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Abstract
We study integral input-to-state stability of bilinear systems with unbounded control
operators and derive natural sufficient conditions. The results are applied to a bilinearly
controlled Fokker–Planck equation.
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1 Introduction

In this note, we continue recent developments on input-to-state stability (ISS) for sys-
tems governed by evolution equations. This concept unifies both asymptotic stability
with respect to the initial values and robustness with respect to the external inputs such
as controls or disturbances. Loosely, if a system� is viewed as amapping which sends
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initial values x0 ∈ X and inputs u : [0,∞) → U to the time evolution x : [0, T ) → X
for some maximal T > 0, then � is ISS if T = ∞ and

‖x(t)‖X ≤ β(‖x0‖X , t) + γ

(
sup

s∈[0,t]
‖u(s)‖U

)
, ∀t > 0,∀x0, u, (1)

where the continuous functions β : R
+
0 × R

+
0 → R

+
0 and γ : R

+
0 → R

+
0 are of

Lyapunov class KL and K, respectively (see Sect. 2.1 for the definitions).
Here, X is called the state space andU the input space equipped with norms ‖ · ‖X

and ‖ · ‖U .

ẋ(t) = Ax(t) + Bu(t), (�(A, B))

where A is the infinitesimal generator of a C0-semigroup (T (t))t≥0 on a Banach
space X and B : U → X is a bounded linear operator, ISS is equivalent to uniform
exponential stability of the semigroup [4,10]. If B is not bounded as operator fromU to
X , which is typically the case for boundary controlled PDEs, the property of being ISS
becomes non-trivial even for linear systems. In fact, this is closely related to suitable
solution concepts see, e.g., [10,20,29]. Along with the recent developments in ISS
theory for infinite-dimensional systems [4,5,8,15,27], several partial results have been
derived in the (semi)linear context, with a slight focus on parabolic equations, see,
e.g., [13,16,21,23,25,35]. We refer to recent surveys on ISS for infinite-dimensional
systems [26,29] and the book [17].

The origin of ISS theory, introduced by Sontag in 1989 [30], is nonlinear systems,
and we refer the reader to [31] for a survey on ISS for ODEs.

Already seemingly harmless system classes such as bilinear systems

ẋ(t) = Ax(t) + B(x(t), u(t)), (2)

where B(x, u) = ∑m
i=1 ui Bi x and A, Bi ∈ R

d×d , see [6], are typical counterexam-
ples for ISS [32]. Nevertheless, the following variant of ISS [32] is satisfied by such
systems; there exists functions β ∈ KL and γ1, γ2 ∈ K such that

‖x(t)‖X ≤ β(‖x0‖X , t) + γ1

(∫ t

0
γ2(‖u(s)‖U ) ds

)
, ∀t > 0,∀u, x0, (3)

which is called integral input-to-state stable (integral ISS), see also [32]. Clearly, there
is no elementary implication between estimates (1) and (3).
Still integral ISS and ISS are equivalent for infinite-dimensional linear systems with a
bounded linear operator B : U → X , [10,24] as this reduces to uniform exponential
stability of the uncontrolled system. The corresponding question for general infinite-
dimensional systems seems to be much harder and notorious questions remain, see
[10,12,28] and [13] for a negative result.
On the other hand in [24], the equivalence of integral ISS and uniform exponential
stability is shown for a natural infinite-dimensional version of (2), with A generating
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a C0-semigroup and B : X × U → X satisfying a Lipschitz condition on bounded
subsets of X uniformly in the second variable and being bounded in the sense that
‖B(x, u)‖ � ‖x‖γ (‖u‖) for some K-function γ and all x and u. As indicated above,
the property whether a system is ISS or integral ISS is more subtle when bound-
ary controls are considered and consequently, the involved input operators become
unbounded. This also applies for bilinear systems which—in the presence of bound-
ary control—cannot be treated as in the references mentioned above.

In this article, we establish the abstract theory to overcome such issues. More
precisely, we study infinite-dimensional control systems of the abstract form

ẋ(t) = Ax(t) + B1F(x(t), u1(t)) + B2u2(t), t ≥ 0, (�(A, [B1, B2], F))

where A generates a C0-semigroup on a Banach space X and B1 and B2 are possibly
unbounded linear operators defined on Banach spaces 	X and U2, respectively. The
nonlinearity F : X × U1 → 	X is assumed to satisfy a Lipschitz condition and to be
bounded.With a slight abuse of notation, but following the literature, e.g., [22], we call
such systems “bilinear” because of the prototypical example given by F(x, u) = ux
with U1 = C, which already shares most interesting aspects. In Sect. 2, we present
the details of this abstract framework and derive the main Result, which, in terms of
integral ISS, see also Definition 2.1, reads as follows.
Main Result (Theorem 2.9) The bilinear system �(A, [B1, B2], F) is integral ISS, if
the linear systems �(A, B1) and �(A, B2) are integral ISS.

In order to prove this statement, we show existence of global mild solutions to
�(A, [B1, B2], F) by classical fixed point arguments under the weak conditions on
the operators B1, B2.

We conclude by applying our abstract result to the example of a bilinearly controlled
Fokker–Planck equation with reflective boundary conditions, which has recently
appeared in [3,9].

2 Input-to-state stability for bilinear systems

2.1 System class and notions

In the following, we study bilinear control systems of the form

ẋ(t) = Ax(t) + B1F(x(t), u1(t)) + B2u2(t), t ≥ 0,
x(0) = x0,

(�(A, [B1, B2], F))

where

• X , 	X and U1,U2 are Banach spaces and x0 ∈ X ,
• A generates a C0-semigroup (T (t))t≥0 on X ,
• the input functions u1 and u2 are locally integrable function with values inU1 and
U2, respectively, that is, u1 ∈ L1

loc(0,∞;U1) and u2 ∈ L1
loc(0,∞;U2),

• the operators B1 and B2 are defined on 	X and U2, respectively. Both operators
map into a space (see below) in which X is densely embedded,
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• the nonlinear operator F : X ×U1 → 	X is bounded in the sense that there exists
a constant m > 0 such that

‖F(x, u)‖	X ≤ m‖x‖X‖u‖U1 ∀x ∈ X , u ∈ U1 (4)

and Lipschitz continuous in the first variable on bounded subsets of X , where the
Lipschitz constant depends on theU1-norm of the second argument, that is, for all
bounded subsets Xb ⊂ X there exists a constant LXb > 0, such that

‖F(x, u) − F(y, u)‖	X ≤ LXb‖u‖U1‖x − y‖X ∀x, y ∈ Xb, u ∈ U1, (5)

• s �→ F( f (s), g(s)) is measurable for any interval I and measurable functions
f : I → X , g : I → U1,

• we write �(A, B2) = �(A, [0, B2], 0) if B1 = 0 and thus �(A, B2) is linear.

Before explaining the details on the assumptions on B1 and B2 below, we list some
examples for functions F and operators that fit our setting.

(a) 	X = X , U = C and F(x, u) = xu,
(b) 	X = U = X , f ∈ X∗, F(x, u) = f (x)u,
(c) 	X = C, U = X∗, F(x, u) = 〈x, u〉.

Let X−1 be the completion of X with respect to the norm ‖x‖X−1 = ‖(β−A)−1x‖X
for some β in the resolvent set ρ(A) of A. For a reflexive Banach space, X−1 can be
identified with (D(A∗))′, the continuous dual of D(A∗) with respect to the pivot
space X . The operators B1 and B2 are assumed to map to X−1, more precisely,
B1 ∈ L(	X , X−1) and B2 ∈ L(U2, X−1), where L(X ,Y ) refers to the bounded lin-
ear operators from X to Y . Only in the special case that B1 or B2 are in L(	X , X) or
L(U2, X), we say that the respective operator is bounded. TheC0-semigroup (T (t))t≥0
extends uniquely to a C0-semigroup (T−1(t))t≥0 on X−1 whose generator A−1 is the
unique extension of A to an operator in L(X , X−1), see, e.g., [7]. Note that X−1 can
be viewed as taking the role of a Sobolev space with negative index. With the above
considerations, wemay consider System�(A, [B1, B2], F) on the Banach space X−1.
We want to emphasize that our interest is primarily in the situation where B1 and B2
are not bounded—something that typically happens if the control enters through point
boundary actuation.

Note, however, that the assumptions imply that “the unboundedness of B1 and B2
is not worse than the one of A”—which particularly means that if A ∈ L(X , X), then
B1 ∈ L(	X , X) and B2 ∈ L(U2, X).

For zero-inputs u1 and u2, the solution theory for System �(A, [B1, B2], F) is
fully characterized by the property that A generates a C0-semigroup as this reduces to
solving a linear, homogeneous equation. For non-trivial inputs, the solution concept
is a bit more delicate.

More precisely, for given t0, t1 ∈ [0,∞), t0 < t1, x0 ∈ X , u1 ∈ L1
loc(0,∞;U1)

and u2 ∈ L1
loc(0,∞;U2), a continuous function x : [t0, t1] → X is called a mild
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solution of �(A, [B1, B2], F) on [t0, t1] if for all t ∈ [t0, t1],

x(t) = T (t − t0)x0 +
∫ t

t0
T−1(t − s)[B1F(x(s), u1(s)) + B2u2(s)] ds. (6)

We say that x : [0,∞) → X is a global mild solution or a mild solution on [0,∞) of
�(A, [B1, B2], F) if x |[0,t1] is a mild solution on [0, t1] for every t1 > 0.

We stress that existence of a mild solution is non-trivial, even when u1 = 0. In
this case, it is easy to see that x ∈ C([0,∞); X−1), but not necessarily x(t) ∈ X ,
t > 0, without further assumptions on B2. The existence of a mild solution to the
linear System �(A, B2) is closely related to the notion admissibility of the operator
B2 for the semigroup (T (t))t≥0 and various sufficient and necessary conditions are
available, see, e.g., Proposition 2.4 and [10].

We need the following well-known function classes from Lyapunov theory.

K = {μ ∈ C(R+
0 ,R+

0 ) | μ(0) = 0, μ strictly increasing},
K∞ = {θ ∈ K | lim

x→∞ θ(x) = ∞},
L = {γ ∈ C(R+

0 ,R+
0 ) | γ strictly decreasing, lim

t→∞ γ (t) = 0},
KL = {β : (R+

0 )2 → R
+
0 | β(·, t) ∈ K ∀t ≥ 0, β(s, ·) ∈ L ∀s > 0}.

The following concept is central in this work. It originates from works by Sontag
[30,32]. We refer, e.g., to [26,27] for the infinite-dimensional setting.

Definition 2.1 The system �(A, [B1, B2], F) is called

(i) input-to-state stable (ISS), if there exist β ∈ KL, μ1, μ2 ∈ K∞ such that for
every x0 ∈ X , u1 ∈ L∞(0,∞;U1) and u2 ∈ L∞(0,∞;U2) there exists a
unique global mild solution x of �(A, [B1, B2], F) and for every t ≥ 0

‖x(t)‖ ≤ β(‖x0‖, t) + μ1(‖u1‖L∞(0,t;U1)) + μ2(‖u2‖L∞(0,t;U2));

(ii) integral input-to-state stable (integral ISS), if there exist β ∈ KL, θ1, θ2 ∈ K∞
and μ1, μ2 ∈ K such that for every x0 ∈ X , u1 ∈ L∞(0,∞;U1) and u2 ∈
L∞(0,∞;U2) System �(A, [B1, B2], F) has a unique global mild solution x
and for every t ≥ 0

‖x(t)‖ ≤ β(‖x0‖, t) + θ1

(∫ t

0
μ1(‖u1(s)‖) ds

)
+ θ2

(∫ t

0
μ2(‖u2(s)‖) ds

)
.

One may define some mixed type of these definitions like (ISS, integral ISS) (and
(integral ISS,ISS)), in the sense that one has an ISS-estimate for u1 and some integral
ISS-estimate for u2 (and vice versa).

The terms involving u1 and u2 on the right-hand-side of the integral ISS estimate
do not define norms in general. However, there are function spaces which are naturally
linked to integral ISS [10].
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In this context, we briefly introduce the Orlicz space EΦ(I ; Y ) associated with
a so-called Young function Φ for an interval I ⊂ R and a Banach space Y in the
5. Note that the Orlicz space EΦ corresponding to the Young function Φ(t) = t p,
1 < p < ∞, is isomorphic to L p.

Definition 2.2 Let (T (t))t≥0 be a C0-semigroup.

(i) We say that (T (t))t≥0 is of type (M, ω) if M ≥ 1 and ω ∈ R are such that

‖T (t)‖ ≤ Me−ωt , t ≥ 0. (7)

(ii) We say that (T (t))t≥0 is (uniformly) exponentially stable if (T (t))t≥0 is of type
(M, ω) for some ω > 0.

(iii) Let Z = EΦ or Z = L∞. An operator B ∈ L(U , X−1) is called Z -admissible
for (T (t))t≥0, if for every t > 0 and u ∈ Z(0, t;U ) it holds that

∫ t

0
T−1(t − s)Bu(s) ds ∈ X .

We will neglect the reference to (T (t))t≥0 if this is clear from the context.

Recall that every C0-semigroup is of type (M, ω) for some M ≥ 1 and ω ∈ R. Note
that any bounded operator B is Z -admissible for all Z considered above.

Remark 2.3 Let B ∈ L(U , X−1) be Z -admissible for (T (t))t≥0 with Z = EΦ or
Z = L∞. Then, for any t > 0 there exists a minimal constant Ct,B > 0 such that

∥∥∥∥
∫ t

0
T−1(t − s)Bu(s) ds

∥∥∥∥ ≤ Ct,B‖u‖Z(0,t;U ), u ∈ Z(0, t;U ). (8)

This is a consequence of the closed graph theorem.Also note that B is Z -admissible for
(eδt T (t))t≥0 for any δ ∈ R. Furthermore, the function t �→ Ct,B is non-decreasing and,
if (T (t))t≥0 is exponentially stable, even bounded, that is, CB := supt≥0 Ct,B < ∞.

The following result clarifies the relation between admissibility and (integral) ISS.
The interest to study admissibility with respect to Orlicz spaces follows by the natural
connection to integral ISS for linear systems, see Proposition 2.4 (i i i).

Note in particular that the existence of mild solutions for EΦ -admissible operators
B2 is based on the absolute continuity of the Orlicz norm with respect to the length
of the interval and the strong continuity of the shift-semigroup on EΦ(I ; Y ) for any
interval I and any Banach space Y . The latter can be proven by similar methods one
uses to prove the strong continuity of the shift-semigroup on L p(I ; Y ).

Proposition 2.4 (Prop. 2.10 & Thm. 3.1 in [10]) Let A generate the C0-semigroup
(T (t))t≥0 on X and B2 ∈ L(U2, X−1).

(i) If B2 is EΦ -admissible, then for every x0 ∈ X and u2 ∈ EΦ,loc(0,∞;U2) there
exists a unique global mild solution x of System �(A, B2), which is given by (6)
with B1 = 0.
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(ii) System �(A, B2) is ISS if and only if (T (t))t≥0 is exponentially stable and B2 is
L∞-admissible.

(iii) �(A, B2) is integral ISS if and only if (T (t))t≥0 is exponentially stable and B2
is EΦ -admissible for some Young function Φ.

2.2 Main Results

Whether ISS implies integral ISS for a system�(A, B) is still an open question. This is
true for B bounded, see, e.g., [10, Prop. 2.14] or [24]. However, various conditions on
A and the input spacesU are available under which integral ISS and ISS are equivalent
[13] in the case of boundary control.

The following proposition proves an estimate between Orlicz-norms and integral
ISS estimates, which will be useful for the proof of the main Result.

Proposition 2.5 Let Φ be a Young function. Then, there exist K∞-functions θ and μ

such that for any Banach space U and t > 0,

‖u‖EΦ(0,t;U ) ≤ θ

(∫ t

0
μ(‖u(s)‖U ) ds

)
, ∀u ∈ L∞(0, t;U ). (9)

Moreover, θ and μ can be chosen as

μ(x) =
⎧⎨
⎩

∫ x
0 φ(

√
s) ds, x < 1,

∫ 1
0 φ(

√
s) ds

Φ(1) Φ(x2), x ≥ 1,
(10)

where φ equals the right-derivative of Φ a.e. and, for α > 0,

θ(α) = sup

{
‖u‖EΦ(0,t;U )

∣∣∣ u ∈ L∞(0, t;U ), t ≥ 0,
∫ t

0
μ(‖u(s)‖U ) ds ≤ α

}
,

with θ(0) = 0.
If Φ satisfies the Δ2-condition (c.f. 5), then μ = Φ can be chosen as well.

Proof Note that we only need to show that μ and θ define K∞-functions since (9) is
immediate from the definition of θ . The proof is similar in spirit to an argument used
in [28, Proof of Thm. 1], with the crucial fact being that μ defined by (10) defines a
Young function such that

Φ ≤ μ and sup
x>0

Φ(cx)

μ(x)
< ∞,

for all c > 0, see [28, Lem. 1]. In the special case thatΦ satisfies theΔ2-condition (with
s0 = 0), the above properties also hold for μ = Φ, by the defining properties of the
Δ2-condition. This implies that whenever a sequence ( fn)n∈N with fn ∈ L∞(0, tn;U )

is such that
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lim
n→∞

∫ tn

0
μ(‖ fn(s)‖U ) ds = 0,

it follows that limn→∞ ‖ fn‖EΦ(0,tn;U ) = 0, see [28, Lem. 2]. Clearly, μ is a K∞-
function, since μ is a Young function. Therefore, it remains to consider θ . It is easy to
see that θ is well-defined, non-decreasing and unbounded, whence we are left to show
continuity. Moreover, since θ(α) is of the form supMα with nested sets (Mα)α>0, it
follows that θ is right-continuous on (0,∞). To see that θ is continuous at α = 0,
let (αn)n be a decreasing sequence of positive numbers with limn→∞ αn = 0 and
for every n ∈ N let un ∈ L∞(0, tn;U ) be such that

∫ tn
0 μ(‖un(s)‖) ds ≤ αn and

0 ≤ θ(αn)−‖un‖EΦ(0,tn;U ) < 1
n . By the above mentioned argument, we can conclude

that ‖un‖EΦ(0,tn;U ) converges to 0 as n → ∞. Thus, limn→∞ θ(αn) = 0.
We finish the proof by showing that θ is left-continuous on (0,∞). Now, let α > 0,

αn ↗ α and let uk ∈ L∞(0, tk;U ), k ∈ N, such that

∫ tk

0
μ(‖uk(s)‖) ds ≤ α and lim

k→∞ θ(α) − ‖uk‖EΦ(0,tk ;U ) = 0.

For every n ∈ N, we aim to find ũn ∈ L∞(0, tn;U ) such that
∫ tn
0 μ(‖ũn(s)‖) ds ≤ αn

and limn→∞ ‖un − ũn‖EΦ(0,tn;U ) = 0. Indeed, then

θ(α) − θ(αn) ≤ θ(α) − ‖ũn‖EΦ(0,tn;U )

≤ θ(α) − ‖un‖EΦ(0,tn;U ) + ‖un − ũn‖EΦ(0,tn;U )

tends to 0 as n → ∞, which shows left-continuity. We define ũn := unχMn where the
measurable set Mn is chosen such that

∫
Mn

μ(‖un(s)‖) ds = αn, if
∫ tn

0
μ(‖un(s)‖) ds ≥ αn,

or Mn = (0, tn) otherwise. It follows that

∫ tn

0
μ(‖un(s) − ũn(s)‖U ) ds =

∫ tn

0
μ(‖un(s)‖U ) ds −

∫
Mn

μ(‖un(s)‖U ) ds

≤ α − αn .

Thus, using the argument from the beginning of the proof again, we infer that ‖un −
ũn‖EΦ(0,tn;U ) → 0 as n → ∞. This concludes the proof. ��

CombiningProposition 2.5with [10, Prop 2.10] allows us to formulate the following
result:

Corollary 2.6 If System�(A, B2) possesses a unique mild solution x for every x0 ∈ X
and u2 ∈ L∞(0,∞;U2), then the following statements are equivalent.

123



Mathematics of Control, Signals, and Systems (2022) 34:273–295 281

(i) There exist functions β ∈ KL and μ2 ∈ K∞ such that

‖x(t)‖ ≤ β(‖x0‖, t) + μ2(‖u2‖EΦ(0,t;U2)) (11)

holds for all t ≥ 0 and u2 ∈ L∞(0,∞;U2).
(ii) There exist functions β ∈ KL, θ2 ∈ K and μ2 ∈ K∞ such that

‖x(t)‖ ≤ β(‖x0‖, t) + θ2

(∫ t

0
μ2(‖u2(s)‖U2) ds

)
(12)

holds for all t ≥ 0 and u2 ∈ L∞(0,∞;U2).

Remark 2.7 Let us make the following comments on the construction of μ and θ in
Proposition 2.5.

1. IfΦ(s) = s p, s > 0, thenμ(s) = s p and it is not hard to see that, up to a constant,

θ(r) is given by Φ−1(r) = r
1
p . This shows that the choice of θ is rather natural.

2. With similar techniques as in the proof of Proposition 2.5, it has been shown in
[10,28] that if a linear system �(A, B) satisfies (11), then it is integral ISS with
the estimate

‖x(t)‖ ≤ β(‖x0‖, t) + θ

(∫ ∞

0
μ(‖u(s)‖U ) ds

)
,

where

θ(α) = sup

{∥∥∥∥
∫ t

0
T−1(s)Bu(s) ds

∥∥∥∥ ∣∣∣
u ∈ L∞(0, t;U ), t ≥ 0,

∫ t

0
μ(‖u(s)‖U ) ds ≤ α

}
. (13)

Proposition 2.5 shows that θ can actually be chosen independent of the semigroup
(T (t))t≥0 and B provided the system is EΦ -admissible (which, however, depends
on (T (t))t≥0 and B, of course). In some sense, this fact simplifies the proofs in
[10,28]. On the other hand, the choice of θ based on (13) is more refined; in case,
the system was even EΨ -admissible with some Ψ ≤ Φ, this would affect the
choice of θ , even if μ is constructed from Φ only.

In contrast to linear systems, the existence of mild solutions is less clear for bilinear
control systems of the form �(A, [B1, B2], F).

Sontag [32] showed that finite-dimensional bilinear systems are hardly ever ISS, but
integral ISS if and only if the semigroup is exponentially stable. In [24], it was shown
that this result generalizes to infinite-dimensional bilinear systemsprovided that B1 and
B2 are bounded operators and 	X = X . The following results give sufficient conditions
for integral ISS and some combination of ISS and integral ISS of �(A, [B1, B2], F).
We start with a result on existence of local solutions to �(A, [B1, B2], F). The proof
involves typical arguments in the context of mild solutions for semilinear equations.
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A similar result for the existence of the unique mild solution as in the following
Lemma 2.8 was proved under slightly stronger conditions in [2] for L p-admissible B1,
scalar-valued inputs u1, F(x, u1) = u1x and B2 = 0. Our condition is more natural
as the same condition guarantees the existence of continuous (and unique) global mild
solutions of the linear systems �(A, B1) and �(A, B2), see Proposition 2.4.

Lemma 2.8 Let A generate a C0-semigroup (T (t))t≥0 on X. Suppose that B1 ∈
L(	X , X−1) is EΦ -admissible and that B2 ∈ L(U2, X−1) is EΨ -admissible. Then,
for every t0 ≥ 0, x0 ∈ X, u1 ∈ EΦ(0,∞;U1) and u2 ∈ EΨ (0,∞;U2) there exists
t1 > t0 such that System �(A, [B1, B2], F) possesses a unique mild solution x on
[t0, t1].

Moreover, if tmax > t0 denotes the supremum of all t1 > t0 such that System
�(A, [B1, B2], F) has a unique mild solution x on [t0, t1], then tmax < ∞ implies
that

lim
t→tmax

‖x(t)‖ = ∞.

Proof We first show that for every t0 ≥ 0, x0 ∈ X , u1 ∈ EΦ(0,∞;U1) and u2 ∈
EΨ (0,∞;U2) there exists t1 > t0 such that System �(A, [B1, B2], F) possesses a
unique mild solution on [t0, t1] with initial condition x0 and input functions u1 and
u2. Moreover, we show that t1 = t0 + δ can be chosen such that δ is independent for
any bounded sets of initial data x0 and t0. Let T > 0, r > 0, u1 ∈ EΦ(0,∞;U1)

and u2 ∈ EΨ (0,∞;U2) be arbitrarily. We first recall the following property of Orlicz
spaces. For any ε > 0, there exists δ > 0 such that

max{‖u1‖EΦ(t,t+δ;U1), ‖u2‖EΨ (t,t+δ;U2)} < ε, ∀t ≥ 0, (14)

see, e.g., [19, Thm. 3.15.6]. Let t0 ∈ [0, T ], t1 > t0 and x0 ∈ Kr (0) = {x ∈ X : ‖x‖ ≤
r} and define the mapping

Φt0,t1 : C([t0, t1]; X) → C([t0, t1]; X)

(Φt0,t1(x))(t) := T (t − t0)x0 +
∫ t

t0
T−1(t − s)[B1F(x(s), u1(s)) + B2u2(s)] ds.

The strong continuity of (T (t))t≥0 andProposition 2.4 imply thatΦt0,t1 iswell-defined,
that is, Φt0,t1(x) ∈ C([t0, t1]; X) for every x ∈ C([t0, t1]; X). Note that we applied
Proposition 2.4 twice: to System �(A, B2) with input u2 and to System �(A, B1)

with input F(x(·), u1(·)), where we set u1, u2, x zero on (0, t0).
Let M ≥ 1 and ω ∈ R be such that ‖T (t)‖ ≤ Me−ωt for all t ≥ 0 and choose

k = 4Mr + 2M . Set

Mk(t0, t1) := {x ∈ C([t0, t1]; X) | ‖x‖C([t0,t1];X) ≤ k}.

We will show next that t1 can be chosen such that Φt0,t1 maps Mk(t0, t1) to Mk(t0, t1)
and is contractive on this set. Let Ct,B1 and Ct,B2 refer to the admissibility constants
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such that (8) holds for B1 and B2 which can be chosen non-decreasing in t . Let m be
the boundedness constant of F from (4) and let LKk (0) be the Lipschitz constant of F
such that (5) holds for the bounded set Xb = {x(t) | x ∈ Mk(t0, t1), t ∈ [t0, t1]} ⊂ X
which is equal to Kk(0) = {x ∈ X : ‖x‖ ≤ k}. Now, let t1 = t0 + δ with δ ∈ (0, 1) be
chosen such that for all t0 ∈ [0, T ],
(i) eω(t1−t0) = eωδ ≤ 2,
(ii) mCT+1,B1‖u1‖EΦ(t0,t0+δ;U1) ≤ 1

2 ,
(iii) CT ,B2‖u2‖EΨ (t0,t0+δ;U2) ≤ M and
(iv) CT+δ,B1LKk (0)‖u1‖EΦ(t0,t0+δ;U1) < 1

holds, where we used (14) in (ii)-(iv). Note that apart from the parameters of the oper-
ators B1, B2, A, F , the choice of δ only depends on r and T , where the r -dependence
of δ arises from the r -dependence of k. It follows that for all t0 ∈ [0, T ], x ∈ Mk(t0, t1)
and x0 ∈ Kr (0)

‖Φt0,t1(x)‖C([t0,t1];X)

≤ Meω(t1−t0)‖x0‖ + Ct1,B1‖F(x, u1)‖EΦ(t0,t1;	X) + Ct1,B2‖u2‖EΨ (t0,t1;U2)

≤ 2M‖x0‖ + mCt1,B1‖u1‖EΦ(t0,t1;U1)‖x‖C([t0,t1];X) + M

≤ k,

where we used admissibility in the first inequality and (4) in the second inequality
as well as the monotonicity of the Orlicz norm in both estimates. Hence, Φt0,t1 maps
Mk(t0, t1) to Mk(t0, t1). The contractivity follows by (iv) since

‖Φt0,t1(x) − Φt0,t1(x̃)‖C([t0,t1];X)

≤ sup
t∈[t0,t1]

∥∥∥∥
∫ t

t0
T (t − s)B1[F(x(s), u1(s)) − F(x̃(s), u1(s))] ds

∥∥∥∥
≤ Ct1,B1LKk (0)‖u1‖EΦ(t0,t1;U1)‖x − x̃‖C([t0,t1];X),

where we used again admissibility, the Lipschitz property of F and the monotonic-
ity of the Orlicz norm. By Banach’s fixed-point theorem, we conclude that System
�(A, [B1, B2], F) possesses a unique mild solution on [t0, t1] with initial condition
x0 and input functions u1 and u2.

Now, let tmax be the supremum of all t1 such that there exists a mild solution x of
�(A, [B1, B2], F) on [t0, t1] for every t1 < tmax, where x0 ∈ X , u1 ∈ EΦ(0,∞;U1)

and u2 ∈ EΨ (0,∞;U2) are given. Suppose that tmax is finite. We will show, that then
limt→tmax ‖x(t)‖ = ∞. If this is not the case, we have

r = sup
t∈[t0,tmax]

‖x(t)‖ < ∞.

Let (tn)n∈N be a sequence of positive real numbers converging to tmax from below.
Since tn ∈ [0, tmax] and ‖x(tn)‖ ≤ r for all n ∈ N, there exists δ > 0 independent of
n ∈ N such that the equation
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ẏ(t) = Ay(t) + B1F(y(t), u1(t)) + B2u2(t),
y(tn) = x(tn).

has a mild solution y on [tn, tn + δ]. Therefore, we can extend x by x(t) = y(t),
t ∈ (tn, tn + δ], to a solution of �(A, [B1, B2], F) on [t0, tn + δ]. This contradicts the
maximality of tmax and hence, x has to be unbounded in tmax. ��
Theorem 2.9 Suppose that the linear systems �(A, B1) and �(A, B2) are integral
ISS, then the bilinear system �(A, [B1, B2], F) is integral ISS and (integral ISS,ISS).
The assumption that �(A, B2) is integral ISS is necessary.

Proof The necessity of �(A, B2) being integral ISS follows by setting u1 = 0 in the
bilinear system.

Proposition 2.4 says that integral ISS of the linear systems is equivalent to the
exponential stability of the semigroup (T (t))t≥0 generated by A and the admissibility
of the control operators B1 and B2 with respect to some Orlicz spaces EΦ and EΨ ,
respectively.

Using this characterization, wewill give the proof in two steps. At first, we prove the
existence of a global mild solution x of �(A, [B1, B2], F) (which does not need the
exponential stability of (T (t))t≥0). Afterward, we prove the (integral) ISS properties.

STEP I. Let (M, ω) denote the type of (T (t))t≥0. By Remark 2.3, there exist
Ct,B1 ,Ct,B2 > 0 such that for every t ≥ 0, y ∈ EΦ(0,∞; 	X) and ỹ ∈ EΨ (0,∞;U2),
we have ∥∥∥∥

∫ t

0
e

ω
2 (t−s)T−1(t − s)B1y(s) ds

∥∥∥∥ ≤ Ct,B1‖y‖EΦ(0,t;	X)

and ∥∥∥∥
∫ t

0
e

ω
2 (t−s)T−1(t − s)B2 ỹ(s) ds

∥∥∥∥ ≤ Ct,B2 ‖ỹ‖EΨ (0,t;U2)
.

Let x0 ∈ X ,u1 ∈ EΦ(0,∞;U1) andu2 ∈ EΨ (0,∞;U2) and let tmax be the supremum
over all t1 such that �(A, [B1, B2], F) possesses a unique x mild solution on [0, t1].
Lemma 2.8 yields tmax > 0. For t ∈ [0, tmax) we have that

‖x(t)‖
=

∥∥∥∥T (t)x0 +
∫ t

0
T−1(t − s)B1F(x(s), u1(s)) ds +

∫ t

0
T−1(t − s)B2u2(s) ds

∥∥∥∥
≤ ‖T (t)x0‖ + e− ω

2 t
∥∥∥∥
∫ t

0
e

ω
2 (t−s)T−1(t − s)B1(e

ω
2 s F(x(s), u1(s))) ds

∥∥∥∥
+ e− ω

2 t
∥∥∥∥
∫ t

0
e

ω
2 (t−s)T−1(t − s)B2e

ω
2 su2(s) ds

∥∥∥∥
≤ Me−ωt‖x0‖ + Ct,B1e

− ω
2 t‖e ω

2 ·F(x(·), u1(·))‖EΦ(0,t;	X) + Cω,u2,t , (15)
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where Cω,u2,t = Ct,B2e
− ω

2 t
∥∥∥e ω

2 ·u2
∥∥∥
EΨ (0,t;U2)

. The ‖ · ‖EΦ -norm in the second term

can be estimated by the boundedness of F ,

‖e ω
2 ·F(x(·), u1(·))‖EΦ(0,t;	X) ≤ m

∥∥∥ ‖u1(·)‖ e ω
2 · ‖x(·)‖

∥∥∥
EΦ(0,t;C)

.

We pass over to the equivalent norm on EΦ given in the 5, (24). Therefore, for ε > 0
there exists a function g ∈ LΦ̃ (0, t;C) with ‖g‖L

Φ̃
(0,t;C) ≤ 1 such that

∥∥∥‖u1(·)‖e ω
2 ·‖x(·)‖

∥∥∥
EΦ(0,t;C)

≤
∫ t

0
‖u1(s)‖ |g(s)|

(
e

ω
2 s‖x(s)‖

)
ds + ε.

Hence, by combining this with (15) gives

e
ω
2 t‖x(t)‖ ≤ Me− ω

2 t‖x0‖ + mCt,B1ε + e
ω
2 tCω,u2,t

+ mCt,B1

∫ t

0
‖u1(s)‖ |g(s)|

(
e

ω
2 s‖x(s)‖

)
ds.

Setting α(t) := Me− ω
2 t‖x0‖ + mCt,B1ε + e

ω
2 tCω,u2,t , Gronwall’s inequality implies

that

e
ω
2 t‖x(t)‖ ≤ α(t) + mCt,B1

∫ t

0
α(s)‖u1(s)‖ |g(s)|e

(
mCt,B1

∫ t
s ‖u1(r)‖ |g(r)| dr

)
ds

≤ α(t) +
(
M‖x0‖ sup

r∈[0,t]
e− ω

2 r + mCt,B1ε + e
ω
2 tCω,u2,t

)

· 2mCt,B1‖u1‖EΦ(0,t;U1)e
2mCt,B1‖u1‖EΦ(0,t;U1) ,

where we used the generalized Hölder inequality for Orlicz spaces, see (25) in the 5.
Thus, by letting ε tend to 0, multiplying with e− ω

2 t and using ab ≤ 1
2a

2 + 1
2b

2 for
a, b ∈ R, we obtain

‖x(t)‖ ≤ Me−ωt‖x0‖ + 1
2M

2e−ωt sup
r∈[0,t]

e−ωr‖x0‖2

+ 4m2C2
t,B1‖u1‖2EΦ(0,t;U1)

e4mCt,B1‖u1‖EΦ(0,t;U1)

+ Cω,u2,t + 1
2C

2
ω,u2,t ,

by monotonicity of the Orlicz norm,

‖e ω
2 ·u2‖EΨ (0,t;U2) ≤ sup

r∈[0,t]
e

ω
2 r‖u2‖EΨ (0,t;U2).
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Thus, we have shown

‖x(t)‖ ≤ β(‖x0‖, t)+γ1(Ct,B1‖u1‖EΦ(0,t))+ γ2(Ct,B2e
− ω

2 t‖e ω
2 ·u2‖EΨ (0,t))

≤ β(‖x0‖, t)+γ1(Ct,B1‖u1‖EΦ(0,t))+ γ2(Ct,B2 sup
r∈[0,t]

e− ω
2 r‖u2‖EΨ (0,t)),

(16)

for all u1 ∈ EΦ(0,∞;U1), u2 ∈ EΨ (0,∞;U2) and functions β ∈ KL and γ1, γ2 ∈
K∞, which can be chosen as

β(s, t) = Me−ωt s + 1
2M

2e−ωt s2 sup
r∈[0,t]

e−ωr ,

γ1(s) = 4m2s2e4ms,

γ2(s) = s + 1
2 s

2.

Moreover, the mild solution exists on [0,∞). Indeed, if this is not the case, we have
tmax < ∞ and Lemma 2.8 implies that x is unbounded in tmax. This contradicts (16)
since the right-hand-side is uniformly bounded in t on finite intervals [0, tmax).

STEP II. Since we are dealing with an exponentially stable semigroup, Remark 2.3
implies that Ct,B1 and Ct,B2 are uniformly bounded in t and we can choose ω > 0.
Hence, (16) yields for all u1 ∈ EΦ(0,∞;U1) and u2 ∈ EΨ (0,∞;U2) that

‖x(t)‖ ≤ β(‖x0‖, t) + γ1
(
CB1 ‖u1‖EΦ(0,t;U1)

) + γ2
(
CB2 ‖u2‖EΨ (0,t;U2)

)
with CBi = supt≥0 Ct,Bi , i = 1, 2.

Using Proposition 2.5 for u1 and u2, we have shown that �(A, [B1, B2], F) is
integral ISS since L∞ is contained in any Orlicz space on compact intervals. If we
apply Proposition 2.5 only for u1 in (16), �(A, [B1, B2], F) is (integral ISS,ISS) by
realizing that there exists a constant C > 0 such that

e− ω
2 t‖e ω

2 ·u2‖EΨ (0,t;U2) ≤ C ‖u2‖L∞(0,t;U2), (17)

for all u2 ∈ L∞(0,∞;U2) and t > 0. To see this, let ε > 0 such that Ψ (x) ≤ x for
all x ∈ (0, ε), which exists by the property that lims→0

Ψ (s)
s = 0. Therefore, choosing

C = max{ 1
ε
, 2

ω
},
∫ t

0
Ψ

(
C−1e− ω

2 s
)
ds ≤

∫ t

0
C−1e− ω

2 sds ≤ 2

Cω
≤ 1.

This implies that

∫ t

0
Ψ

(
e

ω
2 s‖u2(s)‖

Ce
ω
2 t‖u2‖L∞(0,t;U2)

)
ds ≤

∫ t

0
Ψ

(
C−1e

ω
2 (s−t)

)
ds ≤ 1,

by the definition of the EΨ -norm. ��
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The assumption in Theorem 2.9 that System �(A, B1) is integral ISS is not neces-
sary as the choice F = 0 shows.

Remark 2.10 (1) In Theorem 2.9, one cannot expect the bilinear systems to be ISS as
the trivial finite-dimensional example ẋ = −x + u1x shows.

(2) Using the definitions of γ1, γ2 after (16) and the definitions of μ and θ from
Proposition 2.5, up to constants the functions μ1, μ2, θ1 and θ2 in the integral ISS
estimate for �(A, [B1, B2], F) can be given explicitly.

(3) The proof of Theorem 2.9 is easier in the case that the Orlicz spaces are L p

spaces, since the L p-norm is already an integral of the form we are seeking for in
the integral ISS estimate (c.f. Definition 2.1).

(4) Note that the assumptions ofLemma2.8 already yield that the uniquemild solution
is global. This is the first step of the proof of Theorem 2.9.

In order to investigate integral ISS, it is thus sufficient to check that the linear systems
�(A, B1) and �(A, B2) are integral ISS, or by Proposition 2.4 equivalently, that A
generates an exponential stableC0-semigroup and the control operators B1 and B2 are
admissible. Note that there are control operators B which are EΦ -admissible for some
Young function Φ but not L p-admissible for any p ∈ [1,∞). In the context of linear
systems, such an example was already given in [10, Ex. 5.2] for an operator B defined
on C using the connection between a Carleson-measure criterion and admissibility
stated in [10], see also [11]. The next example extends this result to control operators
defined on 	X .

Example 2.11 Let X = �2(N) and define F : X ×C → X , by F(x, u) := ux and the
diagonal operators

Aen = −2nen, Ben = 2n

n
en, n ∈ N,

where (en)nN is the canonical basis of X and A is defined on its maximal domain.
The general assumptions of Sect. 2.1 are satisfied with B1 = B and B2 = 0. Let
x = ( 1n )n∈N ∈ X and p ∈ [1,∞). Following [10, Ex. 5.2], the operator b = Bx
defined on C is not L p-admissible. Hence, B is not L p-admissible.
Next,we show that B is EΦ -admissible,whereΦ is the complementaryYoung function
to

Φ̃(s) = s ln(ln(s + e)).

It is easy to check that Φ̃ is a Young function. Define the sequence k = (kn)n∈N by
kn = ln(Cn)

n , n ∈ N, where C = ln(2) + ln(2e) > 1. We choose n large enough, such
that knn = ln(Cn) ≥ 1 holds. Similar to [34, Ex. 4.2.13], one can show

Φ̃

(
2n

knn
e−2n t

)
≤ 2ne−2n t .
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We deduce

∫ t

0
Φ̃

(
e−2n(t−s) 2n

n

kn

)
ds ≤ 1 − e−2n t < 1

and hence ‖e−2n(t−·) 2n
n ‖L

Φ̃
(0,t;C) ≤ kn for sufficiently large n. Using the generalized

Hölder inequality (25), we get for u ∈ EΦ(0, t; �2(N)) and sufficiently large n

∣∣∣∣
(∫ t

0
T−1(t − s)Bu(s) ds

)
(n)

∣∣∣∣ =
∣∣∣∣
∫ t

0
e−2n(t−s) 2

n

n
(u(s))(n) ds

∣∣∣∣
≤ 2

∥∥∥∥e−2n(t−·) 2n

n

∥∥∥∥
L

Φ̃
(0,t;C)

‖(u(·))(n)‖EΦ(0,t;C)

≤ 2kn‖u‖EΦ(0,t;�2),

where we used in the last inequality that

∫ t

0
Φ

( |(u(s))(n)|
k

)
ds ≤

∫ t

0
Φ

(‖u(s)‖�2

k

)
ds.

Therefore, for some M > 0,∥∥∥∥
∫ t

0
T−1(t − s)Bu(s) ds

∥∥∥∥
�2

≤ M‖k‖�2‖u‖EΦ(0,t;�2),

which shows that B is EΦ -admissible and thus �(A, [B, 0], F) is integral ISS.

3 Controlled Fokker–Planck equation

Following [3,9], we consider the following variant of the Fokker–Planck equation on
a bounded domain Ω ⊂ R

n , with smooth boundary ∂Ω ,

∂ρ
∂t (x, t) = νΔρ(x, t) + ∇ ·

(
ρ(x, t)∇V (x, t)

)
,

ρ(x, 0) = ρ0(x),
(18)

where x ∈ Ω, t > 0, with reflective boundary conditions

0 = (ν∇ρ + ρ∇V ) · n, on ∂Ω × (0,∞). (19)

Here, n refers to the outward normal vector on the boundary, ρ0 denotes the initial
probability distribution with

∫
Ω

ρ0(x) dx = 1 and ν > 0. Furthermore, the potential
V is assumed to be of the form

V (x, t) = W (x) + α(x)u(t), (20)
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where W ∈ W 2,∞(Ω) and α ∈ W 1,∞ ∩ H2(Ω) satisfying the structural assumption
∇α · n = 0 on ∂Ω . Thus, the scalar-valued input function u enters via the spatial
profile α in the potential.

In order to cast the equations in an abstract framework, we introduce the following
operators:

A f = νΔ f + ∇ · ( f ∇W ),

D(A) = { f ∈ H1(Ω) | Δ f ∈ L2(Ω), (ν∇ f + f ∇W ) · n = 0 on ∂Ω},
B f = ∇ · ( f ∇α),

D(B) = H1(Ω),

where X = L2(Ω) and H1(Ω), H2(Ω) refer to the standard Sobolev spaces. By
standard arguments, the operator A is seen to generate a bounded C0-semigroup on
X , with discrete spectrum σ(A) = σp(A) ⊆ (−∞, 0] and ρ∞ = ce−Φ is an eigen-
function to the simple eigenvalue 0, where Φ is given by Φ = ln ν + W

ν
and c > 0 is

such that
∫
Ω

ρ∞dx = 1, see [3]. Furthermore, we will identify B with its extension
from X to X−1.

We now consider the system around the stationary distribution ρ∞ instead of the
origin, see also [3] and decompose X according to the projections

P : L2(Ω) → L2(Ω), y �→ y −
∫

Ω

y(x) dxρ∞ and Q := I − P.

Note that ran(Q) = ker(P) = span{ρ∞} and ker(Q) = ran(P). Define X = ran(P).
Using y = ρ − ρ∞ and y = yP + yQ with yP = Py ∈ X and yQ = Qy ∈ span{ρ∞}
and following [3, Sec. 3.2], the Fokker–Planck equation can be rewritten as

ẏP (t) = AyP (t) + B1 (yP (t)u(t)) + B2u, t ≥ 0,
yP (0) = Pρ0,

yQ(t) = Qρ0 − ρ∞ = 0, t ≥ 0,
(21)

where

A : D(A) = X ∩ D(A) → X , f �→ A f ,

B1 : X → X−1, f �→ B f ,

B2 : C → X , u �→ uBρ∞,

and A generates a strongly continuous semigroup as AP f = PA f for f ∈ D(A),
see also [3, Eq. (3.12)]. We emphasize that Qρ0 −ρ∞ = 0 follows by the assumption
that

∫
Ω

ρ0(x)dx = 1. That B1 and B2 are well-defined will be argued below.

Theorem 3.1 System (21) is integral ISS.

In the remainder of the section, we will lay out the proof of Theorem 3.1 based on
Theorem 2.9 and Proposition 2.4. This includes to show that A, B1, B2 satisfy the
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assumptions of the abstract system class from Sect. 2.1 and considering the nonlin-
earity

F : X × C → X , (y, u) �→ yu. (22)

Let M be the multiplication operator by e
Φ
2 on L2(Ω). Clearly, M is bounded and

invertible on L2(Ω), leaves H1(Ω) invariant, and the inverseM−1 is themultiplication

operator by e− Φ
2 . Hence, Ã given by

Ã = MAM−1,

D( Ã) = MD(A)

is well-defined and self-adjoint.
To study admissibility of B, we introduce the following well-known abstract inter-

polation and extrapolation spaces, see, e.g., [33]. Let X̃1 and X̃−1 be defined in the
same way as X1 and X−1, but using Ã instead of A. We define X̃ 1

2
as the completion

of D( Ã) with respect to the norm given by

‖z‖2
X̃ 1

2

:= 〈(I − Ã)z, z〉, x ∈ D( Ã),

and we denote by X̃− 1
2
the dual space of X̃ 1

2
with respect to the pivot space X , i.e.,

the completion of X with respect to the norm sup‖v‖X̃ 1
2

≤1 |〈z, v〉X |. The following

embeddings are dense and continuous: X̃1 ↪→ X̃ 1
2

↪→ X ↪→ X̃− 1
2

↪→ X̃−1.

We first prove that the operator B̃ := MBM−1 defined on D( Ã) has a unique
extension B̃ ∈ L(X , X̃− 1

2
) which is L2-admissible for Ã. Integration by parts gives

‖v‖2
X̃ 1

2

= ‖v‖2L2 + ‖∇
(
e

Φ
2 v

)
e− Φ

2 ‖2L2 , v ∈ D( Ã).

For f ∈ D( Ã) and v ∈ D( Ã), ‖v‖X̃ 1
2

≤ 1, we have that

|〈B̃ f , v〉L2 | =
∣∣∣∣
∫

Ω

ve
Φ
2 ∇ ·

(
e− Φ

2 f ∇α
)
dx

∣∣∣∣
=

∣∣∣∣
∫

∂Ω

ve
Φ
2 e− Φ

2 f ∇α · n dσ −
∫

Ω

∇
(
ve

Φ
2

)
·
(
e− Φ

2 f
)
dx

∣∣∣∣
≤ ‖∇

(
ve

Φ
2

)
e− Φ

2 ‖2L2(Ω)n
‖ f ∇α‖2L2(Ω)n

≤ n‖∇α‖2L2(Ω)n
‖∇

(
ve

Φ
2

)
e− Φ

2 ‖2L2(Ω)n
‖ f ‖2L2(Ω)
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where σ is the surface measure on ∂Ω . Thus, B̃ ∈ L(X , X̃− 1
2
) and B̃ is L2-admissible

for Ã by [33, Prop. 5.1.3]. We have for β ∈ ρ(A) = ρ( Ã) and f ∈ X

‖M−1 f ‖X−1 = ‖(β − A)−1M−1 f ‖X = ‖M−1(β − Ã)−1 f ‖X ≤ ‖M−1‖‖ f ‖X̃−1
.

Thus, M−1 extends uniquely to an operator in L(X̃−1, X−1). The same argument
yields a unique extension M ∈ L(X−1, X̃−1). Note that these extensions are inverse
to each other, so it is natural to denote the extensions again by M and M−1.
We claim that M−1 B̃M ∈ L(X , X−1) extends B to an L2-admissible operator for
A which we again denote by B. Indeed, if (T (t))t≥0 is the semigroup generated by
A, then (S(t))t≥0 with S(t) = MT (t)M−1 is the semigroup generated by Ã and for
u ∈ L2(0, t; X) we have Mu ∈ L2(0, t; X) and

∫ t

0
T−1(t − s)Bu(s) ds = M−1

∫ t

0
S(t − s)B̃(Mu)(s) ds.

As B2 ∈ L(C,X ), B2 is clearly L1-admissible. The operator P commutes with
the C0-semigroup generates by A [3, Eq. (3.12)], by [14, Lem. 4.4] the operator
B1 = B|X ∈ L(X ,X−1) is well-defined and L2-admissible for A.
Thus, the bilinearly controlled Fokker–Planck system given by (18)–(20) can be writ-
ten as a system �(A, [B1,B2], F).

Remark 2.10 implies that the Fokker–Planck system (18)–(20) has a unique
global mild solution ρ for any initial value ρ0 ∈ L2(Ω) and input function u ∈
L2(0,∞;U ). Further, in [3, Proposition 2.2] it is shown that

∫
Ω

ρ0(x)dx = 1 implies∫
Ω

ρ(t, x)dx = 1 for all t > 0.
Following the construction of the integral ISS estimate (c.f. (16)), we deduce an

explicit integral ISS estimate: There exist constants C, ω > 0 such that for any ρ0 ∈
L2(Ω) with

∫
Ω

ρ0(x)dx = 1 and u ∈ L2(0,∞;U ), the global mild solution of the
Fokker–Planck system (18) satisfies

‖ρ(t) − ρ∞‖L2 ≤ Ce−ωt
(
‖ρ0 − ρ∞‖L2 + ‖ρ0 − ρ∞‖2L2

)
+ γ

(∫ t

0
‖u(s)‖2Uds

)
,

where γ (r) = CreCr
1
2 + Cr

1
2 + Cr .

4 Conclusion

Bilinear systems appear naturally in control theory, e.g., when considering multiplica-
tive disturbances in feedback loops of linear systems. The results in this article draw
a link between bilinear systems, which are a classical example class in (integral) ISS
in finite-dimensions, and recent progress in ISS for infinite-dimensional systems. We
emphasize that the most natural example in this context,

ẋ(t) = Ax(t) + u(t)x(t), t > 0, x(0) = x0,
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with A generating a C0-semigroup (T (t))t≥0 on X , is covered by the system class
considered here. More precisely, by the results in Sect. 2, it follows that this system is
integral ISS if and only if (T (t))t≥0 is exponentially stable. More precisely, the suf-
ficiency follows since the identity is L1-admissible and hence, the system is integral
ISS. It seems that prior works on integral ISS [24, Sec. 4.2] did not cover this com-
parably simple class as the bilinearity x �→ xu fails to satisfy a Lipschitz condition
uniform in u required there1.

Moreover, our results generalize to integral ISS assessment for bilinearities arising
from boundary control (or lumped control).

5 Appendix

We briefly introduce Orlicz spaces of functions f : I → Y for an interval I ⊂ R

and a Banach space Y . For more details on Orlicz spaces, we refer to [1,18,19]. Let
Φ : R+

0 → R
+
0 be a Young function, i.e., Φ is continuous, increasing, convex with

lims→0
Φ(s)
s = 0 and lims→∞ Φ(s)

s = ∞ and denote by LΦ(I ; Y ) the set of Bochner-
measurable functions u : I → Y for which there exists a constant k > 0 such that
Φ(k‖u(·)‖) is integrable. We equip LΦ(I ; Y ) with the norm

‖u‖LΦ(I ;Y ) = inf

{
k > 0‖

∫
I
Φ

(‖u(s)‖
k

)
ds ≤ 1

}
. (23)

Despite the fact that LΦ(I ; Y ) is typically referred to as “Orlicz space” in the literature,
we prefer to call

EΦ(I ; Y ) = {u ∈ L∞(I ; Y ) | ess supp u is bounded}‖·‖LΦ(I ;Y )

the Orlicz space associated with the Young function Φ. We write ‖u‖EΦ(I ;Y ) =
‖u‖LΦ(I ;Y ) for u ∈ EΦ . Note that u ∈ EΦ(I ; Y ) implies that Φ ◦ ‖u(·)‖ is integrable.
Typical examples of Orlicz spaces are L p-spaces; for Φ(t) = t p with p ∈ (1,∞) it
holds that EΦ(I ; Y ) is isomorphic to L p(I ; Y ).

A Young function Φ is said to satisfy the Δ2-condition if there exist K > 0 and
s0 ≥ 0 such that

Φ(2s) ≤ KΦ(s), s ≥ s0.

Note that EΦ(I ; Y ) = LΦ(I ; Y ) if and only ifΦ satisfies theΔ2-condition. Also note
that Φ(s) = s p, p ∈ (1,∞) satisfies the Δ2-condition. For a Young function Φ, the
complementary Young function Φ̃ is defined by

1 However, it seems that this can be overcome with a carefully refined argument in the proof of [24,
Thm. 4.2].
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Φ̃(s) = max
t≥0

(st − Φ(t)) .

Again, this is aYoung function andΦ can be recovered from Φ̃ in the samemanner. The
complementary Young function to Φ(s) = s p

p , 1 < p < ∞, is given by Φ̃(s) = sq
q

with 1
p + 1

q = 1.
As for L p spaces, an equivalent norm to ‖ · ‖LΦ(I ;Y ) is given by

‖u‖Φ,(I ;Y ) = sup

{∫
I
‖u(s)‖|v(s)| ds‖v measurable,

∫
I
Φ̃(|v(s)|) ds ≤ 1

}
.

(24)

Furthermore, for a Young functions Φ and its complementary Young function Φ̃ the
following generalized Hölder inequality

∫
I
‖u(s)‖‖v(s)‖ds ≤ 2‖u‖LΦ ‖v‖L

Φ̃
. (25)

holds. This also implies the continuity of the embeddings

L∞(I ; Y ) ↪→ LΦ(I ; Y ) ↪→ L1(I ; Y )

if I is bounded. Although L1 is not an Orlicz space, we will explicitly allow for
Φ(t) = t in our notation referring to EΦ(I ; Y ) = L1(I ; Y ). Note that the definition
of the norm (23) is indeed consistent with the L1-norm and that Φ satisfies the Δ2-
condition. However, we will not define a “complementary Young function” for this
particular Φ.

An essential property of Orlicz spaces is the absolute continuity of the EΦ norm
with respect to the length of the interval I (see, e.g., [19, Thm. 3.15.6]), this is for
u ∈ EΦ(I ; Y ) and ε > 0 there exists δ > 0 such that for each interval I holds

λ(I ) < δ �⇒ ‖u‖EΦ(I ;Y ) < ε,

where λ refers to the Lebesgue-measure on R.
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