Felix Schwenninger

University of Hamburg

Infinite-dimensional input-to-state stability

Abstract

In this talk we discuss infinite-dimensional versions of well-known stability notions relating the external input u and the state x of a linear system governed by the equation

 $\dot{x} = Ax + Bu, \quad x(0) = x_0.$

Here, A and B are unbounded operators. For instance, the system is called L^{p} -input-to-state stable if

 $u(\cdot) \mapsto x(t)$

is bounded as a mapping from $L^{p}(0,t)$ to the state space X for all t > 0. In particular, we elaborate on the relation of this notion to integral input-to-state stability and (zero-class) admissibility with a special focus on the case $p = \infty$.

This is joint work with B. Jacob, R. Nabiullin and J.R. Partington.

Talk time: 07/18/2016 5:30PM-- 07/18/2016 5:50PM Talk location: Cupples I Room 113

Special Session: State space methods in operator and function theory. Organized by J. Ball and S. ter Horst.