subword complexity. In J. Das-
sow, G. Rozenberg, and A. Salomaa, editors, Developments in Language Theory II,
pages 25�34. World Scienti�c, 1996.

[27] A. �erný. Lyndon factorization of generalized words of Thue. Discrete Math. &
Theoret. Comput. Sci., 5:17�46, 2002.

[28] E. Charlier, N. Rampersad, and J. Shallit. Enumeration and decidable properties
of automatic sequences. In G. Mauri and A. Leporati, editors, Developments in
Language Theory, 15th International Conference, DLT 2011, volume 6795 of Lecture
Notes in Computer Science, pages 165�179. Springer, 2011.

[29] A. Cobham. Uniform tag sequences. Math. Systems Theory, 6:164�192, 1972.

[30] J. C. Costa. Biin�nite words with maximal recurrent unbordered factors. Theoret.
Comput. Sci., 290:2053�2061, 2003.

[31] J. D. Currie. Lexicographically least words in the orbit closure of the Rudin-Shapiro
word. http://arxiv.org/pdf/0905.4923, 2010.

[32] J. D. Currie and K. Saari. Least periods of factors of in�nite words. RAIRO Inform.
Théor. App., 43:165�178, 2009.

[33] D. Damanik. Local symmetries in the period-doubling sequence. Disc. Appl. Math.,
100:115�121, 2000.

[34] F. M. Dekking, M. Mendès France, and A. J. van der Poorten. Folds! Math.
Intelligencer, 4:130�138, 173�181, 190�195, 1982. Erratum, 5 (1983), 5.

[35] F. Durand. A characterization of substitutive sequences using return words. Discrete
Math., 179:89�101, 1998.

141

[36] F. Durand. Linearly recurrent subshifts have a �nite number of non-periodic subshift
factors. Ergod. Theory & Dynam. Sys., 20:1061�1078, 2000.

[37] F. Durand, B. Host, and C. Skau. Substitution dynamical systems, bratteli diagrams,
and dimension groups. Ergod. Theory & Dynam. Sys., 19:953�993, 1999.

[38] J.-P. Duval. Une caractérisation de la période d'un mot �ni par la longueur de ses
facteurs primaires. C. R. Acad. Sci. Paris, 290:A359�A361, 1980.

[39] J.-P. Duval. Relationship between the period of a �nite word and the length of its
unbordered segments. Discrete Math., 40:31�44, 1982.

[40] J. P. Duval. Factorizing words over an ordered alphabet. J. Algorithms, 4:363�381,
1983.

[41] J.-P. Duval, T. Harju, and D. Nowotka. Unbordered factors and Lyndon words.
Discrete Math., 308:2261�2264, 2008.

[42] A. Ehrenfeucht and D. M. Silberger. Periodicity and unbordered segments of words.
Discrete Math., 26:101�109, 1979.

[43] I. Fagnot. Sur les facteurs des mots automatiques. Theoret. Comput. Sci., 172:67�89,
1997.

[44] N. J. Fine and H. S. Wilf. Uniqueness theorems for periodic functions. Proceedings
of the American Mathematical Society, 16(1):109�114, 1965.

[45] M. J. Fischer and M. O. Rabin. Super-exponential complexity of presburger arith-
metic. In Proceedings of the SIAM-AMS Symposium in Applied Mathematics, vol-
ume 7, pages 27 � 41, 1974.

[46] A. Frid. In�nite permutations vs. in�nite words. In P. Ambro�z, S. Holub, and
Z. Masáková, editors, WORDS 2011, 8th International Conference. Elect. Proc.
Theor. Comput. Sci., 2011. Available at http://arxiv.org/abs/1108.3616v1.

[47] A. Frid and L. Q. Zamboni. On automatic in�nite permutations. Presented at
Journées Montoises, 2010.

[48] C. Frougny and B. Solomyak. On representation of integers in linear numeration
systems. In M. Pollicott and K. Schmidt, editors, Ergodic Theory of Zd Actions
(Warwick, 1993�1994), volume 228 of London Mathematical Society Lecture Note
Series, pages 345�368. Cambridge University Press, 1996.

142

[49] E. Garel. Séparateurs dans les mots in�nis engendrés par morphismes. Theoret.
Comput. Sci., 180:81�113, 1997.

[50] William Gasarch and James Glenn. Implementing ws1s via �nite automata. In
In Automata Implementation, WIA '96, Proceedings, volume 1260 of LNCS, pages
50�63. Springer-Verlag, 1997.

[51] A. Glen, F. Levé, and G Richomme. Quasiperiodic and lyndon episturmian words.
Theoretical Computer Science, 409(3):578 � 600, 2008.

[52] James Glenn and William Gasarch. Implementing ws1s via �nite automata: Per-
formance issues. In Derick Wood and Sheng Yu, editors, Automata Implementation,
volume 1436 of Lecture Notes in Computer Science, pages 75�86. Springer Berlin
Heidelberg, 1998.

[53] I. Goldstein. Asymptotic subword complexity of �xed points of group substitutions.
Theoret. Comput. Sci., 410:2084�2098, 2009.

[54] I. Goldstein. Subword complexity of uniform D0L words over �nite groups. Theoret.
Comput. Sci., 412:5728�5743, 2011.

[55] D. Go£, D. Henshall, and J. Shallit. Automatic theorem-proving in combinatorics
on words. In N. Moreira and R. Reis, editors, CIAA 2012, volume 7381 of Lecture
Notes in Computer Science, pages 180�191. Springer-Verlag, 2012.

[56] D. Go£, H. Mousavi, and J. Shallit. On the number of unbordered factors. In
Adrian-Horia Dediu, Carlos MartÃn-Vide, and Bianca Truthe, editors, Language
and Automata Theory and Applications, volume 7810 of Lecture Notes in Computer
Science, pages 299�310. Springer Berlin Heidelberg, 2013.

[57] D. Go£, K. Saari, and J. Shallit. Primitive words and Lyndon words in automatic
and linearly recurrent sequences. In LATA 2013, pages 311�322, 2013.

[58] D. Go£, L. Schae�er, and J. Shallit. Subword complexity and k-synchronization. In
Marie-Pierre Béal and Olivier Carton, editors, Developments in Language Theory,
volume 7907 of Lecture Notes in Computer Science, pages 252�263. Springer Berlin
Heidelberg, 2013.

[59] V. Halava, T. Harju, T. Kärki, and M. Rigo. On the periodicity of morphic words. In
Developments in Language Theory 2010, volume 6224 of Lecture Notes in Computer
Science, pages 209�217. Springer-Verlag, 2010.

143

[60] T. Harju and D. Nowotka. Periodicity and unbordered words: a proof of the extended
Duval conjecture. J. Assoc. Comput. Mach., 54:Article 20, 2007.

[61] S. Holub. A proof of the extended Duval's conjecture. Theoret. Comput. Sci., 339:61�
67, 2005.

[62] S. Holub and D. Nowotka. On the relation between periodicity and unbordered
factors of �nite words. Internat. J. Found. Comp. Sci., 21:633�645, 2010.

[63] J. Honkala. A decision method for the recognizability of sets de�ned by number
systems. RAIRO Inform. Théor. App., 20:395�403, 1986.

[64] A. Ido and G. Melançon. Lyndon factorization of the Thue-Morse word and its
relatives. Discrete Math. & Theoret. Comput. Sci., 1:43�52, 1997.

[65] Veikko Keränen. Abelian squares are avoidable on 4 letters. In W. Kuich, editor,
Automata, Languages and Programming, volume 623 of Lecture Notes in Computer
Science, pages 41�52. Springer Berlin Heidelberg, 1992.

[66] D. Krieger and J. Shallit. Every real number greater than 1 is a critical exponent.
Theoret. Comput. Sci., 381:177�182, 2007.

[67] W. Kuich and A. Salomaa. Semirings, Automata, Languages. Springer-Verlag, 1986.

[68] Tetsuo Kurosaki. Direct de�nition of a ternary in�nite square-free sequence. Inf.
Process. Lett., 106(5):175�179, May 2008.

[69] John Leech. A problem on strings of beads. Math. Gaz., 41:277�278, 1957.

[70] J. Leroux. A polynomial time Presburger criterion and synthesis for number decision
diagrams. In 20th IEEE Symposium on Logic in Computer Science (LICS 2005),
pages 147�156. IEEE Press, 2005.

[71] F. Levé and G. Richomme. Quasiperiodic in�nite words: Some answers. Bulletin
of the European Association for Theoretical Computer Science, 84:170�174, October
2004.

[72] F. Levé and G. Richomme. Quasiperiodic sturmian words and morphisms. Theoretical
Computer Science, 372(1):15 � 25, 2007.

[73] R. C. Lyndon and M. P. Schützenberger. The equation aM = bNcP in a free group.
Michigan Math. J., 9:289�298, 1962.

144

[74] S. Marcus. Quasiperiodic in�nite words. Bulletin of the European Association for
Theoretical Computer Science, 82:170�174, February 2004.

[75] G. Melançon. Lyndon factorization of in�nite words. In C. Puech and R. Reischuk,
editors, STACS 96, 13th Annual Symposium on Theoretical Aspects of Computer
Science, volume 1046 of Lecture Notes in Computer Science, pages 147�154. Springer-
Verlag, 1996.

[76] Robert Mercas, Pascal Ochem, Alexey V. Samsonov, and Arseny M. Shur. Binary
patterns in binary cube-free words: Avoidability and growth. CoRR, abs/1301.4682,
2013.

[77] M. Morse and G. A. Hedlund. Symbolic dynamics. American Journal of Mathematics,
60(4):pp. 815�866, 1938.

[78] B. Mossé. Reconnaissabilité des substitutions et complexité des suites automatiques.
Bull. Soc. Math. France, 124:329�346, 1996.

[79] F. Nicolas and Yu. Pritykin. On uniformly recurrent morphic sequences. Internat.
J. Found. Comp. Sci., 20:919�940, 2009.

[80] P. T. Nielsen. A note on bi�x-free sequences. IEEE Trans. Inform. Theory, IT-
19:704�706, 1973.

[81] D. Nowotka. Periodicity and Unbordered Factors of Words. PhD thesis, University
of Turku, Finland, 2004.

[82] MojÅ¼esz Presburger and Dale Jacquette. On the completeness of a certain system of
arithmetic of whole numbers in which addition occurs as the only operation. History
and Philosophy of Logic, 12(2):225�233, 1991.

[83] H. Prodinger and F. J. Urbanek. In�nite 0�1-sequences without long adjacent iden-
tical blocks. Discrete Math., 28:277�289, 1979.

[84] N. Rampersad, J. Shallit, and M.-w. Wang. Inverse star, borders, and palstars.
Inform. Process. Lett., 111:420�422, 2011.

[85] B. Reznick. Some binary partition functions. In Analytic Number Theory, volume 85
of Progr. Math., pages 451�477. Birkhäuser, 1990.

[86] J. R. Roche. On stewart's choral sequence. Presented at the Mathematical Society of
the Philippines 2008 Annual Convention, Diliman, Quezon City, Philippines, 2008.

145

[87] E. Rowland and J. Shallit. k-automatic sets of rational numbers. In A.-H. Dediu
and C. Martin-Vide, editors, Proc. LATA 2012, volume 7183 of Lecture Notes in
Computer Science, pages 490�501. Springer, 2012.

[88] E. Rowland and J. Shallit. k-automatic sets of rational numbers. In A. H. Dediu
and C. Martín-Vide, editors, LATA 2012 Proceedings, volume 7183 of Lecture Notes
in Computer Science, pages 490�501. Springer-Verlag, 2012.

[89] W. Rudin. Some theorems on Fourier coe�cients. Proc. Amer. Math. Soc., 10:855�
859, 1959.

[90] K. Saari. On the Frequency and Periodicity of In�nite Words. PhD thesis, University
of Turku, Finland, 2008.

[91] J. Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.

[92] A. Salomaa and M. Soittola. Automata-Theoretic Aspects of Formal Power Series.
Springer-Verlag, 1978.

[93] L. Schae�er and J. Shallit. The critical exponent is computable for automatic se-
quences. Int. J. Found. Comput. Sci., to appear, 2012.

[94] Luke Schae�er. Ostrowski numeration and the local period of sturmian words. In
LATA, pages 493�503, 2013.

[95] M.-P. Schützenberger. On a theorem of R. Jungen. Proc. Amer. Math. Soc., 13:885�
890, 1962.

[96] P. Séébold. Lyndon factorization of the Prouhet words. Theoret. Comput. Sci.,
307:179�197, 2003.

[97] J. Shallit. The critical exponent is computable for automatic sequences. In P. Ambroz,
S. Holub, and Z. Másaková, editors, Proceedings 8th International Conference Words
2011, volume 63 of Elect. Proc. Theor. Comput. Sci., pages 231�239. 2011.

[98] H. S. Shapiro. Extremal problems for polynomials and power series. Master's thesis,
MIT, 1952.

[99] D. M. Silberger. Borders and roots of a word. Portugal. Math., 30:191�199, 1971.

[100] D. M. Silberger. How many unbordered words? Ann. Soc. Math. Polon. Ser. I:
Comment. Math., 22:143�145, 1980.

146

[101] R. Siromoney, L. Mathew, V. Dare, and K. Subramanian. In�nite Lyndon words.
Inform. Process. Lett., 50:101�104, 1994.

[102] I. Stewart. Mathematical recreations: The never-ending chess game. Scienti�c Amer-
ican, 273(4):182�183, October 1995.

[103] A. Thue. Über unendliche Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl.,
7:1�22, 1906. Reprinted in Selected Mathematical Papers of Axel Thue, T. Nagell,
editor, Universitetsforlaget, Oslo, 1977, pp. 139�158.

[104] A. Thue. Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske vid.
Selsk. Skr. Mat. Nat. Kl., 1:1�67, 1912. Reprinted in Selected Mathematical Papers
of Axel Thue, T. Nagell, editor, Universitetsforlaget, Oslo, 1977, pp. 413�478.

[105] S. Widmer. Permutation complexity of the Thue-Morse word. Adv. in Appl. Math.,
47:309�329, 2011.

147

APPENDICES

148

Appendix A

Program Output

A.1 Quasi-periods and the Usual Suspects

Here is a summary of the computation:

Thue-Morse:

[>= l j] (3 => 2 states) in 0.019s

[> j+n l] (6 => 3 states) in 0.023s

[\and] (4 => 4 states) in 0.051s

[>= i0 n] (3 => 2 states) in 0.029s

[\out= i+i0 j+i0] (8 => 8 states) in 0.088s

[\or] (16 => 16 states) in 0.093s

[\not] (17 => 16 states) in 0.104s

[\exists i0] (16 => 22 states) in 0.058s

[\not] (23 => 21 states) in 0.065s

[\and] (31 => 31 states) in 0.065s

[\exists j] (31 => 116 states) in 0.060s

[\not] (117 => 116 states) in 0.126s

[\exists l] (116 => 1 states) in 0.032s

[\not] (2 => 1 states) in 0.041s

[total] (1 states) in 0.905s

Rudin-Shapiro:

[>= l j] (3 => 2 states) in 0.031s

[> j+n l] (6 => 3 states) in 0.024s

[\and] (4 => 4 states) in 0.055s

[>= i0 n] (3 => 2 states) in 0.028s

[\out= i+i0 j+i0] (28 => 28 states) in 0.213s

[\or] (56 => 56 states) in 0.217s

[\not] (57 => 56 states) in 0.232s

[\exists i0] (56 => 99 states) in 1.170s

[\not] (100 => 98 states) in 0.165s

[\and] (152 => 152 states) in 0.129s

149

[\exists j] (152 => 294 states) in 0.166s

[\not] (295 => 294 states) in 0.267s

[\exists l] (294 => 1 states) in 0.055s

[\not] (2 => 1 states) in 0.037s

[total] (1 states) in 2.910s

Paperfolding:

[>= l j] (3 => 2 states) in 0.027s

[> j+n l] (6 => 3 states) in 0.027s

[\and] (4 => 4 states) in 0.043s

[>= i0 n] (3 => 2 states) in 0.028s

[\out= i+i0 j+i0] (33 => 15 states) in 0.205s

[\or] (31 => 31 states) in 0.140s

[\not] (32 => 30 states) in 0.140s

[\exists i0] (30 => 61 states) in 0.209s

[\not] (62 => 60 states) in 0.113s

[\and] (96 => 96 states) in 0.081s

[\exists j] (96 => 135 states) in 0.077s

[\not] (136 => 135 states) in 0.164s

[\exists l] (135 => 1 states) in 0.044s

[\not] (2 => 1 states) in 0.035s

[total] (1 states) in 1.401s

Period-doubling:

[>= l j] (3 => 2 states) in 0.023s

[> j+n l] (6 => 3 states) in 0.024s

[\and] (4 => 4 states) in 0.046s

[>= i0 n] (3 => 2 states) in 0.025s

[\out= i+i0 j+i0] (13 => 6 states) in 0.141s

[\or] (13 => 13 states) in 0.079s

[\not] (14 => 12 states) in 0.080s

[\exists i0] (12 => 11 states) in 0.039s

[\not] (12 => 10 states) in 0.057s

[\and] (20 => 20 states) in 0.051s

[\exists j] (20 => 33 states) in 0.033s

[\not] (34 => 33 states) in 0.070s

[\exists l] (33 => 1 states) in 0.026s

[\not] (2 => 1 states) in 0.045s

[total] (1 states) in 0.774s

Stewart choral:

[>= l j] (3 => 2 states) in 0.038s

[> j+n l] (6 => 3 states) in 0.050s

[\and] (4 => 4 states) in 0.076s

[>= i0 n] (3 => 2 states) in 0.066s

[\out= i+i0 j+i0] (22 => 11 states) in 0.611s

[\or] (23 => 23 states) in 0.635s

[\not] (24 => 22 states) in 0.604s

[\exists i0] (22 => 14 states) in 0.213s

[\not] (15 => 13 states) in 0.133s

[\and] (29 => 29 states) in 0.134s

[\exists j] (29 => 49 states) in 0.106s

[\not] (50 => 49 states) in 0.160s

[\exists l] (49 => 1 states) in 0.033s

[\not] (2 => 1 states) in 0.047s

[total] (1 states) in 3.098s

150

Mephisto waltz:

[>= l j] (3 => 2 states) in 0.036s

[> j+n l] (6 => 3 states) in 0.045s

[\and] (4 => 4 states) in 0.079s

[>= i0 n] (3 => 2 states) in 0.076s

[\out= i+i0 j+i0] (8 => 8 states) in 0.360s

[\or] (16 => 16 states) in 0.482s

[\not] (17 => 16 states) in 0.485s

[\exists i0] (16 => 20 states) in 0.239s

[\not] (21 => 19 states) in 0.171s

[\and] (29 => 29 states) in 0.112s

[\exists j] (29 => 66 states) in 0.097s

[\not] (67 => 66 states) in 0.197s

[\exists l] (66 => 1 states) in 0.041s

[\not] (2 => 1 states) in 0.044s

[total] (1 states) in 2.634s

A.2 Search for Quasi-periods

Here is a summary of the computation:

0->0000, 1->0000 is periodic. in 0.261s

0->0000, 1->0001 is periodic. in 0.231s

0->0000, 1->0010 is periodic. in 0.245s

0->0000, 1->0011 is periodic. in 0.265s

0->0000, 1->0100 is periodic. in 0.242s

0->0000, 1->0101 is periodic. in 0.258s

0->0000, 1->0110 is periodic. in 0.245s

0->0000, 1->0111 is periodic. in 0.239s

0->0000, 1->1000 is periodic. in 0.259s

0->0000, 1->1001 is periodic. in 0.248s

0->0000, 1->1010 is periodic. in 0.258s

0->0000, 1->1011 is periodic. in 0.230s

0->0000, 1->1100 is periodic. in 0.229s

0->0000, 1->1101 is periodic. in 0.271s

0->0000, 1->1110 is periodic. in 0.246s

0->0000, 1->1111 is periodic. in 0.246s

0->0001, 1->0000

0->0001, 1->0001 is periodic. in 0.300s

0->0001, 1->0010

0->0001, 1->0011

0->0001, 1->0100

0->0001, 1->0101

0->0001, 1->0110

0->0001, 1->0111

0->0001, 1->1000

0->0001, 1->1001

0->0001, 1->1010

0->0001, 1->1011

0->0001, 1->1100

0->0001, 1->1101

151

0->0001, 1->1110

0->0001, 1->1111

0->0010, 1->0000

0->0010, 1->0001 is quasi-periodic. in 21.769s

0->0010, 1->0010 is periodic. in 0.352s

0->0010, 1->0011

0->0010, 1->0100 is quasi-periodic. in 24.125s

0->0010, 1->0101

0->0010, 1->0110

0->0010, 1->0111

0->0010, 1->1000

0->0010, 1->1001

0->0010, 1->1010

0->0010, 1->1011

0->0010, 1->1100

0->0010, 1->1101

0->0010, 1->1110

0->0010, 1->1111

0->0011, 1->0000

0->0011, 1->0001

0->0011, 1->0010

0->0011, 1->0011 is periodic. in 0.339s

0->0011, 1->0100

0->0011, 1->0101

0->0011, 1->0110

0->0011, 1->0111

0->0011, 1->1000

0->0011, 1->1001

0->0011, 1->1010

0->0011, 1->1011

0->0011, 1->1100

0->0011, 1->1101

0->0011, 1->1110

0->0011, 1->1111

0->0100, 1->0000

0->0100, 1->0001

0->0100, 1->0010

0->0100, 1->0011

0->0100, 1->0100 is periodic. in 0.353s

0->0100, 1->0101

0->0100, 1->0110

0->0100, 1->0111

0->0100, 1->1000

0->0100, 1->1001

0->0100, 1->1010

0->0100, 1->1011

0->0100, 1->1100

0->0100, 1->1101

0->0100, 1->1110

0->0100, 1->1111

0->0101, 1->0000

0->0101, 1->0001

0->0101, 1->0010 is quasi-periodic. in 26.644s

0->0101, 1->0011

0->0101, 1->0100

0->0101, 1->0101 is periodic. in 0.360s

0->0101, 1->0110

152

0->0101, 1->0111

0->0101, 1->1000

0->0101, 1->1001

0->0101, 1->1010

0->0101, 1->1011

0->0101, 1->1100

0->0101, 1->1101

0->0101, 1->1110

0->0101, 1->1111

0->0110, 1->0000

0->0110, 1->0001

0->0110, 1->0010

0->0110, 1->0011

0->0110, 1->0100

0->0110, 1->0101

0->0110, 1->0110 is periodic. in 0.376s

0->0110, 1->0111

0->0110, 1->1000

0->0110, 1->1001

0->0110, 1->1010

0->0110, 1->1011

0->0110, 1->1100

0->0110, 1->1101

0->0110, 1->1110

0->0110, 1->1111

0->0111, 1->0000

0->0111, 1->0001

0->0111, 1->0010

0->0111, 1->0011

0->0111, 1->0100

0->0111, 1->0101

0->0111, 1->0110

0->0111, 1->0111 is periodic. in 0.358s

0->0111, 1->1000

0->0111, 1->1001

0->0111, 1->1010

0->0111, 1->1011

0->0111, 1->1100

0->0111, 1->1101

0->0111, 1->1110

0->0111, 1->1111

[total] in 35m46.713s

153

	List of Tables
	List of Figures
	Introduction
	History and Background
	Overview

	Preliminaries
	Words
	Languages
	Morphisms and Codings
	Automata
	Nondeterministic Finite Automata
	Deterministic Finite Automata
	Deterministic Finite Automata with Output
	Transducers

	k-Automatic Sequences
	The Thue-Morse Sequence
	The Rudin-Shapiro Sequence
	The Regular Paperfolding Sequence
	The Period-doubling Sequence
	The Baum-Sweet Sequence
	The Mephisto Waltz Sequence
	The Stewart Choral Sequence
	The Leech Sequence
	k-Kernel

	k-Regular Sequences
	k-Synchronized Functions

	Decidability and Implementation
	Logic
	Decidability
	Representing Natural Numbers
	Tuples

	Integer Expressions
	Expression Comparison
	Logical Connectives and Logical Negation
	The Existential Quantifier
	Trailing Zeroes

	Extrema: Minimum and Maximum
	Program Output
	Implementation Details and Statistics

	Recurrence
	Introduction
	Rudin-Shapiro
	Thue-Morse
	Paperfolding
	Period-Doubling
	Baum-Sweet
	Mephisto Waltz
	Stewart Choral

	Appearance
	Introduction
	Thue-Morse
	Rudin-Shapiro
	Paperfolding
	Period-doubling
	Baum-Sweet
	Mephisto Waltz
	Stewart Choral

	Condensation
	Introduction
	Thue-Morse
	Rudin-Shapiro
	Paperfolding
	Period-doubling
	Baum-Sweet
	Mephisto Waltz
	Stewart Choral

	Power Avoidance
	Introduction
	Thue-Morse
	Paperfolding
	Leech
	Rudin-Shapiro
	Period-doubling
	Stewart Choral
	Kurosaki's Sequence

	Least Periods and Quasi-periods
	Least Periods
	Enumeration
	Computations
	More Enumeration
	Quasi-periods

	Borders and Unbordered Factors
	Borders
	Additional Results on Unbordered Words
	Unbordered Factor Complexity
	Proof of the Conjecture
	Determining the Relations
	The Growth Rate of f(n)
	Unbordered Factors of Other Sequences

	Primitive Words and Lyndon Words
	Lyndon words
	Lyndon Factorization
	Enumeration
	Finite Factorizations

	Subword Complexity
	Subword Complexity
	Implementation
	Powers and Primitive Words
	Unsynchronized Sequences

	Conclusion and Open Problems
	Keränen's Word
	Lempel-Ziv and Crochemore Factorizations
	Further Work

	References
	APPENDICES
	Program Output
	Quasi-periods and the Usual Suspects
	Search for Quasi-periods

