3,538 research outputs found

    Input-to-state stability of unbounded bilinear control systems

    Get PDF
    We study input-to-state stability of bilinear control systems with possibly unbounded control operators. Natural sufficient conditions for integral input-to-state stability are given. The obtained results are applied to a bilinearly controlled Fokker-Planck equation.Comment: 20 pages, completely new version based on the few preliminary ideas in v1. Compared to v1, the results have been significantly generalized and extende

    Input-to-state stability of infinite-dimensional control systems

    Full text link
    We develop tools for investigation of input-to-state stability (ISS) of infinite-dimensional control systems. We show that for certain classes of admissible inputs the existence of an ISS-Lyapunov function implies the input-to-state stability of a system. Then for the case of systems described by abstract equations in Banach spaces we develop two methods of construction of local and global ISS-Lyapunov functions. We prove a linearization principle that allows a construction of a local ISS-Lyapunov function for a system which linear approximation is ISS. In order to study interconnections of nonlinear infinite-dimensional systems, we generalize the small-gain theorem to the case of infinite-dimensional systems and provide a way to construct an ISS-Lyapunov function for an entire interconnection, if ISS-Lyapunov functions for subsystems are known and the small-gain condition is satisfied. We illustrate the theory on examples of linear and semilinear reaction-diffusion equations.Comment: 33 page

    Infinite-dimensional input-to-state stability

    Get PDF
    In this talk we discuss infinite-dimensional versions of well-known stability notions relating the external input uu and the state xx of a linear system governed by the equation x˙=Ax+Bu,x(0)=x0.\dot{x}=Ax+Bu, \quad x(0)=x_{0}. Here, AA and BB are unbounded operators. For instance, the system is called \textit{LpL^{p}-input-to-state stable} if u(⋅)↦x(t)u(\cdot)\mapsto x(t) is bounded as a mapping from Lp(0,t)L^{p}(0,t) to the state space XX for all t3˘e0t\u3e0. In particular, we elaborate on the relation of this notion to \textit{integral input-to-state} stability and \textit{(zero-class) admissibility} with a special focus on the case p=∞p=\infty.\\ This is joint work with B.~Jacob, R.~Nabiullin and J.R.~Partington

    LSTM Neural Networks: Input to State Stability and Probabilistic Safety Verification

    Get PDF
    The goal of this paper is to analyze Long Short Term Memory (LSTM) neural networks from a dynamical system perspective. The classical recursive equations describing the evolution of LSTM can be recast in state space form, resulting in a time-invariant nonlinear dynamical system. A sufficient condition guaranteeing the Input-to-State (ISS) stability property of this class of systems is provided. The ISS property entails the boundedness of the output reachable set of the LSTM. In light of this result, a novel approach for the safety verification of the network, based on the Scenario Approach, is devised. The proposed method is eventually tested on a pH neutralization process.Comment: Accepted for Learning for dynamics & control (L4DC) 202

    Input to State Stability of Bipedal Walking Robots: Application to DURUS

    Get PDF
    Bipedal robots are a prime example of systems which exhibit highly nonlinear dynamics, underactuation, and undergo complex dissipative impacts. This paper discusses methods used to overcome a wide variety of uncertainties, with the end result being stable bipedal walking. The principal contribution of this paper is to establish sufficiency conditions for yielding input to state stable (ISS) hybrid periodic orbits, i.e., stable walking gaits under model-based and phase-based uncertainties. In particular, it will be shown formally that exponential input to state stabilization (e-ISS) of the continuous dynamics, and hybrid invariance conditions are enough to realize stable walking in the 23-DOF bipedal robot DURUS. This main result will be supported through successful and sustained walking of the bipedal robot DURUS in a laboratory environment.Comment: 16 pages, 10 figure
    • …
    corecore