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A Dynamic Market Mechanism for Integration of
Renewables and Demand Response

J. Knudsen, J. Hansen, and A.M. Annaswamy

Abstract—The most formidable challenge in assembling a
Smart Grid is the integration of a high penetration of renewables.
Demand Response, a largely promising concept, is increasingly
discussed as a means to cope with the intermittent and uncertain
renewables. In this paper, we propose a dynamic market mech-
anism that reaches the market equilibrium through continuous
negotiations between key market players. In addition to incor-
porating renewables, this market mechanism also incorporates
a quantitative taxonomy of demand response devices, based on
the inherent magnitude, run-time, and integral constraints of
demands. The dynamic market mechanism is evaluated on an
IEEE 118 Bus system, a high fidelity simulation model of the
Midwestern United States power grid. The results show how the
proposed mechanism can be utilized to determine combinations
of demand response devices in the presence of intermittent and
uncertain renewables with varying levels of penetration so as to
result in a desired level of Social Welfare.

Index Terms—Smart Grid, Demand-Side Management, De-
mand Response, Renewables, Dynamic Market Mechanism

I. INTRODUCTION

THE assembling of Smart Grid, a cyber-enabled transfor-
mation proposed for the current grid, faces a number of

challenges, the most formidable of which is the integration of a
high penetration of Renewable Energy Resources (RERs). The
typical operation of a power grid consists of achieving power
balance where load is assumed to be fixed, and generation
assets are assembled to equal the load, with voltage and fre-
quency control achieved through inertial and terminal voltage
stabilization of a large number of synchronous generators. The
very first step in this operation, of power balance, is directly
affected by the introduction of RERs due to the fact that
power generation from RERs is subject to uncertainties and
intermittencies.

One of the most promising concepts that is being increas-
ingly discussed is Demand Response (DR), a concept which
allows demand to be adjustable [1]-[3], to cope with variations
in RERs. A fairly vast literature exists on Demand Response,
its potential, and associated challenges and opportunities [4]-
[6]. The concept of introducing flexible consumption in market
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operations has long been recognized as a highly beneficial one
[7], [8]. The idea is then to determine the procedure by which
DR can be used concomitantly with RERs so as to ensure an
optimal economic dispatch of generation for power balance.

The introduction of intermittency and uncertainty in a smart
grid as well as the increasing potential of adjustable demand
via DR necessitates a dynamic framework to address the
operation, scheduling and financial settlements in the dynamic
and uncertain environment. The former brings in issues of
strong intermittency and uncertainty, and the latter a feedback
structure where demand can be modulated over a range of
time-scales. Both of these components are dictating a new
look at market mechanisms, with a controls viewpoint enabling
a novel framework for analysis and synthesis. This paper
proposes a Dynamic Market Mechanism (DMM) together
with a portfolio of demand response devices to achieve an
optimal economic dispatch in the presence of intermittencies
and uncertainties in renewables.

Beginning with a framework that includes price as an un-
derlying state, an attempt is made in this DMM to capture the
dynamic interactions between generation, demand, Locational
Marginal Price (LMP), and congestion price. The solutions
of this dynamic model can be viewed as negotiations be-
tween generating companies (GenCos), consumer companies
(ConCos), and the Independent System Operator (ISO) that
precede convergence to the market equilibrium. The DMM
will also include a taxonomy of DR loads, denoted as Buckets,
Batteries, and Bakeries (BBB), whose classification is based
on distinguishable characteristics of magnitude, run-time, and
integral constraints. Conditions under which the DMM is
stable and those under which the solutions converge to the
market equilibrium are derived. The effect of introducing BBB
for various levels of intermittency in RERs is explored. Also
investigated is the robustness of the DMM to uncertainties in
RERs.

The main idea behind the DMM is that a quantity akin to
Real Time Price (RTP) is exchanged between DR-compatible
consumers, generators including RERs, and ISO. The use
of RTP for incentivizing DR-compatible consumers has been
studied extensively (see for example, [9]-[11]). In these papers,
the main benefit of RTP is claimed to be a maximum utilization
of demand-side assets. As we will show in this paper, the
DMM proposed ensures this utilization, with the underlying
price quantity arrived at in a different and a stable manner.
The benefits of such a DMM over the more standard Optimal
Power Flow (OPF) solution, also shown in this paper, lie in the
efficient integration of dynamic information about the RERs
in terms of both intermittencies and uncertainties, as well as
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the flexible loads and their various constraints. The DMM
presented here builds on earlier work in [12], [1], and [4]. In
[12], a DMM was first proposed, but with all flexible demand
assumed to be adjustable with no constraints. In [1], shiftable
DR loads were addressed as well, and in [4] the scope was
extended to include the BBB taxonomy analyzed in this paper.
In [12], [1], and [4], validation was limited to either an IEEE 4
Bus or an IEEE 30 Bus. Unlike these earlier papers, we carry
out an extensive validation of an extended DMM in this paper
using an IEEE 118 Bus system which includes 54 generators,
99 consumers with a varied range of BBB loads, and 186
transmission lines.

Analysis and design of electricity markets have been ad-
dressed by a number of researchers ([7], [8], [11], [12],
and [13]-[17]). In [13], the authors provide a framework for
a dynamic adjustment of the price, but do not take into
account the market clearing structure or constraints of capacity,
congestion, or power balance. While papers such as [14],
[15] focus on the market design in the presence of energy
storage, and electric vehicles, dynamic market mechanisms
that are affected simultaneously by flexible generation and
consumption have not been explored in these works. Market
volatility due to real-time prices have been addressed in papers
such as [16] and [17]. The focus in these investigations is on
the sequence of equilibria arrived at using real-time prices,
where the consumers react to the price equilibrium rather than
participate actively. Other papers such as [11] have focused on
retail markets and the interactions between an energy provider
such as a Utility and noncooperative consumers.

The scope of discussions in this paper is at the wholesale
level, and is predicated on the assumption that consumer
companies exist that are DR-compatible, and can participate
in the overall economic dispatch [8], along with renewable
generators. A DMM is proposed that prescribes continued
negotiations between generators, consumers, and ISO, with
active participation of all market entities in the creation of
the cleared market price. Conditions under which the market
equilibrium can be reached are derived.

While our focus here is on the wholesale market, all of
the framework presented can be extended to the retail market
under the assumptions of a unique market equilibrium [18]
and reliable estimation of demand curves from end-users.
Our framework also presupposes that suitable aggregation of
various types of demands is feasible (see for example, [19]-
[24]), which are for the most part noncooperative [16].

This paper has been organized as follows: In Section II we
present a brief introduction to electricity markets. In Section
III, the wholesale energy market structure is introduced, which
includes modeling of conventional generators, RER gener-
ators, BBB consumers, and our proposed Dynamic Market
Mechanism. In Section IV numerical studies of an IEEE 118
Bus system are reported to show the effects of the proposed
dynamic model. Finally, in Section V and VI we provide
discussions and concluding remarks, respectively.

II. INTRODUCTION TO ELECTRICITY MARKETS

An electricity market enables trade of electricity between
suppliers and consumers. An efficient market is one where

electricity is traded at a price that minimizes the cost of gen-
eration while supplying the entire demand [25]. As electricity
cannot be stored in large quantities at the current cost of energy
storage, the amount of electricity generated must match the
demand at every instant of time to ensure reliability. To ensure
adequate amounts of generation also necessitates a forward
planning of energy capacity. All of these lead to three broad
classes of markets where electricity is traded, which include
Energy, Forward Capacity, and Ancillary Services [26].

Energy markets accommodate trade of electricity consider-
ing it as an energy commodity. They also ensure just-in-time
and just-in-place delivery of electricity to customers. Forward
capacity markets are used to provide incentive for building new
energy capacity to meet future needs of consumers. Finally,
ancillary service markets are used to provide all real-time
services needed for reliable delivery of high quality energy.
These services include frequency regulation, voltage support
and spinning reserve capacity.

In all three classes of electricity markets, electricity suppli-
ers participate by providing their offers based on their costs
while consumers, if flexible, participate by providing their
demand curves. While the exact procedures used in any given
market are region-dependent, trading in all of the above mar-
kets can be accomplished using bilateral, auction and/or poolco
financial contracts [27]. Bilateral transactions are agreements
made between two parties, electricity supplier and electricity
consumer, to exchange electricity under mutually agreeable
terms for a specified period of time. Trading via auction and
poolco contracts usually involves a third party, such as an ISO
[28], who oversees the transactions. In both cases the trading
agreement is arrived at by the ISO based on best offers, but the
distinction between them is that in a poolco market neither ISO
nor the participants know what the final price of the trading
will be, while in an auction market the price is public during
bidding.

A third taxonomy of markets is on the basis of the type of
participant in a market, and classified as wholesale and retail
markets. Wholesale markets are run by ISO. Power generating
companies that sell electricity to load serving entities typically
participate in a wholesale market. Participants must bid in
quantities of at least 1 MW. The retail electricity market man-
ages the final stage of the power sale from electricity providers
to end-use consumers such as small businesses and individual
households. Wholesale can be either bilateral, auction or pool,
but retail markets are almost completely bilateral in the United
States, with regulatory supervision (for example, Department
of Public Utilities in the state of Massachusetts [29]).

Regulation market is dedicated to providing frequency reg-
ulation in real-time. While energy markets are primarily re-
sponsible for balancing demand and generation, any remaining
imbalance is taken care of by the regulation market. These
markets run once per hour and assign generators responsible
for regulation in the next hour. Dispatch of these generators is
done through automatic generation control, a fully automated
centralized feedback control loop, at the rate of seconds.
Forward reserve and real-time reserve markets are used to
assign operating reserves throughout the day, which ensure
reliable system operation under unpredicted circumstances,

Page 2 of 16



3

such as equipment failures and faults. We do not address
regulation markets or retail markets in this paper.

Our focus in this paper is on wholesale energy markets
where decision making occurs at a relatively faster time scale.
Energy markets usually consist of decision levels at two
different time scales, most important of which are a day-ahead
market (DAM) and a real-time market (RTM) [7]. The DAM is
settled once every day with hourly schedules for the following
day, with a certain market lead time1. These schedules specify
the amounts of electricity to be produced, and consumed,
each hour and at what price. Schedules are determined by the
ISO to give the lowest price of electricity based on received
generation bids, and consumption predictions and bids. Any
deviations from the DAM schedules are handled in the RTM.
The RTM balances the differences from the DAM schedules
when bids and predictions do not match the actual patterns. It
runs on a time-scale of minutes (with the market clearing time
anywhere between 5 and 15 minutes) and submitted before the
start of each operating hour. A common tool used by the ISOs
for decision making in the energy market is the Optimal Power
Flow, and is described in Section II-A.

As mentioned earlier, a typical energy market procedure
consists of participation from electricity suppliers and con-
sumers. The current practice, however, is one where demand
is essentially inflexible, whose profile varies with time but
otherwise is not adjustable on-demand. An active participation
by consumers in electricity markets is an emerging one [31].
As of now, DR is integrated only in DAM (in a few states in
the US) at the wholesale level, but not in RTM.

A. Optimal Power Flow

The goal of the Optimal Power Flow method is to determine
the schedule of generation over a certain period such that an
underlying cost function is optimized [32]. This cost function,
denoted as Social Welfare, represents the difference between
utility gained by the consumers and the cost incurred by the
generators over the period of interest. The optimization of this
cost function has to be carried out under both equality and
inequality constraints. Equality constraints stem from power
balance, as supply must equal demand at all points of the grid
and at all times, and inequality constraints from capacity and
ramp constraints in the generators and transmission lines. A
simplified OPF procedure is described below.

A typical form of Social Welfare, denoted SW , is given by

SW (x, y) = U(x)� C(y) (1)

where x and y denote consumption and generation respec-
tively, U(·) denotes the utility function of consumers, and C(·)
denotes the cost function of generators. Equality constraints of
the form

g

1

(x, y, z) = c

1

(2)

have to be satisfied, which corresponds to power balance at
every node in the grid, where z denotes external variables such

1In ISO-NE, as of May 2013, bids are due by 10:00 am and DAM LMPs,
schedules, and constraints are published by 13:30 [30]

as phase angles, and c

1

is a constant. In addition, inequality
constraints of the form

g

2

(x)  c

2

g

3

(y)  c

3

g

4

(z)  c

4

(3)

have to be simultaneously satisfied as well, where gi de-
note capacity and ramp constraints, and ci are constants
for i = 2, 3, 4. The OPF problem then corresponds to the
maximization of SW , given by

max

x2X ,y2Y
SW (x, y) (4)

where X and Y denote the set of consumers and genera-
tors participating in the energy market. A preceding step to
OPF, denoted as the Unit Commitment problem, is typically
involved in the determination of the set Y .

The OPF solution in an energy market then determines the
optimal dispatch y

? of generation and x

? optimal consump-
tion, given by the solution y = y

? and x = x

? of (4) subject
to the equality constraint in (2) and inequality constraints in
(3). The difficulty in the above approach lies in the fact that
this optimization is carried out T units ahead of the actual
operation time when the generation and consumption occurs.
This in turn implies that at this hour, accurate information
about ci, i = 1, 2, 3, 4 is assumed to be available. In DAM
in ISO-NE, for instance, the OPF solution which consists of
the optimal generation schedules for an entire 24 hour period
starting at midnight are posted at 6:00 pm of the previous day
[33]. That is, information about generation and consumption
have to be predicted T hours in advance, where 6  T  29,
accurately. In a real time market, in ISO-NE, T = 30 min
[33]. Such requirements become difficult to satisfy for several
of the generation assets and near impossible for renewables.

In contrast to such an OPF procedure, the DMM that we
propose in this paper is an iterative approach, that allows closer
to real-time negotiations between generators, consumers, and
the ISO, thereby allowing more accurate information that
becomes available over the period T to be incorporated. In
addition, we include a large class of consumers that are DR-
compatible. The role of consumers, x in OPF has been, by and
large, represented by utilities participating at the wholesale
level. That is, utilities would participate in the optimal power
flow by providing the predicted demand x inflexible to the
price, i.e. U(x) = const. With emergence of DR programs
the set X is expanding, to include large (typically industrial)
customers which would respond to the time of use (TOU)
prices or to improve reliability according to the needs of
the ISO [34]. With more frequent and uncertain variations in
generation, such methods often become inadequate. A system-
atic and widespread inclusion of demand in market dispatch
is becoming increasingly attractive. The nature of demand,
however, varies significantly. While many of them are flexible,
they are subject to various static and dynamic constraints [4].
Some types of power consumption may be directly adjustable,
with overall upper and lower limits in magnitude, but others
may have energy constraints, with varying specifications on
run-time. To successfully integrate DR-compatible consumers
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responding to prices, these varying characteristics (ramping
rates, consumption limitations, etc.) have to be considered.
Towards this end, the DMM that we propose in this paper
assumes that consumers are DR-compatible, and classifies
them on the basis of the type of underlying constraints in
their consumption. This DMM is an overall iterative approach
that allows generators and consumers to respond to suggested
prices from the ISO while accommodating all relevant con-
straints, and can be shown to converge to an efficient market
equilibrium. This is discussed in more detail in Section III.

III. A DYNAMIC MARKET MECHNISM

We propose a Dynamic Market Mechanism in this paper
for carrying out economic dispatch in a wholesale electricity
market. The main participants in this market can be classified
into three, (i) consumer company, (ii) generator company, and
(iii) ISO. The procedure by which this market mechanism
functions is through an iterative set of negotiations, where
both ConCos and GenCos submit their suggested bids, which
are schedules of consumption and generation, respectively,
to which then the ISO responds with suggested prices. The
negotiations continue until market equilibrium is reached.
All GenCos are assumed to bid their marginal cost i.e., not
exercise strategic bidding such as arbitrage. For RER GenCos
this further implies that they are competitive [35] and bid to the
best of their knowledge i.e., always treating the conditioning
forecast as truth.

Section III-A presents models of the consumers, who are
assumed to be DR-compatible. Here, we present details of the
BBB loads. Section III-B presents generators which include
both conventional and RER GenCos. The latter are assumed
to have improved forecasts with decreasing prediction horizon.
Section III-C addresses the market-clearing procedure, and
Section III-D includes details of the market negotiations of the
DMM. Stability of the DMM is addressed in Section III-E.

In the remainder of this paper, specifications of quantities
used without remark can be found in the nomenclature below.

NOMENCLATURE

N Total number of nodes.
NDc Total number of Bucket ConCos.
NDt Total number of Battery ConCos.
NDk Total number of Bakery ConCos.
NGc Total number of conventional GenCos.
NGr Total number of RER GenCos.
Ts Time step size.
t Generic time-variable.
tk Market-clearing times, k = 1, 2, . . .

tK Negotiation time-instants, K = 1, 2, . . .

Tm Market-clearing period.
Td Negotiation period.
�n Set of indices of Bucket ConCos at node n.
'n Set of indices of Battery ConCos at node n.
 n Set of indices of Bakery ConCos at node n.
✓n Set of indices of conventional GenCos at node n.
#n Set of indices of RER GenCos at node n.
⌦n Set of indices of nodes connected to node n.

A. Consumer Modeling

The consumer companies are modeled based on a flexibil-
ity taxonomy denoted Buckets, Batteries and Bakeries, and
separates consumers into three classes based on magnitude,
run-time, and integral constraints as described below [4].

Buckets: A consumption unit i is defined to be a Bucket if it
is a power and energy constrained integrator, a typical example
of which are energy storage units such as air conditioner
units and refrigeration systems. Each Bucket i 2 Dc =

{1, 2, . . . , NDc} is assumed to consist of one consuming unit,
with its consumption denoted as PDci(t). The associated
utility of consumption is assumed quadratic, yielding linearly
decreasing marginal utility, as follows:

UDci

�
PDci(t)

�
= bDciPDci(t) +

cDci

2

PDci(t)
2 (5)

where bDci and cDci are the consumption base and incremental
utility, respectively. The power and energy constraints of
Bucket i are formally stated in the following definition:

Definition 1 (Bucket): The demand PDci(t) is defined to be
of a Bucket if PDci(t) and the stored energy EDci(t) satisfy
the following constraints:

EDci(t+ 1) = EDci(t) + TsPDci(t) (6a)
PDci

 PDci(t)  PDci (6b)
EDci  EDci(t)  EDci (6c)

where t = 0, 1, . . . ,1, PDci
, PDci , and EDci

, EDci are
prespecified lower and upper bounds on the power PDci and
energy EDci , respectively. A possible behavior of a Bucket
consumer company is illustrated in Fig. 1.

Batteries: A consumption unit i is defined to be a Battery
if it is, similar to a Bucket, a power and energy constrained
integrator but with an additional constraint of a deadline for
achieving a fully charged state. Examples of Batteries are
PHEV and swimming pool circulations and filtering systems.
Each Battery i 2 Dt = {1, 2, . . . , NDt} is assumed to
consist of one consuming unit, with its consumption denoted
as PDti(t). The associated utility of consumption is assumed
quadratic, yielding linearly decreasing marginal utility, as
follows:

UDti

�
PDti(t)

�
= bDtiPDti(t) +

cDti

2

PDti(t)
2 (7)

where bDti and cDti are the consumption base and incremental
utility, respectively. The power and energy constraints of
Battery i are formally stated in the following definition:

Definition 2 (Battery): The demand PDti(t) is defined to be
of a Battery if PDti(t) and the stored energy EDti(t) satisfy
the following constraints:

EDti(t+ 1) = EDti(t) + TsPDti(t) (8a)
0  PDti(t)  PDti (8b)
0  EDti(t)  EDti (8c)
EDti(Ti,end) = EDti (8d)

where t = 0, 1, . . . ,1, PDti , and EDti are prespecified upper
bounds on the power PDti and energy EDti , respectively,
and Ti,end 2 N+. A possible behavior of a Battery consumer
company is illustrated in Fig. 2.
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Energy

Time

EDci

EDci

Fig. 1. Illustration of the power and energy properties of a Bucket.
Energy

Time

EDti

Ti,end

Fig. 2. Illustration of the power and energy properties of a Battery.
Energy

Time

EDki

Ti,endTi,run

Fig. 3. Illustration of the power and energy properties of a Bakery.

Bakeries: A consumption unit i is defined to be a Bakery
if in addition to having constraints on the power, energy, and
runtime, the unit is constrained to acquire the energy in a sin-
gle uninterrupted stretch of constant consumption. Any batch
process with a predetermined production cycle such as large
industrial production facilities and bakeries, fall under this
category. Each Bakery i 2 Dk = {1, 2, . . . , NDk} is assumed
to consist of one consuming unit, with its consumption denoted
as PDki

(t). The power and energy constraints of Bakery i are
formally stated in the following definition:

Definition 3 (Bakery): The demand PDki
(t) is defined to be

of a Bakery if PDki
(t) and the stored energy EDki

(t) satisfy
the following constraints:

EDki
(t+ 1) = EDki

(t) + TsPDki
(t) (9a)

PDki
(t) = PDki

vi(t) (9b)
0  EDki

(t)  EDki
(9c)

EDki
(Ti,end) = EDki

(9d)

0 
t+Ti,run�1X

l=t

vi(l)� Ti,run

�
vi(t)� vi(t� 1)

�
(9e)

where t = 0, 1, . . . ,1, PDki
and EDki

are prespecified upper
bounds on the power PDki

and energy EDki
, respectively,

PDki
� 0, EDki

= PDki
Ti,run, Ti,run 2 N+, Ti,end 2 N+,

Ti,end � Ti,run and vi(t) 2 {0, 1} is the binary on/off state
of Bakery i. For the purposes of this paper, the sequence vi(t)

is assumed fixed across all Bakeries. A possible behavior of a
Bakery consumer company is illustrated in Fig. 3.

B. Generator Modeling

The generator companies are separated into conventional
units (e.g., coal and nuclear plants) and RER units (e.g., wind
and solar plants) and modeled separately as follows:

Conventional GenCos: For each conventional generator
company i 2 Gc = {1, 2, . . . , NGc} assumed to consist of
one generating unit the generation bid is denoted PGci(t). The
associated operation cost as given in (10) is assumed quadratic,
yielding linearly increasing marginal cost.

CGci

�
PGci(t)

�
= bGciPGci(t) +

cGci

2

PGci(t)
2 (10)

where bGci and cGci are the generation base and incremental
cost, respectively. The power PGci(t) is subject to two con-
straints given by

PGci
 PGci(t)  PGci (11a)

RGci
 PGci(t)� PGci(t� 1)  RGci (11b)

where (11a) is a power constraint and (11b) is a rate constraint
which when combined, enforce minimum and maximum val-
ues of PGci(t) according to the generating units’ properties
and prior state. Startup and shutdown costs are not included
in this model.

RER GenCos: For each renewable energy resource genera-
tor company i 2 Gr = {1, 2, . . . , NGr} assumed to consist of
one generating unit the generation bid is denoted bPGri(t). The
estimated operation cost as given in (12) is assumed quadratic,
yielding linearly increasing marginal cost.

CGri

� b
PGri(t)

�
= bGri

b
PGri(t) +

cGri

2

b
PGri(t)

2 (12)

where bGri and cGri are the generation base and incremental
cost, respectively. RER GenCos, in general, have low base cost
and negligible incremental costs compared to conventional
ones. The bid bPGri(t) is subject to two constraints given by

PGri
 b

PGri(t) 
b
PGri(t) (13a)

RGri  b
PGri(t)� PGri(t� 1)  RGri (13b)

where (13a) is a power constraint and (13b) is a rate constraint
which when combined, enforce minimum and maximum val-
ues of bPGri(t) according to the generating units’ properties
and prior state. Denoting the true, unknown maximum gen-
eration limit as PGri , we note that PGri may not be known
as it is subject to external conditions, e.g., wind speeds in the
case of a wind farm. Since PGri may not be known during the
bidding process, we assume that it is estimated using forecast
models as bPGri(t) and satisfies the inequality (13a). That is,
assuming that the deviation between this estimate and the true
value can be represented as

b
PGri(t) = (1 +�Gri(t))PGri (14)

where �Gri(t) � �1, ensure that as the prediction horizon TH

decreases, the estimate bPGri(TH) approaches its true value
PGri (see Fig. 4). Recent results show that the accuracy of
forecast models improves with decreasing prediction horizon
[36], where a �Gri of 10% can be realized for a prediction
horizon of 4 minutes, i.e. TH = 4 min with �Gri(TH) =

0.1. The DMM that we propose to use can take advantage of
such forecast models by having its negotiations use improved
estimates as time proceeds. This is discussed in more detail
in Section IV.
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Power

TH

PGri

Fig. 4. Example behavior of bPGri (t) as |�Gri (t)| increases with the pre-
diction horizon TH . The red line demonstrates bPGri (t) with �Gri (t) > 0

and the blue lines demonstrates bPGri (t) with �Gri (t) < 0.

The inequality �1  �Gri(t) < 0 represents underestima-
tion i.e., the RER GenCo assumes a maximum generation limit
which is smaller than the true limit and the GenCo is assumed
to waste a portion of their capacity due to the forecasting error.
The inequality �Gri(t) > 0 represents overestimation i.e., the
RER GenCo assumes a maximum generation limit which is
higher than the true limit causing lack of power. The GenCo
is then penalized for the shortfall by the ISO with the cost
of acquiring the missing power from an expensive unit in the
reserve market (see for example [37]). The rate constraint is,
as seen in (13b), using the actual prior power level and not
an estimate since the prior state is known even for a RER
generating unit. Startup and shutdown costs are not included
in this model and the reserve market is assumed to be always
at one’s disposal and cleared elsewhere.

C. Market-Clearing

The market-clearing is managed by the ISO, optimizing a
cost function subject to system constraints [1]. In addition
to the constraints introduced in Sections III-A and III-B, the
system constraints include network losses and line capacity
limitations. The power flow through lines is constrained by
physical parameters and lines are said to be congested when
the power flow approaches these constraints. Congestion is
directly included in this model, whereas ohmic losses are
excluded. The cost function, commonly termed Social Welfare,
is designed such that the ISO acts on behalf of ConCos and
GenCos, maximizing the utility of ConCos and minimizing the
cost of GenCos. As detailed in Section III-B, our model allows
power imbalances due to forecasting errors during negotiation,
implying that the true cost of generation is found in post-
processing. To accommodate this, we denote the intermediate
Social Welfare used as cost function in market-clearing by S

0
W

and the true post-processed Social Welfare by SW , with the
the former given by

S

0
W =

X

i2Dc

UDci

�
PDci(z(k))

�
+

X

i2Dt

UDti

�
PDti(z(k))

�

�
X

i2Gc

CGci

�
PGci(z(k))

�
�
X

i2Gr

CGri

� b
PGri(z(k))

�

(15)

where z(k) denotes the value of a variable z at time t = tk,
with tk+1

= tk + Tm, and Tm denotes the market-clearing
period. The market-clearing optimization problem is then
given by

min�S

0
W (16)

subject to
X

i2�n

PDci(k) +

X

i2'n

PDti(k) +

X

i2 n

PDki
(k)�

X

i2✓n

PGci(k)

�
X

i2#n

b
PGri(k) +

X

m2⌦n

Bnm

�
�n(k)� �m(k)

�
= 0

8n 2 N (17a)
Bnm

�
�n(k)� �m(k)

�
 Pnm 8n 2 N, 8m 2 ⌦n (17b)

PDci
 PDci(k)  PDci 8i 2 Dc (17c)

0  PDti(k)  PDti 8i 2 Dt (17d)
PGci

 PGci(k)  PGci 8i 2 Gc (17e)

PGri  b
PGri(k) 

b
PGri(k) 8i 2 Gr (17f)

RGci
 PGci(k)� PGci(k � 1)  RGci 8i 2 Gc (17g)

RGri  b
PGri(k)� PGri(k � 1)  RGri 8i 2 Gr (17h)

EDci
 EDci(k) + TsPDci(k)  EDci 8i 2 Dc (17i)

E

ref
Dti

(k + 1)  EDti(k) + TsPDti(k)  EDti 8i 2 Dt (17j)

where �n(k) denotes the voltage angle at node n, Bnm and
Pnm denotes the susceptance and the maximum capacity of
the line from node n to node m, respectively, and E

ref
Dti

(k)

denotes the minimum reference to guarantee Battery consumer
company i satisfy (8d) as specified later. Constraint (17a)
enforces nodal power balance, (17b) enforces line capacity
limits, (17c)-(17f) enforce power consumption and generation
limits for Buckets and Batteries, (17g)-(17h) enforce gener-
ation rate limits, and finally (17i)-(17j) enforce consumption
energy limits for Buckets and Batteries, respectively. It should
be noted that PGri(k � 1) in (17h) is the actual value rather
than its estimate as these constraints are being evaluated using
k � 1. As the true values of the renewable generation are not
known at k, their estimates are used in (17h). Eref

Dti
(k) is a

reference value for Battery i and is chosen as follows:
Specification of Eref

Dti
(k): For Battery consumer company i,

the fully charged integral constraint (8d) is guaranteed satisfied
by a reference for the lower level of stored energy EDti(k)

given by

E

ref
Dti

(k) =

8
>>><

>>>:

0 if k = 0, . . . , Ti,start

PDti

�
k � Ti,start

�
if k =

(
Ti,start + 1,

. . . , Ti,end � 1

EDti if k = Ti,end, . . . ,1

(18)

where Ti,start = Ti,end �
l
EDti

PDti

m
. This reference guarantees

Battery consumer company i to satisfy (8d) while respecting
the power limit (8b), and is exemplified in Fig. 5. The choice
of Eref

Dti(k) as in (18) implies that the Battery i has the ability
to hold out on consumption until the price is favorable but
holding out for too long forces consumption at any cost when
k approaches Ti,end.

We note that, any solution PDti(k) affects the correspond-
ing EDti(k + 1) which means constraints on energy has to
be fulfilled for k + 1. Further note that, Bakery consumer
companies appear only in (17a) and as fixed values since their
consumption is scheduled elsewhere as discussed in Section
III-A.
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Energy

Time

EDti

Ti,start Ti,end

Fig. 5. Illustration of the power and energy properties of a Battery consumer
company and its underlying Eref

Dti
(k). The red line shows EDti (k) while

the blue line shows Eref
Dti

(k).

D. Market Negotiations of the DMM

We now address the underlying optimization problem which
is the optimization of (16) subject to the equality constraint
in (17a) and the inequality constraints in (17b)-(17j), at each
market-clearing instant k. This is of the form

min f(x) (19a)

subject to

gi(x) = 0 i = 1, 2, . . . , n (19b)
hj(x)  0 j = 1, 2, . . . ,m (19c)

where f(x), gi(x) and hj(x) are differentiable functions.
Formulating the associated Lagrangian as

L(x,�, µ) = f(x) +

nX

i=1

�igi(x) +

mX

j=1

µjhj(x) (20)

where �i and µj are the Lagrangian multipliers, Theorem
1 establishes the optimum vector set (x

⇤
,�

⇤
, µ

⇤
) which can

be found by the Karush-Kuhn-Tucker (KKT) conditions [38],
[39]. The existence of (x

⇤
,�

⇤
, µ

⇤
) implies zero duality gap

[39], i.e. Slater’s condition is satisfied.
Theorem 1 (Saddle-Point Theorem): x

⇤ is a unique solu-
tion of (19) if and only if (x

⇤
,�

⇤
, µ

⇤
) is a saddle-point of

L(x,�, µ) in x � 0, µ � 0.
The solution (x

⇤
,�

⇤
, µ

⇤
) can be found using an iterative

solution such as the primal-dual interior point method [39]
given by

x(t+ 1) = x(t)� ↵xrxL(x,�, µ) (21a)
�(t+ 1) = �(t) + ↵�r�L(x,�, µ) (21b)
µ(t+ 1) = µ(t) + ↵µProjµ

�
rµL(x,�, µ), µ, µ, ✏

�
(21c)

where ↵x, ↵� and ↵µ are positive scalars controlling the
amount of change in the gradient direction and Projµ(·) is
a projection operator that ensures non-negativity of µj , using
bounds µ, µ, and a boundary-layer thickness ✏ (see (24) for
details). The application of this method to the optimization
problem corresponding to (16) and (17) forms the DMM.

The starting point for the proposed DMM is the construction
of a Lagrangian L, similar to (20) as

L = CG

�
PG

�
� UD

�
PD

�
+ ⇢n

⇣ X

i2�n

PDci +

X

i2'n

PDti

+

X

i2 n

PDki
�
X

i2✓n

PGci �
X

i2#n

b
PGri

+

X

m2⌦n

Bnm

�
�n � �m

�⌘

+ �nm

⇣
Bnm

�
�n � �m

�
� Pnm

⌘
(22)

where PGci , bPGri , PDci , PDti , PDki
and �n correspond to the

states x in (19), ⇢n and �nm are the Lagrange multipliers and
correspond to the Locational Marginal Price (LMP) at node n

and the congestion prices of the line from node n to node m

respectively, and CG

�
PG

�
and UD

�
PD

�
are given by

CG

�
PG

�
=

X

i2Gc

CGci

�
PGci

�
+

X

i2Gr

CGri

� b
PGri

�
(23a)

UD

�
PD

�
=

X

i2Dc

UDci

�
PDci

�
+

X

i2Dt

UDti

�
PDti

�
(23b)

Finally the projection operator is given by

Projy
�
f(x), dy, dy, ✏

�
=

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

min

✓
d
2
y1

�y2
1

d
2
y1

�d
02
y1

, · · · , d
2
yn

�y2
n

d
2
yn

�d
02
yn

◆
f(x) if

2

6664

f(x) > 0 ^
{d0y1

 y

1

 dy1

_ · · ·_
d

0
yn

 yn  dyn}

3

7775

min

✓
d2
y1

�y2
1

d2
y1

�d02
y1

, · · · , d2
yn

�y2
n

d2
yn

�d02
yn

◆
f(x) if

2

6664

f(x) < 0 ^
{dy1

 y

1

 d

0
y1

_ · · ·_
dyn

 yn  d

0
yn
}

3

7775

f(x) otherwise
(24)

where ✏ is a small positive number, y = [y

1

· · · yn]T ,
dy =

⇥
dy1 · · · dyn

⇤T
, dy =

⇥
dy1

· · · dyn

⇤T , d
0
y = dy�✏, and

d

0
y = dy + ✏. The constraints in (17c)-(17j) are accommodated

through the use of the projection operator rather than through
Lagrange multipliers.

In order to arrive at a solution of (22), which is the overall
market equilibrium, we propose an adjustment of the states x

in (22), at instances tK , K = 0, 1, 2, . . ., as in (21), as given
in (25). It is useful to note that the number of states at each
node n is given by the cardinality of ConCo sets �n, 'n, and
 n, GenCo sets ✓n, and #n, one for the node voltage angle
�n, and one for the node LMP ⇢n. The time scale of these
adjustments is assumed to be much faster than the market-
clearing time, i.e. if we define tK+1

= tK+Td, the negotiation
period Td is assumed to be much smaller than Tm (see Fig. 6).
In (25), the conventional generators and renewable generators
negotiate individually as PGci and PGri , respectively, and ↵x

denotes the step sizes corresponding the to variable x.
The goal of the DMM is therefore to start from any tk

and for the state PGci(tk), bPGri(tk), PDci(tk), PDti(tk),
PDki

(tk), �n(tk), ⇢n(tk), and �nm(tk) to converge to the
equilibrium P

⇤
Gci

, bP ⇤
Gri

, P ⇤
Dci

, P ⇤
Dti

, �⇤n, ⇢⇤n, �⇤nm as the next
market-clearing time approaches. That is, we are interested
in convergence to the equilibrium as K increases, that is, as
tk +KTd approaches tk+1

.
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�n(K + 1) = �n(K) + ↵�n

 
�
X

m2⌦n

Bnm

�
⇢n(K)� ⇢m(K) + �nm(K)� �mn(K)

�
!

(25a)

⇢n(K+1)=⇢n(K)+↵⇢n

0

@
X

i2�n

PDci(K)+

X

i2'n

PDti(K)+

X

i2 n

PDki(K)�
X

i2✓n

PGci(K)+

X

i2#n

b
PGri(K)+

X

m2⌦n

Bnm

�
�n(K)��m(K)

�
1

A (25b)

PDci(K + 1) = PDci(K) + Proj PDci
(K+1)

EDci
(K+1)

✓
↵Dci

�
cDciPDci(K) + bDci � ⇢n(i)

�
,


PDci

EDci

�
,


PDci
EDci

�
, ✏

◆
(25c)

PDti(K + 1) = PDti(K) + Proj PDti
(K+1)

EDti
(K+1)

✓
↵Dti

�
cDtiPDti(K) + bDti � ⇢n(i)

�
,


PDti

EDti

�
,


0

E

ref
Dti

(k + 1)

�
, ✏

◆
(25d)

PGci(K + 1) = PGci(K) + ProjPGci
(K+1)

RGci
(K)

✓
↵Gci

�
⇢n(i) � cGciPGci(K)� bGci

�
,


PGci

RGci

�
,


PGci
RGci

�
, ✏

◆
(25e)

b
PGri(K + 1) =

b
PGri(K) + Proj bPGri

(K+1)

RGri
(K)

 
↵Gri

⇣
⇢n(i) � cGri

b
PGri(K)� bGri

⌘
,

"
b
PGri

RGri

#
,


PGri
RGri

�
, ✏

!
(25f)

�nm(K + 1) = �nm(K) + Proj�nm(K+1)

�
↵�nmBnm

�
�n(K)� �m(K)

�
� Pnm, d�nm , 0, ✏

�
(25g)

Time

tk

1

tk+Td

2

tk+2Td

tK

tk+KTd

tK+1

tk+1

Fig. 6. Illustration of the relation between the market-clearing times tk and
the negotiation time-instants tK .

Denoting individual elements of a vector z as zi, the DMM
in (25) can be written in state-space form as

x

1

(K + 1)

x

2

(K + 1)

�
=


A

1

A

2

0 I

�
x

1

(K)

x

2

(K)

�
+


b

1

b

2

(x

1

, x

2

)

�
(26)

where

x

1

=

⇥
�

T
⇢

T
⇤T (27a)

x

2

=

h
P

T
Dc P

T
Dt P

T
Gc

b
P

T
Gr �

T
iT

(27b)

A

1

=


I �↵�AT

r BlineA

↵⇢A
T
BlineAr I

�
(27c)

A

2

=


0 0 0 0 �↵�AT

r Bline

↵⇢ADc ↵⇢ADt �↵⇢AGc �↵⇢AGr 0

�

(27d)
b

1

=

⇥
0 P

T
DkA

T
Dk↵⇢

⇤T (27e)
b

2

(x

1

, x

2

) =

2

66666666666666666666664

Proj PDc(K+1)

EDc(K+1)

0

@
↵Dc

�
cDcPDc(K) + bDc �A

T
Dc⇢

�
,

PDc

EDc

�
,


PDc

EDc

�
, ✏

1

A

Proj PDt(K+1)

EDt(K+1)

0

@
↵Dt

�
cDtPDt(K) + bDt �A

T
Dt⇢
�
,

PDt

EDt

�
,


0

E

ref
Dt(k + 1)

�
, ✏

1

A

ProjPGc(K+1)

RGc(K)

0

@
↵Gc

�
A

T
Gc⇢� cGcPGc(K)� bGc

�
,

PGc

RGc

�
,


PGc

RGc

�
, ✏

1

A

Proj bPGr(K+1)

RGr(K)

0

BB@

↵Gr

⇣
A

T
Gr⇢� cGr

b
PGr(K)� bGr

⌘
,

"
b
PGr

RGr

#
,


PGr

RGr

�
, ✏

1

CCA

Proj�(K+1)

�
↵�

�
A

T
BlineAr� � Pnm

�
, d� , 0, ✏

�

3

77777777777777777777775

(27f)

where � is the N � 1⇥ 1 voltage angle vector, ⇢ is the N ⇥ 1

LMP vector, PDc is the NDc⇥1 Bucket consumer vector, PDt

is the NDt ⇥ 1 Battery consumer vector, PDk is the NDk ⇥ 1

Bakery consumer vector, PGc is the NGc ⇥ 1 conventional
generator vector, bPGr is the NGr⇥1 RER generator vector and
� is the Nt ⇥ 1 congestion prices vector corresponding to the
Nt unique �n � �m equations. Further, A denotes the Nt ⇥N

bus incidence matrix and Ar denotes the Nt⇥N � 1 reduced
bus incidence matrix with the column of A corresponding to
the reference bus removed. ADc, ADt and ADk denote the N⇥
NDc, N⇥NDt and N⇥NDk, respectively, consumer incidence
matrices, where entry ij = 1 if the j

th consumer is connected
to the i

th bus and entry ij = 0 if the j

th consumer is not
connected to the i

th bus. Similarly, AGc denotes the N⇥NGc

conventional generator incidence matrix and AGr denotes the
N ⇥NGr RER generator incidence matrix. Bline denotes the
Nt ⇥Nt diagonal line admittance matrix, c’s denote diagonal
matrices of incremental coefficients, b’s denote vectors of base
coefficients. P ’s, E’s and R’s denote vectors of maximum
power, energy and rate, respectively. P ’s, E’s and R’s denote
vectors of minimum power, energy and rate, respectively. Pnm

is the vector of maximum line capacity limits and d� denotes
the vector of maximum bounds on �. Finally, ✏ is a small
positive number and ↵’s are diagonal matrices of appropriate
gradient step sizes.

The equilibrium set of the wholesale electricity market given
by the game in (25) is defined as

E = {(x
1

, x

2

)|A
1

x

1

+A

2

x

2

+ b

1

= 0 ^ b

2

= 0} (29)

stating that (x

⇤
1

, x

⇤
2

) is an equilibrium point if and only if
(x

⇤
1

, x

⇤
2

) 2 E. For a sufficiently large K, it follows that if
(26) is stable, then the solutions of (27a) and (27b) will be
arbitrarily close to the equilibrium.
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E. Stability of the DMM

The stability properties of the DMM is addressed in this
section. We assume strong duality i.e., zero duality gap, and
that the equilibrium (x

⇤
1

, x

⇤
2

) 2 E exists.
In the following, we require A

1

in (26) to be Schur stable. It
is easy to show that a sufficient condition for Schur stability of
A

1

is that at least one of the projected states PGci , bPGri , PDci ,
PDti needs to be non projected i.e., must not have reached its
projection bounds. By contradiction, we will argue that this is
a reasonable requirement as the opposite would pose a system
with no flexibility left with either generators or consumers. We
assume one of the generators to not hit its projection limits
resulting in A

0
1

given by

A

0
1

=

2

4
I �↵�AT

r BlineA 0

↵⇢A
T
BlineAr I �↵⇢A0

Gc

0 ↵

0
GcA

0T
Gc I � ↵

0
Gcc

0
Gc

3

5 (30)

where A

0
Gc is the column of AGc corresponding to the

generator which is not projected, cGc is the incremental cost
of that generator and ↵

0
Gc is the associated time step of that

generator. Using appropriate values for ↵� , ↵⇢ and ↵

0
Gc, A0

1

is Schur stable.
We now introduce a few definitions. Let P be the symmetric

solution of A

0T
1

PA

0
1

� P = �I . Let k↵
1

A

0T
1

P↵DcA21

k 
�

1

, k↵
1

A

0T
1

P↵DtA22

k  �

2

, k↵
1

A

0T
1

P↵GcA23

k 
�

3

, k↵
1

A

0T
1

P↵GrA24

k  �

4

, k↵
1

A

0T
1

P↵�A25

k  �

5

,
k↵DcA

T
21

P↵DcA21

k  �

6

, k↵DtA
T
22

P↵DtA22

k  �

7

,
k↵DtA

T
23

P↵GcA23

k  �

8

, k↵GrA
T
24

P↵GrA24

k  �

9

,
k↵�AT

25

P↵�A25

k  �

10

, k↵DcA
T
21

P↵DtA22

k  �

11

,
k↵DcA

T
21

P↵GcA23

k  �

12

, k↵DcA
T
21

P↵GrA24

k  �

13

,
k↵DcA

T
21

P↵�A25

k  �

14

, k↵DtA
T
22

P↵GcA23

k  �

15

,
k↵DtA

T
22

P↵GrA24

k  �

16

, k↵DtA
T
22

P↵�A25

k  �

17

k↵GcA
T
23

P↵GrA24

k  �

18

k↵GcA
T
23

P↵�A25

k  �

19

, and
k↵GrA

T
24

P↵�A25

k  �

20

where ↵

1

is a diagonal matrix
containing ↵� , ↵⇢, and ↵0

Gc and the columns of A
2

are denoted
A

21

, A
22

, A
23

, A
24

, and A

25

, respectively. Furthermore, let
y

1

= x

1

� x

⇤
1

, y

21

= PDc � P

⇤
Dc, y

22

= PDt � P

⇤
Dt,

y

23

= PGc � P

⇤
Gc, y

24

=

b
PGr � b

P

⇤
Gr, y

25

= � � �

⇤,
y

2

=

⇥
y

T
21

y

T
22

y

T
23

y

T
24

y

T
25

⇤T , and define

⌦max ⌘ {(y
1

, y

2

) | ky
21

k  dDc, ky22k  dDt,

ky
23

k  dGc, ky24k  dGr, ky25k  d�} (31)
⌦min ⌘ {(y

1

, y

2

) | V (y

1

(k))  �min(P )⌘

2

, ky
21

k  dDc,

ky
22

k  dDt, ky23k  dGc, ky24k  dGr,

ky
25

k  d�} (32)

⌘ =

⌘

1

2

+

1

2

q
⌘

2

1

+ 4⌘

2

(33)

⌘

1

= 2dDc�1 + 2dDt�2 + 2dGc�3 + 2dGr�4 + 2d��5 (34)

⌘

2

= 2d

2

Dc�6 + 2d

2

Dt�7 + 2d

2

Gc�8 + 2d

2

Gr�9 + 2d

2

��10

+ 2dDc�11dDt + 2dDc�12dGc + 2dDc�13dGr

+ 2dDc�14d� + 2dDt�15dGc + 2dDt�16dGr

+ 2dDt�17d� + 2dGc�18dGr + 2dGc�19d�

+ 2dGr�20d� (35)

Theorem 2: Let strong duality hold. Then the equilibrium
(x

⇤
1

, x

⇤
2

) 2 E of the DMM in (26) is stable for all initial

conditions in ⌦max if A

0
1

is Schur stable. In addition all
trajectories will converge to ⌦min.

Proof: The following Lemma is useful:
Lemma 1: If ẏ = Projy

�
f(x), dy, dy, ✏

�
then dy1


ky

1

(t

0

)k  dy1 , · · · , dyn
 kyn(t0)k  dyn

implies dy1


ky
1

(t)k  dy1 , · · · , dyn
 kyn(t)k  dyn

for all t � t

0

.
Proof: Let V (y) =

1

2

y

2 such that ˙

V (y) = yf(x). It is
easily seen that (24) ensures that ˙

V will gradually approach
zero when y approaches dy or dy .
The rate change of the positive definite Lyapunov function
V (y(k)) = y

T
1

(k)Py

1

(k) is given by

�V (y(k)) = y

T
1

(k + 1)Py

1

(k + 1)� y

T
1

(k)Py

1

(k) (36)

From this point on we will suppress the explicit time depen-
dence of time varying parameters and we get

�V (y

1

) =

�
A

0
1

y

1

+A

21

y

21

+A

22

y

22

+A

23

y

23

+A

24

y

24

+A

25

y

25

�T
P

�
A

0
1

y

1

+A

21

y

21

+A

22

y

22

+A

23

y

23

+A

24

y

24

+A

25

y

25

�
� y

T
1

Py

1

(37)

Since A

0
1

is Schur stable the right-hand side of (37) can be
rewritten using the definitions of �

1

through �

20

along with
the projection bounds on y

2

as follows

�V (y

1

) = �ky
1

k2 + 2ky
1

k
�
dDc�1 + dDt�2 + dGc�3

+ dGr�4 + d��5

�
+ 2

⇣
d

2

Dc�6 + d

2

Dt�7 + d

2

Gc�8

+ d

2

Gr�9 + d

2

��10 + dDc�11dDt + dDc�12dGc

+ dDc�13dGr + dDc�14d� + dDt�15dGc

+ dDt�16dGr + dDt�17d� + dGc�18dGr

+ dGc�19d� + dGr�20d�

⌘
(38)

Using definitions for ⌘
1

and ⌘
2

we obtain

�V (y

1

) = �ky2
1

k+ ky
1

k⌘
1

+ ⌘

2

(39)

From (39) follows boundedness of y

1

and convergence of all
trajectories to ⌦

min

. Furthermore, it is apparent that ⌦
min

is
a subset of ⌦

max

, since y

1

is arbitrary in ⌦

max

and specified
by ⌘ in ⌦

min

.

IV. CASE STUDIES

We now illustrate the features of the DMM using a case
study. We will show that our DMM is capable of identifying
the combination of DR units that will be needed, as the
RERs vary. Variations in the overall penetration level will be
considered, as well as in the intermittency of a given RER.
Also considered are uncertainties in the RER. It will be shown
that in all cases, the DMM will identify the combination of
BBB that is necessary to achieve optimal economic dispatch.

The case studies reported below use a modified IEEE 118
Bus system2, a high fidelity simulation of the Midwestern US
Power Grid as of December 1962. The modified bus system
consists of 54 generators, 99 consumers, and 186 transmission
lines connected as shown in Fig. 7. The modified IEEE 118
Bus diagram uses the following syntax: Each generator is

2Unmodified bus data: http://ee.washington.edu/research/pstca/
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10
G
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3 4

Fig. 8. Example of the syntax of the modified IEEE 118 Bus diagram. 10
is the bus number, 1 is the class of generator, 2 is type of generator, 3 is the
class of consumer, and 4 is the type of consumer.

associated with two numbers in red. The left one indicates
the class of generator, either conventional or RER. The right
number indicates the type of that generator. Each consumer is
also associated with two numbers in red. The left one indicates
the class of consumer, either a Bucket, a Battery, or a Bakery.
The right number indicates the type of the consumption unit,
based on its power and energy rating. Conventional and RER
generators are numbered 1 and 2, respectively, while Buckets,
Batteries, and Bakeries are numbered 1, 2, and 3, respectively.
An example is given in Fig. 8. Definitions of the types for both
generators and consumers can be found in Appendix A. The
modified IEEE 118 Bus system shown in Fig. 7, is made up of
45 conventional generators (13 of Type 1, 12 of Type 2, and
20 of Type 3), 9 RER generators (all of Type 1), 0 Bucket
consumers, 0 Battery consumers, and 99 Bakery consumers
(33 of Type 1, 33 of Type 2, and 33 of Type 3). Any alterations
from this setup will be specified in the corresponding cases.

The three categories of BBB consumption units are in-
troduced into the 118 Bus system in the following manner.

The locations of Bakeries, 99 in number, are assumed to be
fixed, and as indicated in the IEEE 118 Bus system shown
in Fig. 7. This is denoted as a B distribution. These 99
Bakeries were chosen to be one of three types defined in
Table XI in Appendix A with the type distribution chosen
in a uniform manner. To this distribution, 30 Batteries are
introduced at locations as shown in Table I. This is denoted
as a BB distribution. Finally, 10 Buckets as defined in Table II
is introduced at various locations. The choices of the locations
of the Bakeries (in Fig. 7), Batteries in Table I and Buckets in
Table II were fairly arbitrary. The choices of the distribution
of the 30 Batteries across the three types, described in Table
X in Appendix A, were uniform.

When introducing Battery consumption, we replace the
equivalent amount of Bakery consumption from the system
by removing the Bakery at a node where we add a Battery.
This is done to keep the overall consumption at the same level.
However, while introducing Bucket consumption, we simply
add Bucket consumers as their flexibility, as given in Definition
1, does not compare to the consumption of Bakery or Battery
consumers. It should be noted that the number of Buckets,
Batteries, and Bakeries was chosen arbitrarily. A second level
of optimization of these numbers may be feasible, but is not
addressed in this paper.

The different cases considered in this paper are grouped
so as to illustrate the behavior of the proposed DMM in the
presence of (A) uncertainties in RERs, and (B) intermittencies
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TABLE I
ADDITIONS OF BATTERY CONSUMERS TO THE MODIFIED 118 BUS

SYSTEM FOR S CASES.

Bus Type

1, 13, 22, 34, 45, 54, 67, 79, 91, 100 1
17, 28, 40, 49, 58, 74, 84, 95, 104, 114 2
21, 33, 44, 53, 66, 78, 90, 99, 108, 118 3

TABLE II
ADDITIONS OF BUCKET CONSUMERS TO THE MODIFIED 118 BUS SYSTEM

FOR S CASES.

Bus Type

6, 20, 33, 47, 59, 76, 86, 97, 105, 116 1

in RERs. All cases are assumed to correspond to the wholesale
Real-Time Market, with a market-clearing time of 5 minutes
and evaluated over a 1-hour period.

First, the impact of uncertainty in RER generation availabil-
ity is studied by varying the forecasting errors included in the
model by �Gri in (14). Second, the impact of intermittencies
in RER generation availability is studied over a range of RER
penetration levels, and over a range of intermittency of the
RER generators. The intermittency in RER is implemented as
shown in Fig. 9, where over a 5 minute period in the entire
hour, it is assumed that the maximum power available can take
any one of three different values. This reflects variations due
to extreme weather conditions [40]. The baseline corresponds
to the solid red line where there is no intermittencies. The
dashed red line pose a drop in RER generation availability of
30%, the dashed blue line pose a drop of 60% and the dashed
orange line a drop of 90%. In each case, it is assumed that
DR consumers from BBB introduced in III-A are available.

Three levels of RER penetration, of 15%, 30%, and 45%
are introduced. When increasing the RER penetration level,
we replace the capacity of conventional generators with RER
generators but keep the overall generation capacity equal
across all configurations. Each of these penetration levels is
assumed to be realized in the 118 Bus system in the following
manner. A 15% penetration level is realized by choosing the
generators, both conventional and RER, as shown in Figure
7. 30% and 45% RER penetration levels are realized by
modifying the generators as described in Table III, and Table
IV, respectively. For each of these penetration levels, we
introduce three levels of intermittencies. The intermittency
profiles are, as described earlier, shown in Fig. 9.

The DMM proposed in (26) and (27) is now applied to the
modified IEEE 118 Bus. Initial values for all ↵ constants are
set at 0.001 and all state variables are set at arbitrary values
within the bound of the specific variable. If the variable is
unbounded the initial condition is set at zero. It was observed
that in all cases, the DMM converged to the market equilibrium
if it exists. Cases where the equilibrium did not exist are
denoted as being ”infeasible”. Before proceeding with the
analysis of the DMM in the presence of uncertainties and
intermittencies in the RER, we first present the results at one

Power [MW]
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Fig. 9. Behavior of PGr(k) used for case studies. The solid red line is the
basis, the dashed red line pose a drop of 30%, the dashed blue line pose a
drop of 60% and the dashed orange line pose a drop of 90%.

TABLE III
ADDITIONS OF RER GENERATORS (CLASS 2) AND REMOVALS OF

CONVENTIONAL GENERATORS (CLASS 1) FROM THE MODIFIED 118 BUS
SYSTEM FOR S CASES WITH 30% RER PENETRATION LEVEL.

Bus Class Type

6, 8, 26, 42, 59, 69, 85, 96, 105 2 1
6, 26 1 1
42, 85, 105 1 2
8, 59, 69 1 3

TABLE IV
ADDITIONS OF RER GENERATORS (CLASS 2) AND REMOVALS OF

CONVENTIONAL GENERATORS (CLASS 1) FROM THE MODIFIED 118 BUS
SYSTEM WITH 30% RER PENETRATION LEVEL FOR S CASES WITH 45%

RER PENETRATION LEVEL.

Bus Class Type

1, 18, 23, 46, 54, 62, 73, 74, 100 2 1
54, 74 1 1
18, 46, 62 1 2
1, 73, 100 1 3

operating condition below.
The steady-state values of PGci , bPGri , PDki , PDti , EDti ,

PDci , and EDci are shown in Figs. 10 and 11. In both figures,
the results correspond to a total of 60 minutes, with 12 market
clearings in total, one occurring every 5 minutes. The genera-
tion mix, Bakery power, Battery power, Battery energy, Bucket
power, and Bucket energy needed to achieve market clearing
at each of the 12 instants are shown in Tables VI-VIII. The
same information is provided as a snap-shot in a 3-dimensional
format in Fig. 11 including the accumulated power levels of
all the 11 assets in the system throughout all the 12 market-
clearing instances. The 11 assets include RER generation type
1, conventional generation type 1, conventional generation
type 2, conventional generation type 3, Bakery consumption
type 1, Bakery consumption type 2, Bakery consumption type
3, Battery consumption type 1, Battery consumption type 2,
Battery consumption type 3, and Bucket consumption type 1.
All results shown in Figs. 10 and 11 correspond to a 15% RER
penetration level, a 90% RER drop between the 30 minute and
the 35 minute window, and a BBB configuration.

In Fig. 10(a), we see the output of each of the 54 generators
for each market-clearing. The generators are colored according
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to class and type; green is RER generation, red is conventional
generation type 1, magenta is conventional generation type 2,
and blue is conventional generation type 3 (see Appendix A
for a definition of type). Shades within each color distinguish
individual generators.

In Fig. 10(b), we see the Bakery consumption of each of
the 69 Bakery consumers included in the 118 Bus system.
The consumption is once again colored according to type;
red is Bakery consumption type 1, green is Bakery consump-
tion type 2, and blue is Bakery consumption type 3 (see
Appendix A for a definition of types). Shades within each
color distinguish individual consumption units. Similarly in
Figs. 10(c) and 10(d), we see power consumption of each of
the 30 Battery consumers and energy consumption of these
consumers, respectively. The color red is Battery consumption
type 1, green is Battery consumption type 2, and blue is
Battery consumption type 3.

In Figs. 10(e) and 10(f), the Bucket power and energy con-
sumptions of each of the 10 Buckets are shown, respectively,
which are all of the same type.

Figs. 10 and 11 show how the flexible consumption with the
BBB configuration follows the low-cost RER generation when
available. In particular, at the 7th market clearing instance (at
the 30th minute), where the RER generation availability drops
as given by the dashed orange curve on Fig. 9, Figs. 10 and 11
show how the flexible consumers aid in balancing the system.
The Battery consumers turn off, while the Bucket consumers
act as generators to maintain power balance with limited
ramping of conventional generators. As higher RER gener-
ation becomes available in the subsequent market-clearings,
the Battery consumers turn back on to ensure reaching the
individual maximum energy level within the deadline.

A. Uncertainty Impacts

As mentioned in Section III-B, RER Generation negotia-
tions include an uncertainty �Gri as in (14). It was argued
in Section III-B that this uncertainty reduces to zero with the
prediction horizon TH , as demonstrated in Fig. 4. In other
words, between any two market-clearing instants tk and tk+1

,
as negotiations proceed, the magnitude of �Gri(t) reduces. In
contrast, in an OPF, the estimate bPGri(t) is set to

b
PGri(t) = (1 +�Gri(k))PGri 8t 2 [k, k + 1] (40)

with the value of �Gri(k) set at a constant value correspond-
ing to the forecast error prevalent at tk over the whole interval
[k, k + 1]. In Case studies U1 and U2, we compare the DMM
and OPF for different types of uncertainties. The IEEE 118
Bus system as in Fig. 7 is used with the maximum power limit
of the RER generators following the solid red line in Fig. 9.

Case Study U1: We compared the performances of the
DMM and OPF for the case when the forecast error was 5%
when the negotiations began, and reduced to 1% 1 minute
prior to the market-clearing time. That is, �Gri(tk) = 0.05,
�Gri(tk+1

� T

⇤
H) = 0.01 where T

⇤
H = 1 min. The positive

forecasting error represents overestimation, leading to a lack of
power which is assumed to be acquired in the reserve market.
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Fig. 10. Market-clearing results during one hour with a 5 minute market-
clearing time in a system with 15% RER penetration level, BBB flexibility
configuration and 90% RER generation availability drop. Colors distinguish
class and type of generators/consumers, shades distinguish individual gener-
ators/consumers.
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TABLE V
RESULTS OF CASE STUDIES U1 AND CASE U2.

Case Social Welfare Change

U1 17.1%
U2 9.5%

Based on historical reserve cost from PJM3 the cost of the
reserve market is set at 10 times the cost of the most expensive
generator. The comparison of the DMM and OPF is carried out
using Social Welfare. The results obtained are shown in Table
V, which illustrates that DMM results in a 17.1% increase
compared to the OPF.

Case Study U2: Similar to Case Study U1, another compar-
ison of the DMM and OPF is for the case when �Gri(K) =
-5% when the negotiations begin and decreases to -1% over a
4 minute period, i.e. TH = 4 minutes. The negative forecasting
error represents underestimation, leading to a waste of RER
generation capacity and unnecessary high amount of power
being generated from conventional generators. The results
obtained are shown in Table V, which illustrates that DMM
results in a 9.5% increase compared to the OPF. The change in
Case Study U1 is greater than in Case Study U1 as acquiring
power in the reserve market impose a larger additional cost
than a dispatch with more power coming from conventional
generators.

B. Intermittency Impacts

In this section, we explore the performance of the DMM in
the presence of intermittencies in the RER.

Case Study I1: Here, we assume that theres a 30% drop in
the available RER from minute 30 to minute 35, over a 1 hour
period of study (corresponding to the red dashed line in Fig 9).
We evaluate the behavior of the DMM with RER penetration
levels at 15%, 30% and 45%. The resulting performance of
the DMM is summarized in Table VI. The entries in the
table correspond to the improvement in SW compared to that
in a nominal case, which corresponds to SW obtained at a
15% RER penetration level, with the only consumption units
corresponding to Bakeries, and a 30% drop in RER level i.e.,
the (1,3) entry in Table VI. Table VI shows the three kinds
of BBB distribution that is needed in order to accommodate
the varying levels of RER penetration (B denotes the use
of Bakeries only, BB denotes Bakeries and Batteries, and
BBB denotes the use of all three consumption units Bakeries,
Batteries, and Buckets). Each of the nine entries was a result
of the DMM solution. Entry (1,2) did not result in a feasible
solution.

Case Study I2: Here, we assume that there is a 60% drop
in the available RER over the same period as in Case Study
I1 (corresponding to the blue dashed line in Fig. 9). We
once again evaluate the behavior of the DMM at the three
RER penetration levels as in Case Study I1. The resulting
performance of the DMM is summarized in Table VII. The
same nominal case as in Case Study I1 was used in order to

3http://www.pjm.com/markets-and-operations/data-dictionary.aspx

compute the entries of Table VII. The higher magnitude of the
drop can be seen to result in making the use of Bakeries alone
entirely infeasible i.e., all entries in the first column in Table
VII did not result in a feasible solution. It should be noted
that the increase in the Social Welfare with the introduction
of Batteries and Buckets are somewhat inflated, as the utility
costs of Bakeries are not included in the definition of SW .

Case Study I3: Here, we assume that there is a 90% drop
in the available RER over the same period as in Case Study
I1 (corresponding to the orange dashed line in Fig. 9), and
evaluate the DMM for the same RER penetration levels as
in Case studies I1 and I2. The resulting performance of the
DMM is summarized in Table VIII. More combinations can
be observed to be infeasible, compared to Tables VI and VIII,
which is to be expected.

Observations

The following are some important observations to be made
from Tables VI-VIII.

• Tables VI-VIII show that SW increases as the RER drop
• Across Tables VI-VIII, we see smaller improvements

in Social Welfare when the drop in RER generation
availability increases. This is logical as increased drops
implies less low-cost RER generation in the system.

• Tables VI-VII show that the BB configuration results
in increased improvements in SW even as the RER
penetration level raises. This is primarily due to the
injection of more low-cost RER generation capacity in the
system i.e., reduced reliance on higher-cost conventional
generator.

• A row-wise comparison of Tables VI-VII for BB and
BBB configurations show improvements across the board
with the addition of Buckets. The exact relative improve-
ments depend highly on the constraint in each scenario.

• Across Tables VI-VIII, we see more scenarios becoming
infeasible as the drop in RER generation availability
increases. In the case of 90% drop, for instance, only 15%
RER penetration is feasible if no Buckets are available.

• Table VI shows that if only Bakeries were to be used,
a 30% RER penetration level becomes infeasible. This
underscores two obvious points, which is that relying on
RER generation is possible if the corresponding drop
is not too large for them to still cover any inflexible
consumption and that the model can capture properties
of the grid, such as inflexibility due to ramping limits.

V. COMPARISON WITH ALTERNATE APPROACHES

We now provide a brief discussion on the proposed model
in comparison with an alternative proposal.

The DMM approach implements, and relies on, LMP that is
arrived at by taking full advantage of the flexibility provided
on the demand-side. The argument behind the use of the LMP
is that it leads to nodal power balance, i.e. it denotes the
price that makes generation and consumption match. Instead
of using LMP, one could have used any price driven incentive
signal, and this signal need not be the true price but merely be
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Fig. 11. Accumulated power levels of market-clearing results during one hour with a 5 minute market-clearing time in a system with 15% RER penetration
level, BBB flexibility configuration and 90% RER generation availability drop. Dots, such as Bakery consumption type 2 at market-clearing instance 1, indicate
a power level of zero while any power level different from zero is indicated by a horizontal bar at the end of a vertical line.

any price driven incentive signal for the generators and con-
sumers to react on. One such example is Critical Peak Pricing
(CPP). In a system with CPP, the price is manually raised
to encourage lower consumption during critical scenarios. For
example, in the scenarios addressed in Cases S1, S2, and S3 a
critical scenario, the price could be raised for the duration of
the weather situation. If done intelligently, the positives of a
CPP approach is the overall lowered risk of system instability
as consumption reduces and the dependency on intermittent
and uncertain generation reduces. However, CPP is an open-
loop control approach and as such cannot be guaranteed to
reduce consumption by the needed amount. In a system with
flexible consumers such as the BBB, a CPP approach must
be carefully designed such that the peak price utilizes the
flexibility of Bucket and Battery consumers correctly, i.e.,
the price must be such that Batteries turn off just the right
amount and Buckets act as generators at just the right time.
In contrast, with the DMM approach and the use of LMP
arrived at through iterative negotiations, the prices and the
time instants can be determined automatically through closed-
loop actions and utilize all flexibilities available.

In [41], a wide variety of pricing strategies are discussed
thoroughly and the advantages and disadvantages of each is
presented. Real-Time Pricing comes out of this discussion as
the pricing strategies with the highest potential, but as pointed
out in [17] adoption of Real-Time Pricing comes with a risk
of adding instability to a system which has to be dealt with

carefully. The results of this paper, and the stability conditions
articulated in Theorem 1, can be viewed as a guideline for
pricing strategies that avoid such instabilities.

VI. CONCLUDING REMARKS

In this paper, we have proposed a dynamic market mech-
anism for wholesale electricity markets with different classes
of flexible demand response-compatible units, renewable gen-
erators, and an ISO that determines the economic dispatch.
Conditions under which this DMM is stable and the region
of attaction are delineated and its performance is validated
using an IEEE 118 Bus, a high-fidelity simulation of the the
Midwestern US Power Grid. The defining feature of the DMM,
namely the negotiation process between all market players, is
shown to result in increased Social Welfare, when compared to
the standard OPF tool, in the presence of uncertainties in RER
generators. The DMM not only demonstrates the flexibility of
the different classes of consumption units, Buckets, Batteries
and Bakeries which help mitigate the negative impacts from
intermittent RER generators, but also determines the desired
combination of BBB as the levels of intermittency and pen-
etration increase, and the corresponding increases in Social
Welfare.

While all results derived are applicable to the wholesale
electricity market, which is pool-based and ISO-centric, the
fundamental principles of DMM have the potential to be
applied to bilateral as well as retail markets which need to be
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TABLE VI
SOCIAL WELFARE IMPROVEMENTS IN S1. FLEXIBILITY CONFIGURATION

B IS BAKERY ONLY, BB IS BAKERY PLUS BATTERY, AND BBB IS BAKERY,
BATTERY PLUS BUCKET. THE SOCIAL WELFARE OF 15% RER

PENETRATION LEVEL WITH ONLY BAKERY CONSUMPTION IS USED AS
REFERENCE.

RER pen.

Flexibility Config.

15%

30%

45%

B BB BBB

0%

Infeas.

168%

193%

289%

353%

198%

312%

359%

TABLE VII
SOCIAL WELFARE IMPROVEMENTS IN S2. FLEXIBILITY CONFIGURATION

B IS BAKERY ONLY, BB IS BAKERY PLUS BATTERY, AND BBB IS BAKERY,
BATTERY PLUS BUCKET. THE SOCIAL WELFARE OF 15% RER

PENETRATION LEVEL WITH ONLY BAKERY CONSUMPTION IN FIG. VI IS
USED AS REFERENCE.

RER pen.

Flexibility Config.

15%

30%

45%

B BB BBB

Infeas.

Infeas.

Infeas.

188%

285%

350%

195%

297%

357%

TABLE VIII
SOCIAL WELFARE IMPROVEMENTS IN S3. FLEXIBILITY CONFIGURATION

B IS BAKERY ONLY, BB IS BAKERY PLUS BATTERY, AND BBB IS BAKERY,
BATTERY PLUS BUCKET. THE SOCIAL WELFARE OF 15% RER

PENETRATION LEVEL WITH ONLY BAKERY CONSUMPTION IN FIG. VI IS
USED AS REFERENCE.

RER pen.

Flexibility Config.

15%

30%

45%

B BB BBB

Infeas.

Infeas.

Infeas.

181%

Infeas.

Infeas.

189%

291%

350%

increasingly engaged as more analytics and decision-making
enter the distribution and demand side entities in the electricity
grid.

APPENDIX A
CONSUMER AND GENERATOR CONSTANTS

This appendix provides the consumer and generator con-
stants used for the case studies described in Section IV. Table
IX, X, and XI provide Bucket, Battery, and Bakery consumer
constants, respectively. Table XII provide conventional and
RER generator constants.
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