11,481 research outputs found

    Modeling of joints for the dynamic analysis of truss structures

    Get PDF
    An experimentally-based method for determining the stiffness and damping of truss joints is described. The analytical models use springs and both viscous and friction dampers to simulate joint load-deflection behavior. A least-squares algorithm is developed to identify the stiffness and damping coefficients of the analytical joint models from test data. The effects of nonlinear joint stiffness such as joint dead band are also studied. Equations for predicting the sensitivity of beam deformations to changes in joint stiffness are derived and used to show the level of joint stiffness required for nearly rigid joint behavior. Finally, the global frequency sensitivity of a truss structure to random perturbations in joint stiffness is discussed

    Lower limb stiffness estimation during running: the effect of using kinematic constraints in muscle force optimization algorithms

    Get PDF
    The focus of this paper is on the effect of muscle force optimization algorithms on the human lower limb stiffness estimation. By using a forward dynamic neuromusculoskeletal model coupled with a muscle short-range stiffness model we computed the human joint stiffness of the lower limb during running. The joint stiffness values are calculated using two different muscle force optimization procedures, namely: Toque-based and Torque/Kinematic-based algorithm. A comparison between the processed EMG signal and the corresponding estimated muscle forces with the two optimization algorithms is provided. We found that the two stiffness estimates are strongly influenced by the adopted algorithm. We observed different magnitude and timing of both the estimated muscle forces and joint stiffness time profile with respect to each gait phase, as function of the optimization algorithm used

    Sensitivity of overall vehicle stiffness to local joint stiffness

    Get PDF
    How overall vehicle stiffness is affected by local joint stiffness is discussed. By using the principle of virtual work and the minimum strain energy theorem, a closed form expression for the sensitivity coefficient was derived. The insensitivity of the vehicle stiffness to a particular joint, when its stiffness exceeds a certain value (or threshold value), was proven mathematically. In order to investigate the sensitivity of the structure to the joint stiffness, a so-called stick model was created, and the modeling technique is briefly described. Some data on joint stiffness of tested vehicles are also presented

    A model-based approach to stabilizing crutch supported paraplegic standing by artifical hip joint stiffness

    Get PDF
    The prerequisites for stable crutch supported standing were analyzed in this paper. For this purpose, a biomechanical model of crutch supported paraplegic stance was developed assuming the patient was standing with extended knees. When using crutches during stance, the crutches will put a position constraint on the shoulder, thus reducing the number of degrees of freedom. Additional hip-joint stiffness was applied to stabilize the hip joint and, therefore, to stabilize stance. The required hip-joint stiffness for changing crutch placement and hip-joint offset angle was studied under static and dynamic conditions. Modeling results indicate that, by using additional hip-joint stiffness, stable crutch supported paraplegic standing can be achieved, both under static as well as dynamic situations. The static equilibrium postures and the stability under perturbations were calculated to be dependent on crutch placement and stiffness applied. However, postures in which the hip joint was in extension (C postures) appeared to the most stable postures. Applying at least 60 N /spl middot/ m/rad hip-joint stiffness gave stable equilibrium postures in all cases. Choosing appropriate hip-joint offset angles, the static equilibrium postures changed to more erect postures, without causing instability or excessive arm forces to occur

    Gender differences in limb and joint stiffness during the fencing lunge

    Get PDF
    The aim of the current investigation was to examine gender differences in limb and joint stiffness characteristics during the fencing lunge. Ten male and ten female fencers completed simulated lunge movements. Lower limb kinematics were collected using an eight camera optoelectric motion capture system which operated at 250 Hz. Measures of limb and joint stiffness were calculated as a function of limb length and joint moments divided by the extent of limb and joint excursion. Gender differences in limb joint stiffness parameters were examined statistically using independent samples t-tests. The results showed firstly that both limb (male = 64.22 ±19.12, female = 75.09 ±22.15 N.kg.m) and hip stiffness (male = 10.50 ±6.00, female = 25.89 ±15.01 Nm.kg.rad) were significantly greater in female fencers. In addition it was also demonstrated that knee moment (male = 1.64 ±0.23, female = 2.00 ±0.75 Nm.kg) was significantly larger in females. On the basis of these observations, the findings from the current investigation may provide further insight into the aetiology of the distinct injury patterns observed between genders in relation to fencing

    Sex differences in limb and joint stiffnes in recreational runners

    Get PDF
    Purpose. Female runners are known to be at greater risk from chronic running injuries than age-matched males, although the exact mechanisms are often poorly understood. The aim of the current investigation was to determine if female recreational runners exhibit distinct limb and joint stiffness characteristics in relation to their male counterparts. Methods. Fourteen male and fourteen female runners ran over a force platform at 4.0 m · s–1. Lower limb kinematics were collected using an eight-camera optoelectric motion capture system operating at 250 Hz. Measures of limb and joint stiffness were calculated as a function of limb length and joint moments divided by the extent of limb and joint excursion. All stiffness and joint moment parameters were normalized to body mass. Sex differences in normalized limb and knee and ankle joint stiffness were examined statistically using independent samples t tests. Results. The results indicate that normalized limb (male = 0.18 ± 0.07, female = 0.37 ± 0.10 kN · kg · m–1) and knee stiffness (male = 5.59 ± 2.02, female = 7.34 ± 1.78 Nm · kg · rad–1) were significantly greater in female runners. Conclusions. On the basis that normalized knee and limb stiffness were shown to be significantly greater in female runners, the findings from the current investigation may provide further insight into the aetiology of the distinct injury patterns observed between sexes

    Using stiffness to assess injury risk:comparison of methods for quantifying stiffness and their reliability in triathletes

    Get PDF
    Background: A review of the literature has indicated that lower body stiffness, defined as the extent to which the lower extremity joints resists deformation upon contact with the ground, may be a useful measure for assessing Achilles injury risk in triathletes. The nature of overuse injuries suggests that a variety of different movement patterns could conceivably contribute to the final injury outcome, any number and combination of which might be observed in a single individual. Measurements which incorporate both kinetics and kinematics (such as stiffness) of a movement may be better able to shed light on individuals at risk of injury, with further analysis then providing the exact mechanism of injury for the individual. Stiffness can be measured as vertical, leg or joint stiffness to model how the individual interacts with the environment upon landing. However, several issues with stiffness assessments limit the effectiveness of these measures to monitor athletes’ performance and/or injury risk. This may reflect the variety of common biomechanical stiffness calculations (dynamic, time, true leg and joint) that have been used to examine these three stiffness levels (vertical, leg and joint) across a variety of human movements (i.e. running or hopping) as well as potential issues with the reliability of these measures, especially joint stiffness. Therefore, the aims of this study were to provide a comparison of the various methods for measuring stiffness during two forms of human bouncing locomotion (running and hopping) along with the measurement reliability to determine the best methods to assess links with injury risk in triathletes. Methods: Vertical, leg and joint stiffness were estimated in 12 healthy male competitive triathletes on two occasions, 7 days apart, using both running at 5.0 ms−1 and hopping (2.2 Hz) tasks. Results: Inter-day reliability was good for vertical (ICC = 0.85) and leg (ICC = 0.98) stiffness using the time method. Joint stiffness reliability was poor when assessed individually. Reliability was improved when taken as the sum of the hip, knee and ankle (ICC = 0.86). The knee and ankle combination provided the best correlation with leg stiffness during running (Pearson’s Correlation = 0.82). Discussion: The dynamic and time methods of calculating leg stiffness had better reliability than the “true” method. The time and dynamic methods had the best correlation with the different combinations of joint stiffness, which suggests that they should be considered for biomechanical screening of triathletes. The knee and ankle combination had the best correlation with leg stiffness and is therefore proposed to provide the most information regarding lower limb mechanics during gait in triathletes

    The Effects of Imposed Foot Strike and Fatigue on Joint Stiffness and Metabolic Cost in Rearftoot Strike Runners

    Get PDF
    Running research has focues ont he effects of acute strike pattern modifications, specifically to lower extremity joint kinetics and stiffness. Joint stiffness may be related to injury risk in runners. As 75% of runners use a RFS pattern, it is worthwhile to study these runners. The purpose of this tudy was to xamine th eeffects of imposed FFSon ankle and knee joint stiffness before and after a long run in habitual RFSrunners. Ankl eand knee joinst stiffness as well as running economy were measured pre and post fatiguing long run. Ankle joint stiffness was lower during imposed FFS. Knee joint stiffness was higher during imposed FFS. Joint stiffness between strike patterns was independent of fatigue. The RFSpattern yielded better REthan imposed FFSindependent of fatigue. Our findings suggest aht it would not be mechanically or metabolically beneficial for habitual RFSrunners to acutely adopt a FFS

    The Effects of Barefoot and Shod Running on Limb and Joint Stiffness Characteristics in Recreational Runners.

    Get PDF
    The authors aimed to determine the effects of barefoot (BF) and several commercially available barefoot-inspired (BFIS) footwear models on limb and joint stiffness characteristics compared with conventional footwear (CF). Fifteen male participants ran over a force platform at 4.0 m.s-1, in BF, BFIS, and CF conditions. Measures of limb and joint stiffness were calculated for each footwear. The results indicate that limb and knee stiffness were greater in BF and minimalist BFIS than in CF. CF and more structured BFIS were associated with a greater ankle stiffness compared with BF and minimalist BFIS. These findings serve to provide further insight into the susceptibility of runners to different injury mechanisms as a function of footwear

    Upper extremity kinetics during walker-assisted gait of knee joint stiffness simulation

    Get PDF
    Because of various inflammations and fractures of low limbs, the number of patients with knee joint stiffness is increasing. Walkers are commonly prescribed to improve these patients' stability and ambulatory ability. The evaluation on the assisted walking effect has become a hot problem, whose prerequisite is a comprehensive mechanical understanding of the upper extremity force. In order to study the upper extremity kinetics during walker-assisted gait of knee joint stiffness, this paper developed a new method to collect upper extremity kinetics data based on a special-designed walker dynamometer system. Handle reaction vector (HRV) data were collected from 15 healthy right-handed young subjects by simulation experiments for four knee joint stiffness modes. T test and support vector machine (SVM) were used to analyze these HRV data. The results indicated that knee joint stiffness had a great influence on the upper extremity force during the walker-assisted walking. The proposed method is hoped to beneficially influence walker-assisted gait retraining strategies for knee joint stiffness. © 2010 IEEE.published_or_final_versionThe 2010 IEEE International Conference on Virtual Environments Human-Computer Interfaces and Measurement Systems (VECIMS), Taranto, Apulia, Italy, 6-8 September 2010. In Proceedings of the IEEE-VECIMS, 2010, p. 1-
    corecore