14,763 research outputs found

    Grid-connected renewables, storage and the UK electricity market

    Get PDF
    This article is a critical counterpoint to an article by published by Swift-Hook in the journal of Renewable Energy entitled "Grid-connected intermittent renewables are the last to be stored". In contrast to Swift-Hook we found evidence that "grid-connected intermittent renewables" have been, and will continue to be stored when it suits the "UK market" to do so.  This article is important to policy makers as energy storage (through EV battery demand side management for example) may well have an important role to play in facilitating the integration of high wind penetrations

    Balancing and Intraday Market Design: Options for Wind Integration

    Get PDF
    EU Member States increase deployment of intermittent renewable energy sources to deliver the 20% renewable target formulated in the European Renewables Directive of 2008. To incorporate these intermittent sources, a power market needs to be flexible enough to accommodate short-term forecasts and quick turn transactions. This flexibility is particularly valuable with respect to wind energy, where wind forecast uncertainty decreases significantly in the final 24 hours before actual generation. Therefore, current designs of intraday and balancing markets need to be altered to make full use of the flexibility of the transmission system and the different generation technologies to effectively respond to increased uncertainty. This paper explores the current power market designs in European countries and North America and assesses these designs against criteria that evaluate whether they are able to adequately handle wind intermittency.Power market design, integrating renewables, wind energy, balancing, intraday

    The role of biomass in the renewable energy system

    Get PDF
    Europe is striving for zero carbon electricity production by 2050 in order to avoid dangerous climate change. To meet this target a large variety of options is being explored. Biomass is such an option and should be given serious consideration. In this paper the potential role of biomass in a NW-European electricity mix is analyzed. The situation in NW-Europe is unique since it is a region which is a fore runner in renewable technology promotion but also an area with little sun, almost no potential for hydro and a lot of wind. This will result in a substantial need for non-intermittent low-carbon options such as biomass. The benefits and issues related to biomass are discussed in detail from both an environmental and an economic perspective. The former will focus on the life cycle of a biomass pellet supply chain, from the growth of the trees down to the burning of the pellets on site. The latter will provide detailed insights on the levelized cost of electricity for biomass and the role of biomass as a grid stabilizer in high intermittent scenarios. During the discussion, biomass will be compared to other competing electricity technologies to have a full understanding of its advantages and drawbacks. We find that biomass can play a very important role in the future low carbon electricity mix, the main bottleneck being the supply of large amounts of sustainably produced feedstock

    Electricity Interconnection with Intermittent Renewables

    Get PDF
    Electricity interconnection has been recognized as a way to mitigate carbon emissions by dispatching more efficient electricity production and accommodating the growing share of renewables. I analyze the impact of electricity interconnection in the presence of intermittent renewables, such as wind and solar power, on renewable capacity and carbon emissions using a two-country model. I find that in the first-best, interconnection decreases investments in renewable capacity and exacerbates carbon emissions if the social cost of carbon (SCC) is low. Conversely, interconnection increases renewable capacity and reduces carbon emissions for a high SCC. Moreover, the intermittency of renewables generates an insurance gain from interconnection, which also implies that some renewable capacity is optimally curtailed in some states of nature when the SCC is high. The curtailment rate and the corresponding carbon emissions increase for more positively correlated intermittency. I calibrate the model using data from the European Union electricity market and simulate the outcome of expanding interconnection between Germany-Poland and France-Spain. I find that given the current level of SCC, the interconnection may increase carbon emissions. The net benefit of interconnection is positive, with uneven distribution across countries

    Electricity Interconnection with Intermittent Renewables

    Get PDF
    Electricity interconnection has been recognized as a way to mitigate carbon emissions by dispatching more efficient electricity production and accommodating the growing share of renewables. I analyze the impact of electricity interconnection in the presence of intermittent renewables, such as wind and solar power, on renewable capacity and carbon emissions using a two-country model. I find that in the first-best, interconnection decreases investments in renewable capacity and exacerbates carbon emissions if the social cost of carbon (SCC) is low. Conversely, interconnection increases renewable capacity and reduces carbon emissions for a high SCC. Moreover, the intermittency of renewables generates an insurance gain from interconnection, which also implies that some renewable capacity is optimally curtailed in some states of nature when the SCC is high. The curtailment rate and the corresponding carbon emissions increase for more positively correlated intermittency. I calibrate the model using data from the European Union electricity market and simulate the outcome of expanding interconnection between Germany-Poland and France-Spain. I find that given the current level of SCC, the interconnection may increase carbon emissions. The net benefit of interconnection is positive, with uneven distribution across countries

    Advances in Nanomaterials for Lithium-Ion/Post-Lithium-Ion Batteries and Supercapacitors

    Get PDF
    Energy storage and conversion are key factors for enabling the transition from fossil fuels to intermittent renewables [...

    A Dynamic Market Mechanism for Integration of Renewables and Demand Response

    Get PDF
    The most formidable challenge in assembling a Smart Grid is the integration of a high penetration of renewables. Demand Response, a largely promising concept, is increasingly discussed as a means to cope with the intermittent and uncertain renewables. In this paper, we propose a dynamic market mech- anism that reaches the market equilibrium through continuous negotiations between key market players. In addition to incor- porating renewables, this market mechanism also incorporates a quantitative taxonomy of demand response devices, based on the inherent magnitude, run-time, and integral constraints of demands. The dynamic market mechanism is evaluated on an IEEE 118 Bus system, a high fidelity simulation model of the Midwestern United States power grid. The results show how the proposed mechanism can be utilized to determine combinations of demand response devices in the presence of intermittent and uncertain renewables with varying levels of penetration so as to result in a desired level of Social Welfare.This work was supported in part by the National Science Foundation grants ECCS-1135815 and EFRI-1441301

    New Electricity Technologies for a Sustainable Future

    Get PDF
    There is a growing concern over our reliance on conventional electricity sources and their long-term environmental, climate change, and security of supply implications, and much hope is vested in the ability of future technological progress to tackle these issues. However, informed academic analysis and policy debates on the future of electricity systems must be based on the current state, and prospects of, technological options. This paper is the introductory chapter in the forthcoming book Future Electricity Technologies and Systems. The book comprises contributions from leading experts in their respective technology areas. The chapters present state of the art and likely progress paths of conventional and new electricity generation, networks, storage, and end-use technologies. In this paper we review the growth trend in electricity demand and carbon emissions. We then present a concise overview of the chapters. Finally, we discuss the main contextual factors that influence long-term technological progress
    corecore