37,366 research outputs found
Optically controlled grippers for manipulating micron-sized particles
We report the development of a joystick controlled gripper for the real-time manipulation of micron-sized objects, driven using holographic optical tweezers (HOTs). The gripper consists of an arrangement of four silica beads, located in optical traps, which can be positioned and scaled in order to trap an object indirectly. The joystick can be used to grasp, move (lateral or axial), and change the orientation of the target object. The ability to trap objects indirectly allows us to demonstrate the manipulation of a strongly scattering micron-sized metallic particle
Control of virtual environments for young people with learning difficulties
Purpose: The objective of this research is to identify the requirements for the selection or development of usable virtual environment (VE) interface devices for young people with learning disabilities. Method: a user-centred design methodology was employed, to produce a design specification for usable VE interface devices. Details of the users' cognitive, physical and perceptual abilities were obtained through observation and normative assessment tests. Conclusions : A review of computer interface technology, including virtual reality and assistive devices, was conducted. As there were no devices identified that met all the requirements of the design specification, it was concluded that there is a need for the design and development of new concepts. Future research will involve concept and prototype development and user-based evaluation of the prototypes
Simple expert systems to improve an ultrasonic sensor-system for a tele-operated mobile-robot
Software simulation of time delay in teleoperation
Research done in the Space Robotics Laboratory at the University of Atlanta at Huntsville on the effects of time delay on teleoperation is discussed. The laboratory is configured around a Puma 562 robot with 6 degrees of freedom. A custom designed joystick controller with two joysticks, each with three degrees of freedom, is used to control the robot. These joysticks are connected to the robot controller through an analog to digital interface. Joystick calibration, a computer program called Joystick, and the VAL 2 robot control language are discussed
User friendly joystick
A joystick control device having a lower U-shaped bracket, an upper U-shaped bracket, a handle attached to the upper U-shaped bracket, with the upper U-shaped bracket connected to the lower U-shaped bracket by a compliant joint allowing six degrees of freedom for the joystick. The compliant joint consists of at least one cable segment affixed between the lower U-shaped bracket and the upper U-shaped bracket. At least one input device is located between the lower U-shaped bracket and the upper U-shaped bracket
Comparison of input devices in an ISEE direct timbre manipulation task
The representation and manipulation of sound within multimedia systems is an important and currently under-researched area. The paper gives an overview of the authors' work on the direct manipulation of audio information, and describes a solution based upon the navigation of four-dimensional scaled timbre spaces. Three hardware input devices were experimentally evaluated for use in a timbre space navigation task: the Apple Standard Mouse, Gravis Advanced Mousestick II joystick (absolute and relative) and the Nintendo Power Glove. Results show that the usability of these devices significantly affected the efficacy of the system, and that conventional low-cost, low-dimensional devices provided better performance than the low-cost, multidimensional dataglove
Factors impeding the industrialized building system (IBS) implementation of building construction in Malaysia
In Malaysian construction industry, Industrialised Building System (IBS) has been introduced to replace the traditional construction method. While the government has been making significant efforts to encourage the IBS adoption, the uptake of IBS in Malaysia construction projects remains low. This study seeks to identify the barriers to the uptake of IBS and to propose the strategies to enhance the implementation IBS in Malaysian housing construction process from the perspectives of consultants. Interviews were conducted with five selected experienced individuals who were working with consultants (civil and structure engineer and quantity surveyor). The results revealed that, lack of knowledge and insufficient skilled workers are the main factors that impede the IBS uptake in Malaysia. Meanwhile, the most strategy proposed by the interviewees is to increase the facilities and incentives in order to expand research and development in IB
Towards Early Mobility Independence: An Intelligent Paediatric Wheelchair with Case Studies
Standard powered wheelchairs are still heavily dependent on the cognitive capabilities of users. Unfortunately, this excludes disabled users who lack the required problem-solving and spatial skills, particularly young children. For these children to be denied powered mobility is a crucial set-back; exploration is important for their cognitive, emotional and psychosocial development. In this paper, we present a safer paediatric wheelchair: the Assistive Robot Transport for Youngsters (ARTY). The fundamental goal of this research is to provide a key-enabling technology to young children who would otherwise be unable to navigate independently in their environment. In addition to the technical details of our smart wheelchair, we present user-trials with able-bodied individuals as well as one 5-year-old child with special needs. ARTY promises to provide young children with early access to the path towards mobility independence
The Effects of Finger-Walking in Place (FWIP) on Spatial Knowledge Acquisition in Virtual Environments
Spatial knowledge, necessary for efficient navigation, comprises route knowledge (memory of landmarks along a route) and survey knowledge (overall representation like a map). Virtual environments (VEs) have been suggested as a power tool for understanding some issues associated with human navigation, such as spatial knowledge acquisition. The Finger-Walking-in-Place (FWIP) interaction technique is a locomotion technique for navigation tasks in immersive virtual environments (IVEs). The FWIP was designed to map a human’s embodied ability overlearned by natural walking for navigation, to finger-based interaction technique. Its implementation on Lemur and iPhone/iPod Touch devices was evaluated in our previous studies. In this paper, we present a comparative study of the joystick’s flying technique versus the FWIP. Our experiment results show that the FWIP results in better performance than the joystick’s flying for route knowledge acquisition in our maze navigation tasks
- …
